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168 E. TURRIERE

Les parameétres ¢ et d, sont liés entre eux par la relation

" §:34+1283_ 1852 4 128 — 3
— 3 (397 — 1)2

On observera enfin que la condition 22 — 1 > 0, caractéris-
tique des solutions du probléme primitivement étudié par

FermaT se traduit ici par 'inéquation ¢ < —i—

La solution banale x = 1, ¥y = 0, z = 1 correspond préci-
sément au cas limite ¢ :%; elle appartient d’ailleurs indiffé-
remment aux deux problemes. La formule de récurrence ci-
dessus écrite, entre ¢, et ¢, donne alors pour azéla valeur

suivante de ¢, :
57-121

% = 11595

- ” . \ l 1
qui, supérieure a o, correspond au second probléme; elle

conduit a la solution

119 120 1

T T 1690 T e T g
déja signalée a propos de la cubique perspective de la biqua-
dratique gauche.

Généralisation des équations de Brahmagupta-Fermat.

50. — L’étude des équations Ax* 4+ Ba® = f(x,y) dans les-
quelles f{xy) est un polynome quelconque du second degré
des deux variables x et ¥ se raméne immédiatement a 1’étude
arithmogéométrique d’une biquadratique gauche par l'intro-
duction d’une nouvelle variable auxiliaire. Une telle équation

Ax* 4+ Ba® = f(x, ¥y)

peut, en effet, étre considérée comme représentant dans le
plan Oxy une courbe du quatriéme degré, projection d'une
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biquadratique de 'espace. Cette courbe gauche est l'inter-
section d'un cylindre parabolique

2

x

avec une quadrique d’équation :
z2 4+ Bxzs = flx, ) .

51. — EQUATIONS DE BRAHMAGUPTA-FERMAT GENERALISEES. —
Une premiére extension toute naturelle des équations de
Brahmagupta-Fermat

Ax? 4+ Bx + C = )2

est I'équation
Ax® 4 Ba? 4+ Cx + D = y? ;

son étude se rattache immédiatement a celle d'une cubique
plane. (Voir § 42).
Il en est de méme des équations plus générales :

Ax* 4+ Bx® 4+ Cax® 4+ Dx 4+ E =12 .

Pour traiter arithmogéométriquement une équation de cette
espéce, il suffit de poser x* = z de sorte qu’elle représente
-une quartique plane projection sur le plan Oxy de la biqua-
dratique gauche d’équations :

1)

I

~

E x

Les cas ou A ou E seront carrés parfaits permettront de
trouver immédiatement-une série de solutions.

Parmi les équations de Brahmagupta-Fermat généralisées
au sens qui précede, il convient de mentionner d'une ma-
niére toute spéciale celles qui admettent pour premier
membre un trinome bicarré en x et plus particulierement
encore les équations

x* + A2 4+ B2 =[] .

En posant
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cette équation devient
X2+ A —2B=1[];
de sorte que toute équation du type
at + Ar* 4+ B2 =[],
est équivalente au systéme
X?da=[ X +4b=[]

des équations des nombres congruents. Les constantes A, B,
a, b qui figurent dans ces diverses équations sont liées entre
elles par les conditions

a—A — 2B , b —= — 4B .

L. EvrLer affirma I'impossibilité pour £ =1, 3, 5, 6, — 14,
ete., ... de
‘ axt + k1 =[] .

L’équivalence précédente fut indiquée par A. GENoccHI
dans le mémoire cité au § 44.
L’équation
at — bhx? + 1 =[]

fut enfin traitée par Ed. Lucas [Recherches sur Uanalyse
indéterminée, Moulins, 1873, p. 67 ; Recherches sur plusieurs
ouvrages de Léonard de Pise, p. 120].

52. — PROBLEME DES ARITHMODISTANCES POUR UNE HYPER-
BOLE EQUILATERE OU UNE LEMNISCATE DE BErNourLi. — Il
arrive trés fréquemment que ce genre d’équations de Brah-
magupta-Fermat intervienne dans les problémes des arithmo-
distances pour certaines courbes. C’est ainsi que le probleme
des arithmodistances pour I’hyperbole équilatere et son cen-
tre de symétrie ou encore pour la lemniscate de Bernoulli
et son point double (transformée de I’hyperbole équilatere
par inversion) se traduit analytiquement par I'équation

yr=1 4 a*.

Celle-ci est impossible et n’admet que la solution banale
x = 0. Cette impossibilité résulte du théoréme négatif de
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Fermar sur 'équation x* + y* = z* ou encore du théoréme
dtt a FrénicLe de non-existence d’arithmotriangle pythago-
rique dont l'aire soit double d’un carré. (Voir a ce sujet § 6
de manote sur Le probléme de Jean de Palerme et de Léonard
de Pise).

Cette impossibilité est encore équivalente a celle de

tang § = 2, tang— étant rationnel. En d’autres termes il

n’existe pas d’arithmotriangle pythagorique dont le rapport
des cathétes soit un carré parfait.

53. — PROBLEME DES ARITHMODISTANCES POUR UNE ARITHMO-
coNIQUE — Plus généralement, étant donnée une conique
douée d’arithmopoints et, par suite, représentable par des
équations

wh
b]ﬁlo’
)

L]

=
1o

dans lesquelles f,, g, et &, sont des polynomes du second
degré d’'une méme variable ¢, le probleme des arithmodis-
tances pour cette arithmoconique et pour un arithmopoint

du plan, — qui peut sans restriction de généralité étre pris
pour origine des coordonnées, — se traduit par I’équation
fi + &

— = carré parfait ;
}l2

ou encore f’ 4+ g’ = Y*. De sorte qu’en exp11c1tant la variable
¢t on est ramené a une équation de la forme

Azt + Bx® 4 Cz® 4 Dz + E = °

Ce résultat s’étend d’ailleurs au cas d’une arithmoconique
de I'espace. On a alors

b[;ﬁ
<
I
|2
&
I
> >~

¥

on est par suite amené a une équation

fi+ &+ =Y,
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qui, aprés développement, donne encore une équation de
Brahmagupta-Fermat du quatriéme ordre.
La réciproque n’est pas exacte. Toute équation

Axt 4 Bx® 4 Cx? 4 D 4+ E = 4?2

ne serait susceptible d’étre rattachée a un probléme d’arith-
modistance pour une arithmoconique de 'espace, ni @ fortior:
pour une arithmoconique de l’espace. Les équations pour
lesquelles A et E ne sont pas sommes de deux ou trois carrés
ne sont pas susceptibles d’une telle interprétation géomé-
trique : par exemple aucune des équations

y2=at—1, yr=a*4+ 7,

ne peut étre associée a une arithmoconique de l'espace ou
du plan au titre de courbe représentative de 1'équation du
probléme des arithmodistances.

Le probléme de Bhaskara et les équations

.2

ela, y) = w*, Yz, y) = v .

54. — LE proBLEME DE BHAskARA. — Le systéeme des deux
équations indéterminées

x4y —1=u?,
2?2 — 3t —1 =2,
a quatre inconnues x, ¥, #, ¢, dont Buaskara' a donné les
trois solutions particuliéres suivantes dépendant d’un para-
metre rationnel arbitraire

x=8\ 4+1 == BA2
1
x:)\+§5\_ , y=1 |,
___(87\2——1)2 ___8)\2~—1
T= gy Y= g

1 Le Lilavati, section 1V, regle 59-60, Cf. Nouvelles Annales de Mathématiques, question
206, (2], t. VIII, 1849, p. 107; E. CLERE en donna une solution incompléte, t. IX, 1850, pp.
116-118.
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