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paraît résider dans le fait que le problème général posé au

n° 2 conduit à la forme générale de la fonction F(z) donnée

au n° 5.

Une recherche analogue et présentant même intérêt peut
être faite pour le problème généralisé que nous venons d

indiquer.

Jassy, décembre 1916.

NOTIONS D'ARITHMOGÉOMÉTRIE
(3e article) 1

PAK

Emile Turrière (Montpellier).

Les quartiques gauches.

43. — Méthode du plan osculateur. — De même que, sur
une cubique plane dont l'équation a ses coefficients rationnels,

l'existence de deux arithmopoints quelconques entraîne

par alignement celle d'un troisième arithmopoint, sur une
quartique gauche d'équations rationnelles l'existence de trois
arithmopoints particuliers quelconques entraîne celle d'un
quatrième arithmopoint, trace delà courbe gauche sur l'arith-
moplan défini par les trois arithmopoints connus.

Le plan défini par une tangente en un arithmopoint d'une
quartique gauche et par un autre arithmopoint rencontre la
courbe en un nouvel arithmopoint.

Enfin, le plan osculateur en un arithmopoint rencontre à

nouveau la quartique gauche en un nouvel arithmopoint.

1 Voir L'Enseignement mathématique, 18e année, 15 mars 1916, pp. 81-110, et 15 novembre
1916, pp. 397-428.
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Cette remarque donne naissance à une méthode analogue à

celle du point tangentiel pour les cubiques planes et permettant
de rattacher par une voie itérative une suite d'arithmo-

points à tout arithmopoint d'une quartique gauche. Cette
méthode du plan oscillateur consistera à partir d'un
arithmopoint connu a priori M4 ; le plan oscillateur à la quartique
gauche en M4 rencontrera la courbe gauche en un second

point M2; le plan osculateur en M2 donnera un autre
arithmopoint M3 et ainsi de suite: de l'arithmopoint M*_i se
déduira un arithmopoint M* qui sera la trace de la quartique
sur le plan osculateur de

44. — Les équations des nombres congruents. — J'ai déjà1
donné un exemple de l'application de la méthode du plan
osculateur à l'occasion des équations indéterminées
simultanées

x2 -j- a y2 x2 -f- b z2

Pour a + b — 0 elles ne sont autres que les équations
des nombres congruents qui ont donné lieu à des travaux
remarquables de Léonard de Pise, Edouard Lucas, A. Ge-
nocchi et Mathew Collins. Impossibles pour «—1,2, 3, 10,

11, 17, 19, elles sont possibles pour a 5, a 6, par
exemple.

Pour a 5, b — 5 ce sont les équations du problème
proposé par Jean de Palerme à Léonard de Pise, qui en a

donné la solution
1 1 41*-3+ 4 + 6 -12 '

Pour a ~ 6, b — 6, on se trouve en présence d'un
système d'équations étudié par Ed. Lucas2. Partant de la solution

simple :

5 7 1

* 2 ' J 2 ' 3
2 '

1 Le problème de Jean de Palerme et de Léonard de Pise, L'Enseignement mathématique,
XVIIe année, septembre-novembre 1915 (p. 315-324).

2 Edouard Lucas, Sur la résolution des systèmes d'équations x2 — Gv2 u2, x2 -j- 6y2 v2,

Nouvelles Annales de Mathématiques [2], t. XV, 1876, p. 466-469.
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Ed. Lugas forme les nouvelles solutions moins évidentes :

1201 1249 1151
Xl ~ "140" ' ^ ~~ ~Ï4Ô~ '

^ __
2-639-802 y _ 10113-607

__
4-319-999

^ ~~ 7-776-485 ' "" 7*776-485 ' ~~~ 7*776•485 '

les formules de récurrence qu'il indique ne sont d'ailleurs
pas distinctes de celles que j'ai trouvées en application de la
méthode du point tangentiel sur une cubique plane :

ab — xA x2y2 -j- az2 x2 z2 -j- by2
Xx 2xyz

' Ixyz ' 2xyz

Des propositions générales sur l'impossibilité des équations

des nombres congruents ont été données par A. Ge-
nocchi 1 (par exemple lorsque a est un nombre premier de
la forme 8 m + 3 ou le double d'un nombre premier de la
forme 8 m + 5) ; le même auteur s'est occupé d'ailleurs dans
le même travail du cas a + b ^ 0. Elles ont aussi été
considérées par Ed. Lucas2 dans ses recherches sur les travaux
de Léonard de Pise.

45. — Les équations simultanées homogènes

x2 -j- ay2 — zr

ax2 -j- y2 — t2

ont été traitées de même3; pour a 7, elles admettent une
solution simple

x z= S y — 1 S — 4 t 8

1 A. Genocchi, Sur l'impossibilité de quelques équations doubles, Comptes Rendus de l'Académie

des Sciences de Paris, 1874, t. 78, p. 433-435.
2 Ed. Lucas, Recherches sur plusieurs ouvrages de Léonard de Pise et sur diverses questions

d'arithmétique supérieure, Bollettino di bibliografia (du prince Boncompagni), 1877. Lucas
cite Léonard de Pise, Lucas Pacioli, L. Euler, Mathew Collins et A. Genocchi.

Au sujet des mêmes équations des nombres congruents, voir aussi la question n° 4472 de
YIntermédiaire des mathématiciens (1915, p. 52, et p. 231) par M. A. Gérardin; on y trouve
des listes étendues de valeurs de a pour lesquelles les équations sont possibles ou impossibles.

3 L'Intermédiaire des mathématiciens, 1916, p. 63. L'auteur de la solution indique précisément
la méthode du plan osculateur, ainsi que celle d'une quadrique ayant avec la courbe

sept intersections confondues au point initial; le huitième point d'intersection est une nouvelle

solution. Il traite ensuite la question au moyen des fonctions elliptiques d'un même
paramètre u et signale toute une série de solutions de paramétres —3u, —lu, — 11m
déduites d'une solution initiale de paramètre u.

L'Enseignement mathém., 19e année; 1917. 11
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dont il est possible de déduire la solution

x — 447 y 1121 5 300* t — — 1688

M. A. Gérardjn1 a d'ailleurs signalé un cas particulier
de possibilité de cette équation. C'est celui pour lequel le
nombre a est de la forme suivante :

a — I2 -J- 2X 4- 4

Dans ce cas, on peut prendre :

.*• X y X + 2 r. ~ X2 -f 3À + 4 i — À2 + À 4- 2

Le cas de a carré a été traité par L. Etiler en 1780 2.

46. — Comme autre exemple, je signalerai encore celui du

problème de la détermination de deux parallélépipèdes
rectangles à arêtes rationnelles, équivalents et isodiagonaux.
On impose une des arêtes de run des volumes et deux arêtes
de l'autre.

Soient x, y, c les arêtes de l'un des parallélépipèdes; c

est connu et x, y sont deux inconnues. Les arêtes du second
volume seront de même a\ br, z ; a!, b' sont donnés et z est
inconnu. Il s'agit alors d'étudier le système suivant d'équations

entre x. y et z' :

t xyc — a'b'z'
} _J_ y- _J_ c2 — a'-2 _J_ 1/2 _|_ -'2

elles représentent, par rapport à des axes coordonnés,
{Oxy 0y y 0z) une biquadratique gauche intersection d'un
paraboloïde hyperbolique avec un hyperboloïde de révolu-
lion. Par la transformation définie au moyen des formules

1 Lac. cit.. p. 64.
2 C. f. Commentationes arithmetics'. 1849, t. Il, pp. 425-437,
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et par conséqxient constituée par une affinité et une rotation
autour de 0z\ les équations de la biquadratique gauche
deviennent :

X2 — (Z -}- l)2 — K Y2 (Z — l)2 — K

/ g ^ /2\ /q2 b/^)
K est une constante égale à -- ^772 • Cette valeur

particulière de K assure à la biquadratique transformée
l'existence d'un arithmopoint particulier

v _ c{o! + //) _ c [a' — h')
__

c2

0 ~ a'b' ' 0 ~~ a'h' ' 0 — a'b' '

correspondant à la solution banale constituée par deux
parallélépipèdes égaux.

La méthode du plan osculateur pourra être appliquée à

tout arithmopoint (.r0, yQ, z0) de la biquadratique d'équations

:

X2 + k — (Z + l)2 Y2 + k (Z — l)2

le plan osculateur au point (r0, y0, 20) ayant pour équation

- .rjX + jJY + 2(zl + 1 - K)Z - 6,0(,q2 + 1 - K)

Je n'insiste pas sur ce problème qui peut être traité d'une
autre manière et rattaché à des cubiques planes remarquables

signalées par Edouard Lucas. (Voir§§ 61, 62 et 63.)
Je pense que ces divers exemples, étudiés par une méthode

très élémentaire, suffisent amplement pour justifier
l'introduction de ces considérations d'arithmogéométrie. Ils prouvent

d'ailleurs qu'il n'est pas nécessaire d'utiliser des résultats

de la théorie des fonctions elliptiques pour aborder
systématiquement l'étude de ces questions de théorie des
nombres.

47. — Méthode de la quadrique passant par sept points.
— Une méthode analogue à celle du plan osculateur découle
du fait bien connu que toutes les quadriques passant par
sept points communs passent par un huitième point fixe.

Supposons qu'on connaisse sept arithmopoints particuliers
d'une biquadratique gauche définie comme intersection de
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deux quadriques Qi 0 et ()._> 0. On formera alors l'équation

d'une quadrique passant par ces sept arithmopoints mais
n'appartenant pas au faisceau ponctuel défini par les quadriques

Qj 0 et Q2 04. Soit Q3 0 une telle quadrique. Les
équations simultanées

Q, 0 Q2 — 0 Qs — 0

auront pour solutions les coordonnées d'un système de huit
points, auxquels appartiendront les sept points connus a
priori. De sorte que, de ces sept arithmopoints, ce procédé
permettra de déduire un huitième arithmopoint.

Les sept arithmopoints initiaux peuvent être confondus
en un seul arithmopoint : on possède donc une nouvelle
méthode de récurrence entre arithmopoints d'une biquadratique
gauche, absolument analogue à celle du plan oscillateur.

48. — Reductibility de l'étude arithmogéométrique d'une
QUARTIQUE GAUCHE A CELLE D'UNE CUBIQUE PLANE. — Une autre
voie est ouverte dans l'étude arithmogéométrique d'une quar-
tique gauche représentée par des équations à coefficients
rationnels et douée d'un arithmopoint particulier connu a

priori.
Cette étude n'est pas distincte, en effet, de celle d'une

cubique plane, qui a fait l'objet des §§ 40, 41 et 42. La cubique
plane associée à la quartique gauche n'est autre que la
perspective de celle-ci, le point de vue se trouvant à l'arithmo-
point connu a priori.

Pratiquement, on projettera la quartique gauche en
prenant pour centre de projection l'arithmopoint connu a priori
sur un plan de projection dont le choix sera effectué, dans

chaque cas particulier, par des considérations de symétrie,
d'élégance ou de simplicité des équations.

La cubique plane perspective de la quartique de l'espace
admet pour arithmopoint particulier la trace sur le plan de

projection de l'arithmodroite tangente à la quartique au point
de vue.

C'est ainsi que les équations des nombres congruents

x1 -f- a — y2 x2 -f- b z2
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ont pu de diverses manières être ramenées à une équation
représentant une cubique plane douée d'arithmopoints l.

49. — Problème de Fermât : Arithmotriangles pythago-
RIQUES DONT LHYPOTEN USE ET LA SOMME OU LA DIFFERENCE DES

cathetes sont des nombres carrés parfaits. — L'étude des

triangdes pythagoriques à cotés rationnels dont l'hypoténuse
est mesurée par un carré et dont la somme des cathètes est

un carré a été faite par Leibniz2, Fermât, Euler3 et La-
grange. La plus petite solution de ce problème est constituée

par le triangle dont les cathètes ont pour mesures :

1-061*652-293*520
4-565486-027-761

La somme des cathètes est le carré du nombre 2*372*159;
l'hypoténuse est égale à (2• 165-017)2.

Je vais appliquer les considérations qui précèdent au
problème beaucoup plus général des arithmotriangles pythagoriques

dont l'hypoténuse et la somme ou la différence des
cathètes sont mesurées par des nombres carrés parfaits.

Soient x, y deux nombres rationnels algébriques dont les
valeurs absolues sont par convention les rapports des
cathètes à l'hypoténuse d'un triangle de cette espèce. Il s'agit
ainsi de procéder à l'étude du système des deux équations

x2 --f- y2 — 1 x + y ~-2

admettant les solutions banales (x 1 y — 0, z — 1)

[x — 0, y 1, z — 1). Ces équations représentent
respectivement un cylindre de révolution et un cylindre parabolique,

de sorte que leur ensemble représente une biquadra-
tique gauche douée d'un arithmopoint particulier, dont il est
possible par symétries de déduire trois autres arithmopoints.

1 Cf. L'Enseignement mathématique, XVIIe année, 1915, p. 317 et 321.
2 Je cite Leibniz d'après Eulkr : « Hoc problema a Leibnizio olim propositum » [Com-

mentationes arithmeticae, t. II, p. 44-52, Miscellanea analytica, 15 novembre 1773, § 4, p. 47-48].
3 L. Euler a consacré deux mémoires à ce problème :

a) De tribus pluribusvc numeris inveniendis, quorum summa sit quadratum, quadratorum
vero summa biquadratum, 18 mai 1780; Commentationes arithmeticae, édition de 1849, t. II,
p. 397-402. La solution particulière rapportée dans le texte ci-dessus est indiquée dans cette
pièce.

b) Solutio problematis Fermatiani de duobus numeris, quorum summa sit quadratum
quadratorum vero summa liquadratum, ad mentem 111. Lagrange adornata, 5 juin 1780 ;
Commentationes arithmeticae, ibid., pp. 403-405.
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La distinction entre les solutions des deux problèmes
distincts qui se traduisent par ces mêmes équations se fait
aisément. Les nombres (x, y) peuvent, en effet, être soit tous
deux positifs, soit de signes contraires. Dans le premier cas,
on se trouve en présence du problème de Fermât proprement

dit ; pour x et y de signes contraires, c'est la différence
des cathètes qui est mesurée par un carré parfait. D'ailleurs,
le seul examen de z permet d'effectuer autrement la même
distinction ; il résulte, en effet, de l'équation

Ixy s* - l

que les solutions du problème de Fermât proprement dit
correspondent aux arcs de la biquadratique extérieurs à

l'espace limité aux deux plans parallèles z ± 1. Les arithmo-
points de la biquadratique situés entre ces deux plans parallèles

sont au contraire associés à des arithmotriangles pytha-
goriques pour lesquels la différence des cathètes est un carré
parfait.

Le cône du troisième degré admettant la biquadratique
considérée pour courbe directrice, le sommet étant l'arith-
mopoint (x 1, y 0, z 1), a pour équation par rapport
à des axes issus de son sommet et parallèles aux axes
primitifs :

(X2 -f Y2) (X + Y — 2Z) + 2XZ2 0 ;

de sorte que la cubique d'équation

(X2 + Y2) (X -F Y — 2) + 2X — 0

est une perspective de la biquadratique gauche. La
correspondance entre les nombres (x, y, z) et (,r, y) s'effectue par
les formules

l Y2 — X2 2XY
\ x — YMTX2 ' — ~ X2 -F Y2 ' * "F Y — 1

La séparation entre les arcs associés aux deux problèmes
considérés se fait au point à l'infini de cette cubique circu-
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laire, au point à distance finie d'intersection avec l'asymptote
X + Y 2, à l'origine 0 des coordonnées et au point autre
que 0, situé à distance finie, d'intersection avec la parallèle
menée par 0 à cette asymptote. Les deux arcs compris entre
ces deux droites parallèles (X + Y 0, X + Y 2)

correspondent à la différence des cathètes, tandis que les deux
autres arcs extérieurs à ces deux droites parallèles
correspondent au problème de Fermât. Deux arithmopoints alignés
avec le point O correspondent toujours au même problème.

Une des solutions remarquables de la question, ainsi trouvée

au moyen des alignements sur cette cubique, est celle qui
correspond au triangle rectangle de côtés 119, 120 et 169.

La méthode du plan oscillateur peut aussi être appliquée
avec intérêt à la biquadratique étudiée. Pour simplifier les
calculs, il est avantageux d'introduire une variable auxiliaire
S définie par la relation

* - y 2 VY ;

de sorte que l'on doit poser :

OC —z2 Vs >

,=4='-V«,
G4 2 — 48

Avec ces notations, l'équation du plan oscillateur de la
biquadratique au point de coordonnées x0, yQ, z0 et du
paramètre â0 est :

(2*0 *0 + + (2JcA + *l)y - 2^ — 680 — 2

Ce plan oscillateur rencontre à nouveau la courbe gauche en
un point de cote dont l'expression peut être donnée en
fonction de 2 seul,

— 12 -f 12*4 + *8
~~ Zm

4 + 12g4 — 3G8 '

ou, plus simplement, en fonction de z et de S :

1 — 45 -f 52

— z' 1 _ 3§2
•
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Les paramètres $ et sont liés entre eux par la relation

f\ _ 64 + 1263 — 18S2 + 126—3
_ y + — (362 — l)2

'

On observera enfin que la condition z2 — 1 > 0, caractéristique

des solutions du problème primitivement étudié par
1

Fermât se traduit ici par l'inéquation $ < —.

La solution banale x 1, y — 0, 2 1 correspond préci-
1

sèment au cas limite $ ; eHe appartient d'ailleurs

indifféremment aux deux problèmes. La formule de récurrence ci-
dessus écrite, entre et $, donne alors pour $= —la valeur

suivante de :

_ 57*121
1 ~ 114-244

qui, supérieure à ~ correspond au second problème ; elle

conduit à la solution

119 _ 120
__

1

Xl ~ ~~
169 ' Jl — 169 ' Zl ~ 13 '

déjà signalée à propos de la cubique perspective de la biqua-
dratique gauche.

Généralisation des équations de Brahmagupta-Fermat.

50. — L'étude des équations Ax4 + Bx3 f(x,y) dans
lesquelles f{xy) est un polynôme quelconque du second degré
des deux variables x et y se ramène immédiatement à l'étude
arithmogéométrique d'une biquadratique gauche par
l'introduction d'une nouvelle variable auxiliaire. Une telle équation

Ax4 + Bx3 — f(x y)

peut, en effet, être considérée comme représentant dans le
plan 0xy une courbe du quatrième degré, projection d'une
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