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paraît résider dans le fait que le problème général posé au

n° 2 conduit à la forme générale de la fonction F(z) donnée

au n° 5.

Une recherche analogue et présentant même intérêt peut
être faite pour le problème généralisé que nous venons d

indiquer.

Jassy, décembre 1916.

NOTIONS D'ARITHMOGÉOMÉTRIE
(3e article) 1

PAK

Emile Turrière (Montpellier).

Les quartiques gauches.

43. — Méthode du plan osculateur. — De même que, sur
une cubique plane dont l'équation a ses coefficients rationnels,

l'existence de deux arithmopoints quelconques entraîne

par alignement celle d'un troisième arithmopoint, sur une
quartique gauche d'équations rationnelles l'existence de trois
arithmopoints particuliers quelconques entraîne celle d'un
quatrième arithmopoint, trace delà courbe gauche sur l'arith-
moplan défini par les trois arithmopoints connus.

Le plan défini par une tangente en un arithmopoint d'une
quartique gauche et par un autre arithmopoint rencontre la
courbe en un nouvel arithmopoint.

Enfin, le plan osculateur en un arithmopoint rencontre à

nouveau la quartique gauche en un nouvel arithmopoint.

1 Voir L'Enseignement mathématique, 18e année, 15 mars 1916, pp. 81-110, et 15 novembre
1916, pp. 397-428.
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Cette remarque donne naissance à une méthode analogue à

celle du point tangentiel pour les cubiques planes et permettant
de rattacher par une voie itérative une suite d'arithmo-

points à tout arithmopoint d'une quartique gauche. Cette
méthode du plan oscillateur consistera à partir d'un
arithmopoint connu a priori M4 ; le plan oscillateur à la quartique
gauche en M4 rencontrera la courbe gauche en un second

point M2; le plan osculateur en M2 donnera un autre
arithmopoint M3 et ainsi de suite: de l'arithmopoint M*_i se
déduira un arithmopoint M* qui sera la trace de la quartique
sur le plan osculateur de

44. — Les équations des nombres congruents. — J'ai déjà1
donné un exemple de l'application de la méthode du plan
osculateur à l'occasion des équations indéterminées
simultanées

x2 -j- a y2 x2 -f- b z2

Pour a + b — 0 elles ne sont autres que les équations
des nombres congruents qui ont donné lieu à des travaux
remarquables de Léonard de Pise, Edouard Lucas, A. Ge-
nocchi et Mathew Collins. Impossibles pour «—1,2, 3, 10,

11, 17, 19, elles sont possibles pour a 5, a 6, par
exemple.

Pour a 5, b — 5 ce sont les équations du problème
proposé par Jean de Palerme à Léonard de Pise, qui en a

donné la solution
1 1 41*-3+ 4 + 6 -12 '

Pour a ~ 6, b — 6, on se trouve en présence d'un
système d'équations étudié par Ed. Lucas2. Partant de la solution

simple :

5 7 1

* 2 ' J 2 ' 3
2 '

1 Le problème de Jean de Palerme et de Léonard de Pise, L'Enseignement mathématique,
XVIIe année, septembre-novembre 1915 (p. 315-324).

2 Edouard Lucas, Sur la résolution des systèmes d'équations x2 — Gv2 u2, x2 -j- 6y2 v2,

Nouvelles Annales de Mathématiques [2], t. XV, 1876, p. 466-469.
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Ed. Lugas forme les nouvelles solutions moins évidentes :

1201 1249 1151
Xl ~ "140" ' ^ ~~ ~Ï4Ô~ '

^ __
2-639-802 y _ 10113-607

__
4-319-999

^ ~~ 7-776-485 ' "" 7*776-485 ' ~~~ 7*776•485 '

les formules de récurrence qu'il indique ne sont d'ailleurs
pas distinctes de celles que j'ai trouvées en application de la
méthode du point tangentiel sur une cubique plane :

ab — xA x2y2 -j- az2 x2 z2 -j- by2
Xx 2xyz

' Ixyz ' 2xyz

Des propositions générales sur l'impossibilité des équations

des nombres congruents ont été données par A. Ge-
nocchi 1 (par exemple lorsque a est un nombre premier de
la forme 8 m + 3 ou le double d'un nombre premier de la
forme 8 m + 5) ; le même auteur s'est occupé d'ailleurs dans
le même travail du cas a + b ^ 0. Elles ont aussi été
considérées par Ed. Lucas2 dans ses recherches sur les travaux
de Léonard de Pise.

45. — Les équations simultanées homogènes

x2 -j- ay2 — zr

ax2 -j- y2 — t2

ont été traitées de même3; pour a 7, elles admettent une
solution simple

x z= S y — 1 S — 4 t 8

1 A. Genocchi, Sur l'impossibilité de quelques équations doubles, Comptes Rendus de l'Académie

des Sciences de Paris, 1874, t. 78, p. 433-435.
2 Ed. Lucas, Recherches sur plusieurs ouvrages de Léonard de Pise et sur diverses questions

d'arithmétique supérieure, Bollettino di bibliografia (du prince Boncompagni), 1877. Lucas
cite Léonard de Pise, Lucas Pacioli, L. Euler, Mathew Collins et A. Genocchi.

Au sujet des mêmes équations des nombres congruents, voir aussi la question n° 4472 de
YIntermédiaire des mathématiciens (1915, p. 52, et p. 231) par M. A. Gérardin; on y trouve
des listes étendues de valeurs de a pour lesquelles les équations sont possibles ou impossibles.

3 L'Intermédiaire des mathématiciens, 1916, p. 63. L'auteur de la solution indique précisément
la méthode du plan osculateur, ainsi que celle d'une quadrique ayant avec la courbe

sept intersections confondues au point initial; le huitième point d'intersection est une nouvelle

solution. Il traite ensuite la question au moyen des fonctions elliptiques d'un même
paramètre u et signale toute une série de solutions de paramétres —3u, —lu, — 11m
déduites d'une solution initiale de paramètre u.

L'Enseignement mathém., 19e année; 1917. 11
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dont il est possible de déduire la solution

x — 447 y 1121 5 300* t — — 1688

M. A. Gérardjn1 a d'ailleurs signalé un cas particulier
de possibilité de cette équation. C'est celui pour lequel le
nombre a est de la forme suivante :

a — I2 -J- 2X 4- 4

Dans ce cas, on peut prendre :

.*• X y X + 2 r. ~ X2 -f 3À + 4 i — À2 + À 4- 2

Le cas de a carré a été traité par L. Etiler en 1780 2.

46. — Comme autre exemple, je signalerai encore celui du

problème de la détermination de deux parallélépipèdes
rectangles à arêtes rationnelles, équivalents et isodiagonaux.
On impose une des arêtes de run des volumes et deux arêtes
de l'autre.

Soient x, y, c les arêtes de l'un des parallélépipèdes; c

est connu et x, y sont deux inconnues. Les arêtes du second
volume seront de même a\ br, z ; a!, b' sont donnés et z est
inconnu. Il s'agit alors d'étudier le système suivant d'équations

entre x. y et z' :

t xyc — a'b'z'
} _J_ y- _J_ c2 — a'-2 _J_ 1/2 _|_ -'2

elles représentent, par rapport à des axes coordonnés,
{Oxy 0y y 0z) une biquadratique gauche intersection d'un
paraboloïde hyperbolique avec un hyperboloïde de révolu-
lion. Par la transformation définie au moyen des formules

1 Lac. cit.. p. 64.
2 C. f. Commentationes arithmetics'. 1849, t. Il, pp. 425-437,
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et par conséqxient constituée par une affinité et une rotation
autour de 0z\ les équations de la biquadratique gauche
deviennent :

X2 — (Z -}- l)2 — K Y2 (Z — l)2 — K

/ g ^ /2\ /q2 b/^)
K est une constante égale à -- ^772 • Cette valeur

particulière de K assure à la biquadratique transformée
l'existence d'un arithmopoint particulier

v _ c{o! + //) _ c [a' — h')
__

c2

0 ~ a'b' ' 0 ~~ a'h' ' 0 — a'b' '

correspondant à la solution banale constituée par deux
parallélépipèdes égaux.

La méthode du plan osculateur pourra être appliquée à

tout arithmopoint (.r0, yQ, z0) de la biquadratique d'équations

:

X2 + k — (Z + l)2 Y2 + k (Z — l)2

le plan osculateur au point (r0, y0, 20) ayant pour équation

- .rjX + jJY + 2(zl + 1 - K)Z - 6,0(,q2 + 1 - K)

Je n'insiste pas sur ce problème qui peut être traité d'une
autre manière et rattaché à des cubiques planes remarquables

signalées par Edouard Lucas. (Voir§§ 61, 62 et 63.)
Je pense que ces divers exemples, étudiés par une méthode

très élémentaire, suffisent amplement pour justifier
l'introduction de ces considérations d'arithmogéométrie. Ils prouvent

d'ailleurs qu'il n'est pas nécessaire d'utiliser des résultats

de la théorie des fonctions elliptiques pour aborder
systématiquement l'étude de ces questions de théorie des
nombres.

47. — Méthode de la quadrique passant par sept points.
— Une méthode analogue à celle du plan osculateur découle
du fait bien connu que toutes les quadriques passant par
sept points communs passent par un huitième point fixe.

Supposons qu'on connaisse sept arithmopoints particuliers
d'une biquadratique gauche définie comme intersection de
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deux quadriques Qi 0 et ()._> 0. On formera alors l'équation

d'une quadrique passant par ces sept arithmopoints mais
n'appartenant pas au faisceau ponctuel défini par les quadriques

Qj 0 et Q2 04. Soit Q3 0 une telle quadrique. Les
équations simultanées

Q, 0 Q2 — 0 Qs — 0

auront pour solutions les coordonnées d'un système de huit
points, auxquels appartiendront les sept points connus a
priori. De sorte que, de ces sept arithmopoints, ce procédé
permettra de déduire un huitième arithmopoint.

Les sept arithmopoints initiaux peuvent être confondus
en un seul arithmopoint : on possède donc une nouvelle
méthode de récurrence entre arithmopoints d'une biquadratique
gauche, absolument analogue à celle du plan oscillateur.

48. — Reductibility de l'étude arithmogéométrique d'une
QUARTIQUE GAUCHE A CELLE D'UNE CUBIQUE PLANE. — Une autre
voie est ouverte dans l'étude arithmogéométrique d'une quar-
tique gauche représentée par des équations à coefficients
rationnels et douée d'un arithmopoint particulier connu a

priori.
Cette étude n'est pas distincte, en effet, de celle d'une

cubique plane, qui a fait l'objet des §§ 40, 41 et 42. La cubique
plane associée à la quartique gauche n'est autre que la
perspective de celle-ci, le point de vue se trouvant à l'arithmo-
point connu a priori.

Pratiquement, on projettera la quartique gauche en
prenant pour centre de projection l'arithmopoint connu a priori
sur un plan de projection dont le choix sera effectué, dans

chaque cas particulier, par des considérations de symétrie,
d'élégance ou de simplicité des équations.

La cubique plane perspective de la quartique de l'espace
admet pour arithmopoint particulier la trace sur le plan de

projection de l'arithmodroite tangente à la quartique au point
de vue.

C'est ainsi que les équations des nombres congruents

x1 -f- a — y2 x2 -f- b z2
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ont pu de diverses manières être ramenées à une équation
représentant une cubique plane douée d'arithmopoints l.

49. — Problème de Fermât : Arithmotriangles pythago-
RIQUES DONT LHYPOTEN USE ET LA SOMME OU LA DIFFERENCE DES

cathetes sont des nombres carrés parfaits. — L'étude des

triangdes pythagoriques à cotés rationnels dont l'hypoténuse
est mesurée par un carré et dont la somme des cathètes est

un carré a été faite par Leibniz2, Fermât, Euler3 et La-
grange. La plus petite solution de ce problème est constituée

par le triangle dont les cathètes ont pour mesures :

1-061*652-293*520
4-565486-027-761

La somme des cathètes est le carré du nombre 2*372*159;
l'hypoténuse est égale à (2• 165-017)2.

Je vais appliquer les considérations qui précèdent au
problème beaucoup plus général des arithmotriangles pythagoriques

dont l'hypoténuse et la somme ou la différence des
cathètes sont mesurées par des nombres carrés parfaits.

Soient x, y deux nombres rationnels algébriques dont les
valeurs absolues sont par convention les rapports des
cathètes à l'hypoténuse d'un triangle de cette espèce. Il s'agit
ainsi de procéder à l'étude du système des deux équations

x2 --f- y2 — 1 x + y ~-2

admettant les solutions banales (x 1 y — 0, z — 1)

[x — 0, y 1, z — 1). Ces équations représentent
respectivement un cylindre de révolution et un cylindre parabolique,

de sorte que leur ensemble représente une biquadra-
tique gauche douée d'un arithmopoint particulier, dont il est
possible par symétries de déduire trois autres arithmopoints.

1 Cf. L'Enseignement mathématique, XVIIe année, 1915, p. 317 et 321.
2 Je cite Leibniz d'après Eulkr : « Hoc problema a Leibnizio olim propositum » [Com-

mentationes arithmeticae, t. II, p. 44-52, Miscellanea analytica, 15 novembre 1773, § 4, p. 47-48].
3 L. Euler a consacré deux mémoires à ce problème :

a) De tribus pluribusvc numeris inveniendis, quorum summa sit quadratum, quadratorum
vero summa biquadratum, 18 mai 1780; Commentationes arithmeticae, édition de 1849, t. II,
p. 397-402. La solution particulière rapportée dans le texte ci-dessus est indiquée dans cette
pièce.

b) Solutio problematis Fermatiani de duobus numeris, quorum summa sit quadratum
quadratorum vero summa liquadratum, ad mentem 111. Lagrange adornata, 5 juin 1780 ;
Commentationes arithmeticae, ibid., pp. 403-405.
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La distinction entre les solutions des deux problèmes
distincts qui se traduisent par ces mêmes équations se fait
aisément. Les nombres (x, y) peuvent, en effet, être soit tous
deux positifs, soit de signes contraires. Dans le premier cas,
on se trouve en présence du problème de Fermât proprement

dit ; pour x et y de signes contraires, c'est la différence
des cathètes qui est mesurée par un carré parfait. D'ailleurs,
le seul examen de z permet d'effectuer autrement la même
distinction ; il résulte, en effet, de l'équation

Ixy s* - l

que les solutions du problème de Fermât proprement dit
correspondent aux arcs de la biquadratique extérieurs à

l'espace limité aux deux plans parallèles z ± 1. Les arithmo-
points de la biquadratique situés entre ces deux plans parallèles

sont au contraire associés à des arithmotriangles pytha-
goriques pour lesquels la différence des cathètes est un carré
parfait.

Le cône du troisième degré admettant la biquadratique
considérée pour courbe directrice, le sommet étant l'arith-
mopoint (x 1, y 0, z 1), a pour équation par rapport
à des axes issus de son sommet et parallèles aux axes
primitifs :

(X2 -f Y2) (X + Y — 2Z) + 2XZ2 0 ;

de sorte que la cubique d'équation

(X2 + Y2) (X -F Y — 2) + 2X — 0

est une perspective de la biquadratique gauche. La
correspondance entre les nombres (x, y, z) et (,r, y) s'effectue par
les formules

l Y2 — X2 2XY
\ x — YMTX2 ' — ~ X2 -F Y2 ' * "F Y — 1

La séparation entre les arcs associés aux deux problèmes
considérés se fait au point à l'infini de cette cubique circu-
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laire, au point à distance finie d'intersection avec l'asymptote
X + Y 2, à l'origine 0 des coordonnées et au point autre
que 0, situé à distance finie, d'intersection avec la parallèle
menée par 0 à cette asymptote. Les deux arcs compris entre
ces deux droites parallèles (X + Y 0, X + Y 2)

correspondent à la différence des cathètes, tandis que les deux
autres arcs extérieurs à ces deux droites parallèles
correspondent au problème de Fermât. Deux arithmopoints alignés
avec le point O correspondent toujours au même problème.

Une des solutions remarquables de la question, ainsi trouvée

au moyen des alignements sur cette cubique, est celle qui
correspond au triangle rectangle de côtés 119, 120 et 169.

La méthode du plan oscillateur peut aussi être appliquée
avec intérêt à la biquadratique étudiée. Pour simplifier les
calculs, il est avantageux d'introduire une variable auxiliaire
S définie par la relation

* - y 2 VY ;

de sorte que l'on doit poser :

OC —z2 Vs >

,=4='-V«,
G4 2 — 48

Avec ces notations, l'équation du plan oscillateur de la
biquadratique au point de coordonnées x0, yQ, z0 et du
paramètre â0 est :

(2*0 *0 + + (2JcA + *l)y - 2^ — 680 — 2

Ce plan oscillateur rencontre à nouveau la courbe gauche en
un point de cote dont l'expression peut être donnée en
fonction de 2 seul,

— 12 -f 12*4 + *8
~~ Zm

4 + 12g4 — 3G8 '

ou, plus simplement, en fonction de z et de S :

1 — 45 -f 52

— z' 1 _ 3§2
•
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Les paramètres $ et sont liés entre eux par la relation

f\ _ 64 + 1263 — 18S2 + 126—3
_ y + — (362 — l)2

'

On observera enfin que la condition z2 — 1 > 0, caractéristique

des solutions du problème primitivement étudié par
1

Fermât se traduit ici par l'inéquation $ < —.

La solution banale x 1, y — 0, 2 1 correspond préci-
1

sèment au cas limite $ ; eHe appartient d'ailleurs

indifféremment aux deux problèmes. La formule de récurrence ci-
dessus écrite, entre et $, donne alors pour $= —la valeur

suivante de :

_ 57*121
1 ~ 114-244

qui, supérieure à ~ correspond au second problème ; elle

conduit à la solution

119 _ 120
__

1

Xl ~ ~~
169 ' Jl — 169 ' Zl ~ 13 '

déjà signalée à propos de la cubique perspective de la biqua-
dratique gauche.

Généralisation des équations de Brahmagupta-Fermat.

50. — L'étude des équations Ax4 + Bx3 f(x,y) dans
lesquelles f{xy) est un polynôme quelconque du second degré
des deux variables x et y se ramène immédiatement à l'étude
arithmogéométrique d'une biquadratique gauche par
l'introduction d'une nouvelle variable auxiliaire. Une telle équation

Ax4 + Bx3 — f(x y)

peut, en effet, être considérée comme représentant dans le
plan 0xy une courbe du quatrième degré, projection d'une
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biquadratique de l'espace. Cette courbe gauche est 1

intersection d'un cylindre parabolique

X2 — z

avec une quadrique d'équation :

As2 -j- Bxz z=i f(x y)

51. — Equations de Brahmagupta-Fermat généralisées. —

Une première extension toute naturelle des équations de

Brahmagupta-Fermat
kx2 -f- Bx -f~ C y2

est l'équation
A.r3 -{- B^*2 + Cx -f- D y2 ;

son étude se rattache immédiatement à celle d'une cubique
plane. (Voir § 42).

Il en est de même des équations plus générales :

Ax4 -f- B,x3 -}- Cx2 -f- D.r -f E y2

Pour traiter arithmogéométriquement une équation de cette
espèce, il suffit de poser x2 s de sorte qu'elle représente
une quartique plane projection sur le plan 0xy de la
biquadratique gauche d'équations :

J Az2 -J- B^c -f C" A Dx -j- E m y2

Les cas où A ou E seront carrés parfaits permettront de

trouver immédiatement une série de solutions.
Parmi les équations de Brahmagupta-Fermat généralisées

au sens qui précède, il convient de mentionner d'une
manière toute spéciale celles qui admettent pour premier
membre un trinôme bicarré en x et plus particulièrement
encore les équations

+ kx2 + B2

En posant
B



170 E. TURRIÈRE

cette équation devient

x2 + A — 2B ;

de sorte que toute équation du type

_f_ Ar2 + B2

est équivalente au système

x2 + « x2 + 6

des équations des nombres congruents. Les constantes A, B,
a, b qui figurent dans ces diverses équations sont liées entre
elles par les conditions

a — A — 2B b — 4B

L. Euler affirma l'impossibilité pour k 1, 3, 5, 6, — 14,

etc., de
.X4 -j- &«r2 -f- 1 — EU •

L'équivalence précédente fut indiquée par A. Genocchi
dans le mémoire cité au § 44.

L'équation
— 4x2 + 1

fut enfin traitée par Ed. Lucas [Recherches sur l'analyse
indéterminée, Moulins, 1873, p. 67; Recherches sur plusieurs
ouvrages de Léonard de Pise, p. 120].

52. — Problème des arithmodistances pour une hyperbole

ÉQUILATÈRE OU UNE LEMN1SCATE DE BERNOULLI. Il
arrive très fréquemment que ce genre d'équations de Brah-
magupta-Fermat intervienne dans les problèmes des
arithmodistances pour certaines courbes. C'est ainsi que le problème
des arithmodistances pour l'hyperbole équilatère et son centre

de symétrie ou encore pour la lemniscate de Bernoulli
et son point double (transformée de l'hyperbole équilatère
par inversion) se traduit analytiquement par l'équation

J2 1 + *4

Celle-ci est impossible et n'admet que la solution banale

x — 0. Cette impossibilité résulte du théorème négatif de
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Fermât sur l'équation x4 + y4 — z2 ou encore du théorème
dû à Frénicle de non-existence d'arithmotriangle pythago-
rique dont l'aire soit double d'un carré. (Voir à ce sujet § 6

de ma note sur Le problème de Jean de Palerme et de Léonard
de Pise).

Cette impossibilité est encore équivalente à celle de
6

tang# y2, tang— étant rationnel. En d'autres termes il
n'existe pas d'arithmotriangle pythagorique dont le rapport
des cathètes soit un carré parfait.

53. — Problème des arithmodistances pour une arithmo-
conjque — Plus généralement, étant donnée une conique
douée d'arithmopoints et, par suite, représentable par des

équations

dans lesquelles g2 et /i2 sont des polynômes du second
degré d'une même variable t, le problème des arithmodistances

pour cette arithmoconique et pour un arithmopoint
du plan, — qui peut sans restriction de généralité être pris
pour origine des coordonnées, — se traduit par l'équation

f2 -4- o-2

' 2 »2 c .Acarre pariait •

ou encore + g* — Y2. De sorte qu'en explicitant la variable
t on est ramené à une équation de la forme

Ax* + Bx3 + Cx2 -j- Dx + E j2

Ce résultat s'étend d'ailleurs au cas d'une arithmoconique
de l'espace. On a alors

on est par suite amené à une équation

fl + £2s + l\ Y2
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qui, après développement, donne encore une équation de
Brahmagupta-Fermat du quatrième ordre.

La réciproque n'est pas exacte. Toute équation

Ax4 + Bx3 + Cx2 + Dx + E y2

ne serait susceptible d'être rattachée à un problème d'arith-
modistance pour une arithmoconique de l'espace, ni a fortiori
pour une arithmoconique de l'espace. Les équations pour
lesquelles A et E ne sont pas sommes de deux ou trois carrés
ne sont pas susceptibles d'une telle interprétation géométrique

: par exemple aucune des équations

y2 — x4 — 1 y2 — x4 -f- 7

ne peut être associée à une arithmoconique de l'espace ou
du plan au titre de courbe représentative de l'équation du
problème des arithmodistances.

Le problème de Bhaskara et les équations

<p (x y) — u2 (x y) V2

54. — Le problème de Bhaskara. — Le système des deux
équations indéterminées

x2 + y2 — 1 u2

x2 — y2 — 1 ~ ^2

à quatre inconnues .r, y, c, dont Bhaskara1 a donné les
trois solutions particulières suivantes dépendant d'un
paramètre rationnel arbitraire

8X2

1

8X2 — 1

2X '

x 8X2 + 1

x l + i
(8X2 — 1

y

y

8X2

1 Le Lilavati, section IV, régie 59-60. Cf. Nouvelles Annales de Mathématiques, question
206, [2], t. VIII, 1849, p. 107; E. Clere en donna une solution incomplète, t. IX, 1850, pp.
116-118.
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et dont la solution générale a été obtenue par A. Genocchi 2,

pourrait de diverses manières être rattaché aux considérations

qui précèdent, en supposant que l'une des inconnues
prend une valeur précisée, ou encore que u et e, par exemple,
sont deux fonctions linéaires d'une variable z à coefficients
rationnels et connus. On pourrait aussi songer à des
considérations d'hypergéométrie.

Je me bornerai à signaler que le système des deux équations

de Bhaskara est équivalent au système suivant :

2(x2 — 1) — u2 -f" v2 2j2 u2 — v2 ;

il suffit de poser

u v — 2jX u — c yX '

2 — X i Y,
y y

pour réduire toute la question à l'étude arithmogéométrique
d'une surface unicursale du quatrième degré d'équation

X2 - Y2 4X2 + i
en coordonnées cartésiennes (X, Y, A). En posant alors

x + Y
4X4 + 1

X - Y fÀrj. X

il vient ainsi :

__
4X4 + 14- [j/2

__
4Xjjl

4X4 -f 1 — p.2
' J — 4X4 -f- 1 — p.2

*

Telle est la solution générale dépendant de deux paramètres

rationnels arbitraires, X et des deux équations de
Bhaskara.

55. — Les équations, analogues aux précédentes,

x2 + y2 -{- 1 — u2

x2 -f- y2 — 1 — p2

2 Angelo Gtenocchi, Solution de la question 206, Nouvelles Annales de Mathématiques, [2],
t. X, 1851, p. 80-85.
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se traitent de la même manière. Elles sont équivalentes aux
équations

2 u2 — v2

2(x2+ y2) +
en posant donc

" =x + è •

l'étude de ces équations est ramenée à celle d'une surface
unicursale du quatrième degré représentée par l'équation
(en coordonnées cartésiennes x, y, X) :

Cette surlace peut être envisagée comme engendrée par

un arithmocercle passant par l'arithmopoint (x X, y
de sorte que les expressions rationnelles des coordonnées
d'un point quelconque de la surface s'obtiennent en posant

6

tang — / et

x — X cos 6 -j- ^ sin 0

y — X sin 0 — — cos 0
2à A

La solution générale du système des deux équations

I + y + î u
1 X2+ f —1

est ainsi

x(i — f-)+ 4
X — 1 I y2 ' y

X TX

1 -j- i2 ' J 1 -f- t2

56. — Le système formé par les deux équations simultanées,

encore analogues aux équations de Bhaskara :

+ j2 _1==U2
X2 J2 -f-' i Z=Z V2
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peut être traité par un procédé semblable, à la seule

différence que la surface unicursale qui se présente ici est du

troisième degré. De l'équation

2x2 u2 + v2

et des résultats du § 5, il résulte qu'il faut poser actuellement

u x (cos 6 -j- sin 6)

c ijcos Ô — sin 6)

0

tang j t étant un nombre rationnel arbitraire. En portant

ensuite ces expressions de u et de v dans l'équation

II2 — V2 — 2 [y2 — 1)

il vient

de sorte que l'étude des équations proposées est réductible
à celle d'une surface cubique unicursale d'équation

Z(1 — Z2) X2 — Y2

Les expressions générales des solutions (#, 3/), en fonction
de deux paramètres, obtenues par ce procédé, sont les
suivantes :

2X(1 + t2)
__

2X2t 1 + t2) + 1

— 2l2t(l + t2) — 1 ' 7 ~~ 2X2/(1 -M2) — 1 '

57. — Théorème fondamental sur les équations
simultanées

?(* > T) — u'2
> ^(x y) z=z v2

Les équations de Bhaskara et autres équations analogues
qui viennent d'être résolues dans les trois paragraphes
précédents appartiennent à la classe très générale d'équations
du type 9 (x, y) u2, d> y) c2, ou 9 et sont deux
polynômes à coefficients rationnels en x et 3/, et qui sont douées
d'une solution particulière manifestement connue a priori :

les équations de Bhaskara sont ainsi douées de la solution
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{x 1, y — 0) ; les équations du § 56 sont douées de la solution

(x 0, y — 1). Quant aux équations du § 55, il est facile

d'obtenir une solution telle que x ?/ 1.

Il est important d'observer que le problème actuel de deux
équations à quatre indéterminées, qui semblerait se rattacher

à des considérations d'arithmogéométrie pour un hyper-
espace à quatre dimensions est réductible à une étude arith-
mogéométrique d'une surface de l'espace ordinaire.

D'une manière précise et en se bornant, pour fixer les
idées, au cas de deux équations quadratiques simultanées,
il y a lieu d'énoncer le théorème fondamental suivant :

Le système formé par deux équations simultanées quadratiques

cl quatre inconnues

?[# > j) "2 ' > r) — »

n'admet pas de solution en général. La connaissance d'une
solution particulière entraîne la réductibilité de la question
à l'étude arithmogéométrique d'une surface cubique.

Soit, en effet, (xQ, y0, uQ, c0) la solution connue a priori.
Je pose alors

x — x0 + at y y0 4- ßf r m — j/0 + Y* y v0 + 8f

a, ß. y, t étant cinq indéterminées. Chacune des équations
quadratiques données admet la solution / 0 et peut être
résolue par rapport à t, de sorte que l'on obtient ainsi deux
expressions différentes de t

sous formes de fractions rationnelles dont les numérateurs
sont des formes linéaires en (a, ß, y, cf) tandis que les
dénominateurs sont des formes quadratiques par rapport aux
mêmes variables. Il résulte de cette remarque que toute la

question est réduite à l'étude arithmogéométrique de la surface

du troisième degré dont l'équation est

¥2 — ¥, <J>2 0

dans le système de coordonnées homogènes (otßy à).
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La réductibilité à l'étude arithmogéométrîque d'une surface

de l'espace ordinaire n'est évidemment pas particulière
aux systèmes d'équations quadratiques. Lorsqu'en effet les

équations cp u2 et tp — v2 à étudier sont de degrés plus
élevés, la méthode précédente conduit à deux équations
algébriques en t ; l'élimination de t permet alors de se ramener
à l'étude d'une relation unique entre a, /3, y, S, homogène
par rapport à ces mêmes variables.

La réductibilité à l'étude d'une surface cubique de

l'espace ordinaire du système des deux équations quadratiques
<p(/r, y) a2 et $(.%, y) c2 étant acquise, il faut maintenant
observer que les conclusions du § 36 peuvent en outre être
appliquées à la nouvelle équation cubique. La surface cubique

obtenue est précisément douée de trois arithmopoints non-
singuliers, Ce sont les arithmopoints de coordonnées respectives

a — 0 [j — 0 y — 0,
a o } ßz=o, y y 0 o 0

a — 0 h 0
- T wo -

B *'o '

c'est-à-dire deux des sommets du tétraèdre de référence et
un troisième point de l'arête qui les joint. La connaissance
d'un seul de ces arithmopoints suffit pour assurer et diriger
parle procédé du § 36 la représentation rationnelle de la surface

cubique au moyen de deux paramètres indépendants.
Dans ces conditions, la connaissance d'une solution

particulière du système cCéquations quadratiques généralisées de
Bliaskara entraîne la résolubilité du système ; la solution
dépend de deux paramètres. Si la représentation trouvée de la
surface cubique est propre, cette solution est la solution générale.

Arithmogéométrie autour des cubiques de Lucas.

58. — Pour un nombre assez considérable d'équations
indéterminées ayant été l'objet de recherches spéciales, le
groupement x2 + y2 + z2 intervient dans la structure de ces
équations. Il semble donc qu'il y ait intérêt — et effective-

L'Enseignement mathém., 19e année; 1917. 12
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ment il y a très souvent un réel intérêt — de rattacher une
équation de cette espèce à l'étude d'une arithmosphère.

C'est ainsi que, pour une courbe sphérique, tracée sur une
sphère de rayon pris pour unité, les coordonnées d'un point
quelconque et leurs dérivées des deux premiers ordres par
rapport au paramètre qui repère le point courant de cette
courbe sphérique sont liées par une identité due à E.
Catalan :

(x/2 + y'2 + z'2) [(xy" — yx")2 + (yz" — ~y")2 + (zx" — ^.")2J

(x'af -f y'/ + z'z')* + [x\fz» — z'f) + + s Wf-fx")Y
Cette identité donne une infinité de solutions de l'équation

indéterminée
(PS _J_ Q2 _J_ R2j(P'2 + Q/a -f R'*} XJ2 yS

on en conclut, par exemple *,

(242 + 72 + 152)(302 -f 362 + 232) 3752 + 14752

Mais en pareil cas il convient de ne pas se laisser fasciner
par la présence du groupement x2 + y2 + s2; il peut y avoir
au contraire avantage à chercher des solutions arithmogéo-
m étriqué s n'ayant absolument aucun rapport avec l'arithmo-
sphère.

59. — L'équation x2 + y2 + z2 x'2 + y'2 + z2. Cette
équation quadratique homogène à six indéterminées se
rattache manifestement à l'arithmosphère. Si l'on se donne, en
effet, arbitrairement les trois indéterminées x\ y\ z\ la
détermination de x, y, z n'est autre que la recherche d'un arith-
mopoint quelconque sur l'arithmosphère de centre O qui
passe par l'arithmopoint de coordonnées x\ y', z L'équation

considérée peut donc être résolue par une des méthodes
indiquées au § 8 (représentation géographique, ou mieux :

projection stéréographique).
La même équation peut être étudiée arithmogéométrique-

ment d'une manière toute différente. J'observerai dans ce
but que cette équation est susceptible d'une interprétation

1 Question n° 1124 des Nouvelles Annales de Mathématiques.
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géométrique remarquable. Etant considéré un triangle de

référence ABC, si Ton prend sur les côtés des points A' sur
BC, B' sur GA et G' sur AB, déterminant sur cés mêmes côtés
six segments

BA' — x A'C — x'
CB' y B'A /
AC' z C'B — z'

la condition nécessaire et suffisante de concours des
perpendiculaires aux côtés en ces points A'B'C' est précisément
la relation

x2 + j2 + A2 x-/2 + /- + •

Cette remarque élémentaire faite, je supposerai que les
sommes x -f- x\ y -f y' et 2 sont imposées ; soient :

x —J— x — ci y —j— y — b z —j— z' — c

Je suppose en outre que les nombres a, ô, c peuvent être
considérés comme étant les mesures des côtés d'un arithmo-
triangle héronien.

La solution générale de l'équation indéterminée dépend
alors de a, b et c et de deux paramètres arbitraires. Pour
avoir cette solution générale, il suffira de se donner arbitrairement

un arithmopoint du plan de Vctrithmotriangle héronien

et de le projeter sur les droites arithmodirigées qui portent

les trois côtés de ce triangle : les six segments déterminés

par ces trois projections constituent précisément la solution
générale désirée.

60. — L'équation x2 y2 z2 — x'2 + y'2, qui de son
côté a fait aussi l'objet d'assez nombreuses remarques1 se
rattache à la précédente au titre de cas particulier. Les
formules déduites de l'étude arithmogéométrique d'une arith-
mosphère de centre 0 et qui passe par l'arithmopoint des
coordonnées (x\ y' et 0) se simplifient du fait que l'arithmopoint

connu a priori a sa cote nulle.

1 Cette équation indéterminée x2 + >/2 + — xn -f- y'2 + z'2 a été fréquemment considérée
(question n° 3621 de YIntermédiaire des Mathématiciens). Je pense toutefois que la solution
géométrique ci-dessus doit être nouvelle.

1 Question 4383 de VIntermédiaire des Mathématiciens.
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Cette équation comme la précédente est susceptible d'une
solution dépendant de la considération de l'arithmotriangle
héronien général. Ici toutefois la solution générale dépend
des côtés de l'arithmotriangle héronien et d'un seul
paramètre. Cette solution générale s'obtient, en effet, en supposant

que l'arithmopoint que l'on projette sur les côtés du

triangle n'est plus arbitraire dans le plan mais appartient à

une autre droite arithmodirigée spéciale du plan (perpendiculaire

en B à l'arithmodirigée AB).
61. — Le problème des parallélépipèdes rectangles

équivalents et isodiagonaux. — Le problème du § 46 peut
être étudié sous un nouveau point de vue et rattaché à l'étude
arithmogéométrique de l'une ou l'autre de deux cubiques
remarquables du plan d'un triangle. Ces cubiques ayant été

l'objet de deux questions très précises posées par Ed. Lucas,
il m'a paru justifié de proposer de leur donner le nom de
l'illustre géomètre, puisqu'il s'agit ici d'une application
arithmologique que Lucas aurait parfaitement pu suggérer,
s'il ne l'a pas fait d'ailleurs dans des notes aujourd'hui
perdues.

L'énoncé du problème des parallélépipèdes rectangles
équivalents et isodiagonaux, au sujet desquels toutes mes
recherches bibliographiques sont restées infructueuses, est
le suivant :

Etudier les couples de parallélépipèdes rectangles à arêtes
rationnelles dont les diagonales sont égales, sans être
nécessairement rationnelles, et dont les volumes sont équivalents.
Soient (.r, ?/, z) et (#', y', zf) les arêtes respectives des deux
parallélépipèdes que l'on désire associer ainsi. Les équations
du problème sont alors les suivantes :

{ X*+f-L +/» + *'«

} x.y.z ~ x' .y .z'

La question se traduisant ainsi par deux équations homogènes

respectivement des second et troisième degrés à six
inconnues, il convient de se donner arbitrairement trois
conditions supplémentaires. Pour chaque choix de ces conditions

supplémentaires, on aura à résoudre un problème du
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genre de celui traité au § 44, où j'avais imposé une arête
d'un des volumes et deux de l'autre.

Le problème des parallélépipèdes équivalents et isodiagonaux

se rattache à des considérations particulièrement
élégantes d'arithmogéométrie lorsqu'on impose les trois sommes
formées avec une arête de chacun des deux parallélépipèdes.
Soient, en effet, et, b, c les sommes

x -\- x' a y + r' — b z z/ —- c

Pour simplifier, je supposerai que ces longueurs a, &, c

sont les côtés d'un triangle ; cette hypothèse nécessaire pour
pouvoir introduire des considérations d'arithmogéométrie
conduit à des formules qui sont plus généralement valables

pour (a, b, c) absolument quelconques.
Si donc ABC est un triangle de côtés (#, è, c) et si

(.r, x\ y, y\ z, z) sont les mesures de six segments consécutifs,

dans l'ordre même de ces lettres, pris sur les côtés
BC, CA, AB du triangle, les équations ci-dessus écrites expriment

des propriétés géométriques remarquables.
La relation de J. Céva,

xyz — x'y'z'

exprime le concours des trois droites AA', BB', CC'. Quant
à la seconde relation

.,;2 + y* —J— z~ x'* + + ,/2

elle exprime que les perpendiculaires en A' BACX aux côtés
BC, CA, AB du triangle sont trois droites concourantes (§ 59).

Dans ces conditions, une solution particulière apparaît
manifestement; elle est tellement remarquable qu'elle mérite
d'être signalée avant de pousser plus loin l'étude générale
du système d'équations ci-dessus. En se bornant au cas d'un
triangle acutangle, les parallélépipèdes rectangles admettant
respectivement pour arêtes les segments d'ordre pair et d'ordre
impair déterminés sur les côtés d'un triangle quelconque par
les hauteurs du triangle sont des solutions particulières du
problème.

Si a, 6, c désignent les mesures rationnelles des côtés du
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triangle figuratif ABC, les expressions correspondantes des
arêtes des deux parallélépipèdes associés sont :

a2 -J- b2 — c2 a2 — b2 -f- c2
x — x —2 a

I's + c2 — a2

2b

c2 + a2 — b2

2 a

b2 — c2 -
2 h

c2 _ a2 + h2

2e

C'est ainsi que le triangle de côtés (4, 5, 6) donne, après
multiplication par 8, les deux parallélépipèdes rectangles
d'arêtes respectives

x —21 y 4 * 30

x' — 5 y' — 86 z' 18

62. — La première cubique d'Edouard Lucas. — C'est aux
cubiques qui font l'objet de la question suivante que se
rattache l'étude générale du problème des parallélépipèdes
rectangles équivalents et isodiagonaux. « On joint les trois
sommets d'un triangle ABC à un point P et l'on prend les
« intersections A'B' C' des lignes de jonction avec les côtés
« opposés. Trouver le lieu des points P de telle sorte que les
« perpendiculaires élevées sur les côtés aux points A'B'C'
« se rencontrent en un même point Q. Ce lieu est une cubi-
a que dont il est facile de déterminer seize points et trois
« tangentes. Déterminer les asymptotes et, aussi, trouver le
« lieu du point Q.1 »

Soient X. Y, Z les coordonnées barycentriques du point
courant P de la première cubique de Lucas, le triangle ABC
étant pris pour triangle de référence. La droite AP a pour
équation

Y - IY Z '

1 Ed. Lucas, Nouvelles Annales de Mathématiques, 2<= série, t. XV, 1876, question n° 1207,

p. 240. Solution p. 550-555 (Dkwulf).
Enoncé analogue par Ed. Lucas, Nouvelle correspondance mathématique, t. II, 1876, question

n° 83, p. 94. Solutions : lre partie, 1880, p. 56-65 et 2e partie, 1878, pp. 261-272 par
H. van Aubiïl.

Cf. >»ussi un article de H. van Aubkl, Nouvelle correspondance mathématique, t. V,
1879, p. 87, Sur un lieu géométrique (trouver le lieu des points Q tels que les perpendiculaires

QA', QB', QC abaissées sur les trois côtés d'un triangle ABC déterminent sur ces
côtés des segments en involution.
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et, par suite, les segments BA' et A'C déterminés
x Z

sur le côté £ 0 sont entre eux dans le rapport —, ^ • Les

valeurs des six segments BA', A'C, CB', B'A, AC et C B

sont donc

•y + z

J, 4tx' r' b-

Y

Y + Z

Z

Z + X

X
A - "'X + Y ' * X + Y '

la relation x2 + y2 + z2 — x2 + yn + z2 donne alors l'équation

de la première cubique de Lucas en ce système de
coordonnées barycentriques :

9 Y-Z |2 Z-X 9 X- Y_a" ' Y + Z Z + X. X + Y '

Cette cubique se transforme en elle-même dans la
transformation quadratique définie par les formules

XX1 YY1 ZZ1

et qui est analogue à la transformation isogonale. Cette
invariance de la cubique correspond à l'échange entre eux des
deux parallélépipèdes associés.

En revenant au problème des parallélépipèdes rectangles
équivalents et isodiagonaux, il résulte des considérations qui
précèdent que sa solution générale s'exprime par les
formules suivantes où et, b, c sont des paramètres absolument
quelconques (qui ne sont pas de toute nécessité les mesures
des côtés d'un triangle ABC) :

x a —

y !>*

z
x/ a

Y
Y + Z ' ' Y + Z

X f />•
Z

Z + X '

Y

Z + X

X
X + Y ' X + Y
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X, Y, Z sont les coordonnées homogènes d'un arithmopoint
quelconque de la cubique d'équation homogène

>2 >Y- z
n2,a'T^z °

passant par les sommets du triangle de référence (qui n'est
plus nécessairement le triangle A, B, G).

Il est essentiel de remarquer que la première cubique
d'Edouard Lucas permet de résoudre le problème des
parallélépipèdes lorsque a, b, c sont les mesures des côtés d'un
triangle et que, si cette dernière condition n'est pas satisfaite,

les formules obtenues gardent un sens et, par
continuité, donnent la solution générale du même problème.

La première cubique de Lucas [ou sa généralisation pour
le cas de a, ô, c quelconques] est douée d'un certain nombre
de points remarquables: les sommets ABC du triangle de
référence, le centre de gravité, l'orthocentre, les sommets
A, B, G, du triangle formé par les parallèles aux côtés de

ABC, etc D'où a priori un certain nombre d'arithmo-
points très simples

X 0 il o Z r= 1

x 0 Y 1 Z 0
:

X 1 H* II O Z — o

X 1 Y 1 z 1

x 1 Y — 1 z — —

X 1 Y — 1 z — 1

x -- — t Y 1 z 1

— a2 Y c2 + tf2 — b2 Z —

Ce dernier arithmopoint correspond, par exemple, au point
transformé de l'orthocentre dans la transformation quadratique

signalée précédemment.
63. — La seconde cubique de Lucas. — Soient maintenant

X, Y, Z les coordonnées trilinéaires du point Q. Le théorème
des projections donne immédiatement les expressions des
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segments BA', A'G... déterminés sur les côtés du triangle
ABC par les projections de Q :

Z 4- X cos B Y 4- X cos C

sin B ' sin G

_ X -f Y cos C
a __

Z -f- Y cos A
^ ~~' sin C ' ^ sin A

Y -j- Z cos A X -j- Z cos B

sin A ' sin B

l'équation de la seconde cubique de Lucas résulte du théorème

de J. Ce va :

(Y -f Z cos A) (Z + X cos B) (X + Y cos C) (Z + Y.cos A) (X + Z cos B)

(Y + XcosC).

Cette cubique est invariante dans la transformation isogonale.

Elle passe par les sommets A, B, C du triangle ABC,
par l'orthocentre, par le centre du cercle circonscrit qui est
d'ailleurs le centre de cette cubique, par les centres des

quatre cercles tritangents aux côtés du triangle, par les

points à l'infini des trois médiatrices qui sont asymptotes de
la cubique

Revenons au problème des parallélépipèdes. Il résulte
des considérations qui précèdent que l'on doit poser

2acZ + (a2 + c2 — b2)X 2abY + (a2 + b2 — c2)X
* — -, *=- —

S représentant la surface du triangle ABC; l'équation de la
seconde cubique de Lucas est alors:

n 2acZ -f- (a2 -f- c2 — />2)X

2ab Y + (a2 -j- b2 — c2) X

11 est absolument indispensable de supposer actuellement
que a, 6, c sont les mesures d'un véritable triangle et en
outre que ce triangle est un arithmotriangle héronien. A la
différence des considérations du paragraphe précédent relatif
à la première cubique de Lucas, où aucune hypothèse
restrictive n'était nécessaire sur la nature de a, b, c, ce n'est
actuellement que moyennant cette double condition que le
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problème des parallélépipèdes restangles équivalents et
isodiagonaux étudié sera susceptible d'être rattaché à l'étude
des arithmopoints de la seconde cubique de Lucas.

64. — Autre définition de la seconde cubique de Lucas.—
Je crois devoir indiquer ici une propriété importante1 qui
peut servir à définir la seconde cubique de Lucas.

La seconde cubique d'E. Lucas est le lieu des points Q
du plan d'un triangle ABC tels que les droites QA, QB et QG
soient normales en A, B et G à une même conique.

Si l'on représente, en effet, en coordonnées trilinéaires
par rapport au triangle de référence ABC, une droite issue
du sommet A par l'équation

Y ~ tïiL

l'involution des droites orthogonales autour du point A, qui
comprend comme couples de droites associées d'une part les
deux bissectrices (m 1, m — 1) et d'autre part la

hauteur AH (m — et 'e parallèle au côté opposé BG

(in' =—^ ^ est définie par l'équation

mm' -f- 1 -f- (m m') cos A 0

Si donc [x, y, z) sont les coordonnées trilinéaires du point
Q du lieu étudié, les perpendiculaires en A, B et G aux
droites OA, QB, QG ont pour équations respectives

Y — aZ Z ßX X Y Y

avec
z -f- r cos A x z cos B y -f- x cos G

a
y -f- c cos A ' z x cos B ' x -f- r cos G

Il résulte, d'autre part, de l'équation générale d'une conique

circonscrite à ABG,

x y z

que les coefficients jouant le rôle de coefficients angulaires

1 A porter au compte d'un auteur dont je ne puis préciser le nom, n'ayant pu retrouver
la référence utile.
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des tangentes aux sommets A, B, G du triangle de référence

sont
ûh

a e
" ~ë ' p=_â'

La condition nécessaire et suffisante pour que QA, QB, QG

soient normales à une même conique en A, B et G est donc

aßT — 1 ;

elle se traduit, par conséquent, par l'équation

(z y cos -A) [x z cos B) (y -j- x cos C)

— (y -f- z cos A) (z + x cos B) (x -f- y cos C)

représentative de la seconde cubique d'E. Lucas.

Les arithmotriangles télémétriques.

65. —Le problème télémétrique conduit à la considération
de triangles obtusangles particuliers ABC qui sont définis
par la relation1

sin 2C 4- 2 sin 2B rz: 0 ^B -jjj-

J'appellerai triangles télémétriques les triangles de cette
nature. Par exemple, les triangles d'angles

A 30° B 105° C 45°

qui peuvent être facilement construits à partir des triangles
équilatéraux sont des triangles télémétriques particuliers.

Soient maintenant A' B' C' les pieds des hauteurs d'un
triangle télémétrique. Le triangle pédal A' B' G' de ABC a

pour angles
A' 2A B' 2B — % G' 2G

Il en résulte que la relation de définition d'un triangle
télémétrique quelconque se traduit par une condition très sim-

1 J.-E. Estienne, Note sur les télémètres, Revue d'artillerie, novembre 1904.
Jules Raibaud, Instruments d'optique, d'observiition et de mesure, Encyclopédie scientifique,,

Paris, 1910, p. 321-322.
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pie : L'un des côtés du triangle pédal d'un triangle télémétrique

est double d'un autre côté :

A'B' — 2A'C'

Cette relation très simple permet de résoudre graphiquement

le problème télémétrique.
66. — Les arithmotriangles télémétriques héroniens. —

Le problème qui consiste à rechercher les arithmotriangles
télémétriques, c'est-à-dire ceux de ces triangles télémétriques

qui sont à côtés rationnels se rattache à l'étude arithmo-
géométrique d'une quartique plane. La relation entre les
côtés <2, 6, c d'un triangle télémétrique général se déduit
immédiatement de la condition

sin 2G -|- 2sin 2B — 0 ;

c'est la relation homogène

(62 __ c2)(c2 _ 262) (c2 + 2h2) a2 0

En posant donc
c b

a
'

a "

on réduit ainsi l'étude des arithmotriangles télémétriques à

celle des arithmopoints de la quartique plane représentée
par l'équation

(x2 — y2) (x2 — 2j2) x2 -f- 1y2

L'étude arithmogéométrique de cette quartique plane
échappe aux procédés qui ont été développés dans les pages
précédentes. Mais il est toutefois possible à l'occasion du
problème de la détermination de ceux de ces arithmotriangles
télémétriques qui sont aussi héroniens, d'établir la proposition

négative suivante.
Le triangle pédal de tout arithmotriangle héronien est

lui-même un arithmotriangle héronien. De sorte que Y

arithmotriangle télémétrique héronien le plus général a pour
sommets le centre du cercle inscrit 1 et deux des centres I1 et I3
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des cercles exinscrits à l'arithmotriangle héronien A'B'C le

plus général dont deux côtés soient entre eux dans le rapport g
:

A'B' 2A,C/

Reste à déterminer ceux-ci.
67. — Il s'agit donc de déterminer l'arithmotriangle héro-

nien le plus général A'B'C' tel que A'B' 2 A'C'. De tels

triangles se rencontrent à propos de l'équilibre sur un plan
incliné d'un cercle vertical, dont le centre de gravité est au

milieu d'un rayon1.
En application de la règle du paragraphe 10, pour

représenter un triangle héronien quelconque A'B'C', je dois poser

A' 1 — r2 B' C
t«T=7T^f 1gy='^ ' x«2=*>

y et z étant deux nombres rationnels assujettis à certaines
inégalités. La condition

A'B' 2A'C'

se traduit ici par
sin C' :=r 2sin B'

c'est-à-dire encore par l'équation

1 + Z2
2

1 + f •

Par conséquent l'étude des arithmotriangles télémétriques
héroniens (ou encore celle des arithmotriangles héroniens

dont deux côtés sont dans le rapport est équivalente à

l'étude arithmogéométrique d'une cubique plane douée de

quatre arithmopoints (l'origine et les arithmopoints à l'infini)
mais ne possédant pas d'autre arithmopoint.

Cette propriété négative résulte de ce que l'équation du

1 C. f. H. Brocard, Journal de Spéciales, 1885, pp. 108-109. L'équation d'équilibre
sin (0 -f- o)) 2sin co, où m est l'angle que fait le plan incliné avec l'horizon, a été rencontrée

par le même géomètre dans des recherches bien différentes concernant une question de
géométrie du triangle et un certain groupe de trois paraboles. Journal de Spéciales, 1885,
pp. 77-80, et Mémoires de VAcadémie des Sciences et Lettres de Montpellier, Propriétés d'un
groupe de trois paraboles, t. XL, 1885-1886, p. 51-58.
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second degré en y ne peut admettre de racine rationnelle
que si la quantité

est un carré parfait. On est ainsi conduit à une équation
z4 -f z2 + 1 i2

qui admet la seule solution banale z 0 et dont l'impossibilité

a été établie en 1777 par Euler h Il n'existe donc pas
d'arithmotriangle télémétrique qui soit aussi un arithmo-
triangle héronien.

68. — D'une manière générale, il convient d'observer que
le problème qui consiste à déterminer l'arithmotriangle
héronien le plus général dont le rapport de deux côtés est
imposé a priori se traduit par l'équation d'une cubique plane

Considérée comme une équation du second degré en z elle
entraîne la condition

-4 2(1 _ 2k2)z2 -f 1 i2

Le problème considéré est donc réductible à l'équation
étudiée par Euler dans les mémoires cités plus haut.

On peut encore poser

- _ y _
1

1 + z*-ni +y- 2X '

la question est alors réduite à l'étude d'une biquadratique
gauche représentée par le système d'équations :

X2 — 1 p.2 l2n2 — 1 V2

obtenues en écrivant que les deux équations quadratiques
en z et en y

Z* — 2Xz + 1 r= 0

- Kny +1=0,
ont des racines rationnelles.

1 L. Euleri, Commentationes arithrnetic.se, édition de 1849, t. 2. De casibus, quibus hanc
formulant x4 -J- kx2y2 + tid quadratum reducere licet [avril 1777 et mai 1782] (pp. 183-189

et pp. 492-500).
A. Gtenocchi, Sur l'impossibilité de quelques équations doubles, C. R., 1874, t. 78, pp. 433-435.
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69. — Ici s'arrête l'article que je m'étais initialement
proposé d'écrire sur les notions d'arithmogéométrie, la suite
devant être consacrée à des compléments et à des considérations

d'un tout autre ordre. Le but poursuivi était
d'insister sur l'intérêt considérable qu'offrent les remarques
géométriques dans toutes ces questions d'arithmologie.
L'absence de remarques de cette nature dans presque toutes les
études faites sur des problèmes spéciaux de la théorie des
nombres est une lacune que j'ai souvent jugée regrettable.
C'est pourquoi je me suis décidé à entreprendre cet examen,
certainement très incomplet encore, de toute une série de

questions arithmétiques susceptibles d'être interprétées
géométriquement d'une manière intéressante.

Je me suis principalement efforcé de rester dans le domaine
le plus élémentaire. C'est ainsi que j'ai systématiquement
écarté les fonctions elliptiques, qui ne figurent point dans
nos programmes d'enseignement secondaire. Le lecteur
désireux d'aller plus loin pourra d'ailleurs introduire la notion
de fonctions elliptiques à l'occasion des propriétés arithmo-
géométriques des cubiques et des biquadratiques gauches,
en suivant la voie tracée par J. Bertrand1, par H. Léauté2,
par M. Picquet 3 et par H. Poincaré4.

La plus grande partie du présent travail a été effectuée
dans des conditions matérielles désastreuses, loin notamment

de toute bibliothèque. Je n'aurais certainement pas eu
la possibilité de le mener à bonne fin sans le concours
précieux de MM. H. Brocard et A. Aubry, que j'ai souvent et
toujours très utilement consultés.

Je me permets donc, dès maintenant, de leur adresser ici
mes plus vifs remerciements.

(A suivre.)

1 J. Bertrand, Traité de Calcul différentiel et intégral, t. II, p. 583.
H. Léauté, Etude géométrique sur les fonctions elliptiques de première espèce, Journal

de L'Ecole polytechnique, 46e cahier, 1879 (t. XXVIII, p. 67-99.
3 Picquiît, Application de la représentation des courbes du 3e degré à l'aide des fonctions

elliptiques, Journal de l'Ecole polytechnique, 54e année, 1884.
H. Poincaré, Sur les propriétés arithmétiques des courbes algébriques, Journal de

mathématiques pures et appliquées de Liouville, 5e série, t. VII, 1901, pp. 161-233.


	NOTIONS D'ARITHMOGÉOMÉTRIE
	quartiques gauches.
	Généralisation des équations de Brahmagupta-Fermat.
	problème de Bhaskara et les équations
	Arithmogéométrie autour des cubiques de Lucas.
	arithmotriangles télémétriques.


