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ARITHMOGEOMETRIE 159
parait résider dans le fait que le probleme général posé au
n° 2 conduit a la forme générale de la fonction F(z) donnée
au n° 5. |

Une recherche analogue et présentant méme intérét peut
étre faite pour le probleme généralisé que nous venons d'in-
diquer.

Jassy, décembre 1916.

NOTIONS D’ARITHMOGEOMETRIE

(3¢ article) !
PAR

Emile Turritre (Montpellier).

Les quartiques gauches.

43. — METHODE DU PLAN OSCULATEUR. — De méme que, sur
une cubique plane dont I'équation a ses coefficients ration-
nels, l'existence de deux arithmopoints quelconques entraine
par alignement celle d'un troisieme arithmopoint, sur une
quartique gauche d’équations rationnelles I'existence de trois
arithmopoints particuliers quelconques entraine celle d’un
quatrieme arithmopoint, trace de la courbe gauche sur l'arith-
moplan défini par les trois arithmopoints connus.

Le plan défini par une tangente en un arithmopoint d’une
quartique gauche et par un autre arithmopoint rencontre la
courbe en un nouvel arithmopoint.

Enfin, le plan osculateur en un arithmopoint rencontre a
nouveau la quartique gauche en un nouvel arithmopoint.

! Voir L’Enseignement mathématique, 18° année, 15 mars 1916, pp. 81-110, et 15 novembre
1916, pp. 397-428.
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Cette remarque donne naissance a une méthode analogue a
celle du point tangentiel pour les cubiques planes et permet-
tant de rattacher par une voie itérative une suite d’arithmo-
points a tout arithmopoint d’une quartique gauche. Cette
méthode du plan osculateur consistera a partir d’un arith-
mopoint connu a priori M, ; le plan osculateur a la quartique
gauche en M, rencontrera la courbe gauche en un second
point M, ; le plan osculateur en M, donnera un autre arith-
mopoint M, ... et ainsi de suite: de 'arithmopoint M;_, se
déduira un arithmopoint M; qui sera la trace de la quartique
sur le plan osculateur de M;_;.

44. — LES EQUATIONS DES NOMBRES CONGRUENTS. — J’ai déja‘’
donné un exemple de I'application de la méthode du plan
osculateur a I'occasion des équations indéterminées simul-
tanées

a? 4+ a =%, x4+ b=z,

Pour a + b =0 elles ne sont autres que les équations
des nombres congruents qui ont donné lieu a des travaux
remarquables de Léonard pe Pise, Edouard Lucas, A. G-
~voccHI et Mathew Corrins. Impossibles pour a =1, 2, 3, 10,
11, 17, 19, ..., elles sont possibles pour @ = 5, a = 6, par
exemple.

Pour @ — 5, b — — 5 ce sont les équations du probléme
proposé par Jean pE PALERME & Léonard pE PisE, qui en a
donné la solution

1 1 41
r=3t gt E=agc

Pour @ = 6, b = — 6, on se trouve en présence d'un sys-
teme d’équations étudié par Ed. Lucas®. Partant de la solu-
tion simple :

1
x = — , ¥ = z::i,

L Le probléeme de Jean de Palerme et de Léonard de Pise, L’Enseignement mathematique,
XVIIe année, septembre-novembre 1915 (p. 315-324).

2 Edouard Lucas, Sur la résolution des systemes d’équations X2 — 6v2 = u?, x2 4 6y2 = v3,
Nouvelles Annales de Mathématiques (2], t. XV, 1876, p. 466-469.
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Ed. Loucas forme les nouvelles solutions moins évidentes :

1201 1249 L 151

1= g0 0 2T 140 1 140
., 2:639-802 . 10-113-607 L, 4°319-999
Y= 77976485 ' 1T 7776485 ' 1 77776485

les formules de récurrence qu’il indique ne sont d’ailleurs
pas distinctes de celles que j'ai trouvées en application de la
méthode du point tangentiel sur une cubique plane :

ab — x* x2).2 1 az? a2z? 4 by2
—_— =t , z, == ———
2xyz

2y z

Des propositions générales sur 'impossibilité des équa-
tions des nombres congruents ont été données par A. GE-
NoccHI ! (par exemple lorsque @ est un nombre premier de
la forme 8 m + 3 ou le double d’un nombre premier de la
forme 8 m + 5); le méme auteur s’est occupé d’ailleurs dans
le méme travail du cas a + 6= 0. Elles ont aussi été con-
sidérées par Ed. Lucas ? dans ses recherches sur les travaux
de Léonard pE Pisk.

45. — Les équations simultanées homogénes

~2
A

I

.732 + (IO'Z
axz +‘,)2

12,

i

ont été traitées de méme?; pour @ = 7, elles admettent une
solution simple

x =3, y=1, z =54 , t =28 ,

L A. GrNoccHl, Sur Uimpossibilité de quelques équations doubles, Comptes Rendus de Udca-
démie des Sciences de Paris, 1874, t. 78, p. 433-435.

2 Ed. Lucas, Recherches sur plusieurs ouvrages de Léonard de Pise et sur diverses questions
d’arithmétique supérieure, Bollettino di bibliografia (du prince Boncompagni), 1877. Lucas
cite Léonard de Pisg, Luecas Paciori, L. EuLEr, Mathew CoLLINS et A. GENOCCHI.

Au sujet des mémes équations des nombres congruents, voir aussi la question n° 4472 de
UIntermédiaire des mathématiciens (1915, p. 52, et p. 231) par M. A. GERARDIN; on y trouve
des listes étendues de valeurs de a pour lesquelles les équations sont possibles ou impos-
sibles.

8 L’Intermédiaire des mathématiciens, 1916, p. 63. L’auteur de la solution indique préeisé-
ment la méthode du plan osculateur, ainsi que celle d’une quadrique ayant avec la courbe
sept intersections confondues au point initial; le huitiéme point d’intersection est une nou-
velle solution. Il traite ensuite la question au moyen des fonctions elliptiques d’un méme
parameétre u et signale toute une série de solutions de paramétres — 3u, — Tu, — 1l ...
dédnites d’une solution initiale de paramétre .

L’Enseignement mathém., 19° année ; 1917. 11
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dont il est possible de déduire la solution
x —= — 447 | 3':1121, z — 300% t — — 1688 .

?

M. A. Gerarpin® a d’ailleurs signalé un cas particulier
de possibilité de cette ¢quation. C’est celui pour lequel le
nombre a est de la forme suivante :

a=»3 4+ 2\ + 4.
Dans ce cas, on peut prendre :

& =3 , y==r+4 2, =3 4+ 3\ + 4, =3+ xr+2.

Le cas de a carré a été traité par L. EvLEr en 1780°%

46. — Comme autre exemple, je signalerai encore celui du
probléme de la détermination de deux parallélépipédes rec-
langles a arétes rationnelles, équivalents et isodiagonaux.
On impose une des arétes de Uun des volumes et deux arétes
de U'autre.

Soient x, y, ¢ les arétes de 'un des parallélépipedes; ¢
est connu et &, ¥ sont deuxinconnues. Les arétes du second
volume serontde méme ', 0, z'; @', b’ sont donnés et z" est
inconnu. Il s’agit alors d’étudier le systéme suivant d’équa-
tions entre x, y et z':

xyc = a’b’z"

.‘132 _}_32 + CE a':? + b’? :_'2 .

I

elles représentent, par rapport a des axes coordonnés,
(Ox, Oy, Oz') une biquadratique gauche intersection d’un
paraboloide hyperbolique avec un hyperboloide de révolu-
tion. Par la transformation définie au moyen des formules

N ) K
X= a/b/<’r+)) ’

17:4' (-’1’7*—7'} ’

1 Loe. cit., p. 64.
2 C. f. Commentationes arithmetice, 1849, t. Il, pp. 425-437.
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et par conséquent constituée par une affinité et une rotation
autour de Oz', les équations de la biquadratique gauche de-
viennent :

X2=(Z+12—K, Y= (Z—1?—K.
‘ (e — a’?)(c? — b2
K est une constante égale a le “a,l(bc,z ). Cette valeur

particuliere de K assure & la biquadratique transformée
I'existence d'un arithmopoint particulier

. cla" + bt cla" — b c?
xoz(—(l,‘[t',-—), YO:(—CP—[),——), Zy=—7
correspondant a la solution banale constituée par deux pa-
rallélépipedes égaux.

La méthode du plan osculateur pourra étre appliquée a
tout arithmopoint (z,, y,, z,) de la biquadratique d’équa-
tions :

X2 k= (Z 412, Y24 k= (Z—17,

le plan osculateur au point (r,, y,, 3, ayant pour équation
— X 4+ 'Y 4 2(2 4+ 1 —K)Z=—65,(*+ 1 —K) .

Je n’insiste pas sur ce probleme qui peut étre traité d’une
autre maniére el rattaché a des cubiques planes remarqua-
bles signalées par Edouard Lucas. (Voir §§ 61, 62 et 63.)

Je pense que ces divers exemples, étudiés par une méthode
trés élémentaire, suffisent amplement pour justifier l'intro-
duction de ces considérations d’arithmogéométrie. Ils prou-
vent d’ailleurs qu’il n’est pas nécessaire d'utiliser des résul-
tats de la théorie des fonctions elliptiques pour aborder
systématiquement ’étude de ces questions de théorie des
nombres.

417. METHODE DE LA QUADRIQUE PASSANT PAR SEPT POINTS.
— Une méthode analogue a celle du plan osculateur découle
du fait bien connu que toutes les quadriques passant par
sept points communs passent par un huitieme point fixe.

Supposons qu’on connaisse sept arithmopoints particuliers
d’une biquadratique gauche définie comme intersection de
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deux quadriques Q, = 0 et ), = 0. On formera alors I'équa-
tion d’une quadrique passant par ces sept arithmopoints mais
n’appartenant pas au faisceau ponctuel défini par les quadri-
ques Q, = 0 et Q,=0,. Soit Q; = 0 une telle quadrique. Les
équations simultanées

Q, =0, Q, =0, Q, =0,

auront pour solutions les coordonnées d’un systéeme de huit
points, auxquels appartiendront les sept points connus «
priori. De sorte que, de ces sept arithmopoints, ce procédé
permettra de déduire un huitieme arithmopoint.

Les sept arithmopoints initiaux peuvent étre confondus
en un seul arithmopoint: on posséde donc une nouvelle mé-
thode de récurrence entre arithmopoints d’une biquadratique
gauche, absolument analogue a celle du plan osculateur.

48. — REDUCTIBILITE DE L'ETUDE ARITHMOGEOMETRIQUE D UNE
QUARTIQUE GAUCHE A CELLE D'UNE CUBIQUE PLANE. — Une autre
voie estouverte dansl’étude arithmogéométrique d’une quar-
tique gauche représentée par des équations a coeflicients
rationnels et douée d’un arithmopoint particulier connu «a
priort.

Cette étude n’est pas distincte, en effet, de celle d’une
cubique plane, qui a fait 'objet des §§ 40, 41 et 42. La cubique
plane associée a la quartique gauche n’est autre que la pers-
pective de celle-ci, le point de vue se trouvant a arithmo-
point connu a priort.

Pratiquement, on projettera la quartique gauche en pre-
nant pour centre de projection I'arithmopoint connu a prior:
sur un plan de projection dont le choix sera effectué, dans
chaque cas particulier, par des considérations de symétrie,
d’élégance ou de simplicité des équations.

La cubique plane perspective de la quartique de l'espace
admet pour arithmopoint particulier la trace sur le plan de
projection de P’arithniodroite tangente a la quartique au point
de vue.

C’est ainsi que les équations des nombres congruents

22 4+ a=)y)*?, x2 4 b — z?
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ont pu de diverses maniéres étre ramenées a une équation
représentant une cubique plane douée d’arithmopoints .

49. — ProBLEME DE FERMAT: ARITHMOTRIANGLES PYTHAGO-
RIQUES DONT 1'HYPOTENUSE ET LA SOMME OU LA DIFFERENCE DES
CATHETES SONT DES NOMBRES CARRES parralrs. — L’étude des
triangles pythagoriques a cotés rationnels dont I'hypoténuse
est mesurée par un carré et dont la somme des cathétes est
un carré a été faite par Leieniz? Fermar, Euvrer® et La-
GRANGE. La plus petite solution de ce probléme est constituée
par le triangle dont les cathétes ont pour mesures :

‘

1-061-652-293°520 .
4-565-486-027-761 .

La somme des cathétes est le carré du nombre 2:372-159;
’hypoténuse est égale a (2:165-017)2.

Je vais appliquer les considérations qui précedent au pro-
bleme beaucoup plus général des arithmotriangles pythago-
riques dont I'hypoténuse et la somme ou la différence des
cathetes sont mesurées par des nombres carrés parfaits.

Soient x, ¥ deux nombres rationnels algébriques dont les
valeurs absolues sont par convention les rapports des ca-
thétes a 'hypoténuse d'un triangle de cette espéce. Il s’agit
ainsi de procéder a 1'étude du systeme des deux équations

3

a? =1, x4+ y =z,

admettant les solutions banales (+ =1, v =0, z = 1)
(=0, y=1, z =1). Ces équations représentent respec-
tivement un cylindre de révolution et un cylindre parabo-
lique, de sorte que leur ensemble représente une biquadra-
tique gauche douée d'un arithmopoint particulier, dont il est
possible par symétries de déduire trois autres arithmopoints.

t Cf. L’Enseignement mathématique, XVIle année, 1915, p. 317 et 321.

? Je cite LeiBNiz d’aprés EuLer : « Hoe problema a Leibnizio olim propositum » [Com-
mentationes arithmetice, t. 11, p. 44-52, Miscellanea analytica, 15 novembre 1773, § 4, p. 47-48].

8 L. EULER a consacré deux mémoires & ce probléme :

a) De tribus pluribusve numeris inveniendis, quorum summa sit quadratum, quadratorum
vero summa biquadratum, 18 mai 1780; Commentationes arithmetica, édition de 1849, t. 11,
p. 397-402. La soluation particuliére rapportée dans le texte ci-dessus est indiquée dans cette
piéce. i

b) Solutio problematis Fermatiani de duobus numeris, quorum summa sit quadratum
quadratorum vero summa liquadratum, ad mentem Ill. Lagrange adornata, 5 juin 1780’;
Commentationes arithmetice, ibid., pp. 403-405,
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La distinction entre les solutions des deux problémes
distincts qui se traduisent par ces mémes équations se fait
aisément. L.es nombres (v, y) peuvent, en effet, étre soit tous
deux positifs, soit de signes contraires. Dans le premier cas,
on se trouve en présence du probleme de Fermat propre-
ment dit; pour x et y de signes contraires, c’est la différence
des catheétes qui est mesurée par un carré parfait. D’ailleurs,
le seul examen de z permet d’effectuer autrement la méme
distinction ; il résulte, en effet, de I’équation

20y = 2 — 1,

que les solutions du probléeme de Fermat proprement dit
correspondent aux arcs de la biquadratique extérieurs a l'es-
pace limité aux deux plans paralleles z = = 1. Les arithmo-
points de la biquadratique situés entre ces deux plans paral-
leles sontau contraire associés a des arithmotriangles pytha-
goriques pour lesquels la différence des cathetes est un carré
parfait.

Le cone du troisieme degré admettant la biquadratique
considérée pour courbe directrice. le sommet étant 'arith-
mopoint (x = 1, y = 0, z = 1), a pour équation par rapport
a des axes issus de son sommet et paralléeles aux axes pri-
mitifs :

(X2 4+ Y (X + Y — 27Z) + 2XZ2 =0 ;

de sorte que la cubique d’équation
(X2 Y2(X + Y — 2] +2X =0

est une perspective de la biquadratique gauche. La corres-

pondance entre les nombres (x, v, z) et (x, y) s’effectue par
les formules

Y2 — Xe 2XY _
T=yrxe T TErwe =Y+ Y-L
x — 1 4

X = Y =
Z-—l’ z__,l

\

La séparation entre les arcs associés aux deux problémes
considérés se fait au point a l'infini de cette cubique circu-
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laire, au point 4 distance finie d’intersection avec 'asymptote
X 4+ Y =2, al'origine O des coordonnées et au point autre
que O, situé a distance finie, d’intersection avec la parallele
menée par O a cette asymptote. Les deux arcs compris entre
ces deux droites paralleles (X + Y =0, X + Y = 2) cor-
respondent a la différence des cathétes, tandis que les deux
autres arcs extérieurs a ces deux droites paralleles corres-
pondentau probléme de Fermat. Deux arithmopoints alignés
avec le point O correspondent toujours au méme probléme.

Une des solutions remarquables de la question, ainsi trou-
vée au moyen des alignements sur cette cubique, est celle qui
correspond au triangle rectangle de cotés 119, 120 et 169.

La méthode du plan osculateur peut aussi étre appliquée
avec intérét a la biquadratique étudiée. Pour simplifier les
calculs, il est avantageux d’introduire une variable auxiliaire
0 définie par la relation

x—y:?\/—g;

de sorte que l'on doit poser :

Avec ces notations, I'équation du plan osculateur de la biqua-
dratique au point de coordonnées x,, y,, 3, et du para-
métre J, est :

(22,8, -+ z;)x + (29,9, + z.:)y — 225 =63, — 2 .

Ce plan osculateur rencontre a nouveau la courbe gauche en
un point de cote z; dont l'expression peut étre donnée en
fonction de z seul,
— 12 & 122% 4 g8

b4 12:F — 3%

3]

<1 —_—

ou, plus simplement, en fonction de z et de ¢ :

1 — 43 4 82
1 — 332

Zl‘:Z,
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Les parameétres ¢ et d, sont liés entre eux par la relation

" §:34+1283_ 1852 4 128 — 3
— 3 (397 — 1)2

On observera enfin que la condition 22 — 1 > 0, caractéris-
tique des solutions du probléme primitivement étudié par

FermaT se traduit ici par 'inéquation ¢ < —i—

La solution banale x = 1, ¥y = 0, z = 1 correspond préci-
sément au cas limite ¢ :%; elle appartient d’ailleurs indiffé-
remment aux deux problemes. La formule de récurrence ci-
dessus écrite, entre ¢, et ¢, donne alors pour azéla valeur

suivante de ¢, :
57-121

% = 11595

- ” . \ l 1
qui, supérieure a o, correspond au second probléme; elle

conduit a la solution

119 120 1

T T 1690 T e T g
déja signalée a propos de la cubique perspective de la biqua-
dratique gauche.

Généralisation des équations de Brahmagupta-Fermat.

50. — L’étude des équations Ax* 4+ Ba® = f(x,y) dans les-
quelles f{xy) est un polynome quelconque du second degré
des deux variables x et ¥ se raméne immédiatement a 1’étude
arithmogéométrique d’une biquadratique gauche par l'intro-
duction d’une nouvelle variable auxiliaire. Une telle équation

Ax* 4+ Ba® = f(x, ¥y)

peut, en effet, étre considérée comme représentant dans le
plan Oxy une courbe du quatriéme degré, projection d'une
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biquadratique de 'espace. Cette courbe gauche est l'inter-
section d'un cylindre parabolique

2

x

avec une quadrique d’équation :
z2 4+ Bxzs = flx, ) .

51. — EQUATIONS DE BRAHMAGUPTA-FERMAT GENERALISEES. —
Une premiére extension toute naturelle des équations de
Brahmagupta-Fermat

Ax? 4+ Bx + C = )2

est I'équation
Ax® 4 Ba? 4+ Cx + D = y? ;

son étude se rattache immédiatement a celle d'une cubique
plane. (Voir § 42).
Il en est de méme des équations plus générales :

Ax* 4+ Bx® 4+ Cax® 4+ Dx 4+ E =12 .

Pour traiter arithmogéométriquement une équation de cette
espéce, il suffit de poser x* = z de sorte qu’elle représente
-une quartique plane projection sur le plan Oxy de la biqua-
dratique gauche d’équations :

1)

I

~

E x

Les cas ou A ou E seront carrés parfaits permettront de
trouver immédiatement-une série de solutions.

Parmi les équations de Brahmagupta-Fermat généralisées
au sens qui précede, il convient de mentionner d'une ma-
niére toute spéciale celles qui admettent pour premier
membre un trinome bicarré en x et plus particulierement
encore les équations

x* + A2 4+ B2 =[] .

En posant
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cette équation devient
X2+ A —2B=1[];
de sorte que toute équation du type
at + Ar* 4+ B2 =[],
est équivalente au systéme
X?da=[ X +4b=[]

des équations des nombres congruents. Les constantes A, B,
a, b qui figurent dans ces diverses équations sont liées entre
elles par les conditions

a—A — 2B , b —= — 4B .

L. EvrLer affirma I'impossibilité pour £ =1, 3, 5, 6, — 14,
ete., ... de
‘ axt + k1 =[] .

L’équivalence précédente fut indiquée par A. GENoccHI
dans le mémoire cité au § 44.
L’équation
at — bhx? + 1 =[]

fut enfin traitée par Ed. Lucas [Recherches sur Uanalyse
indéterminée, Moulins, 1873, p. 67 ; Recherches sur plusieurs
ouvrages de Léonard de Pise, p. 120].

52. — PROBLEME DES ARITHMODISTANCES POUR UNE HYPER-
BOLE EQUILATERE OU UNE LEMNISCATE DE BErNourLi. — Il
arrive trés fréquemment que ce genre d’équations de Brah-
magupta-Fermat intervienne dans les problémes des arithmo-
distances pour certaines courbes. C’est ainsi que le probleme
des arithmodistances pour I’hyperbole équilatere et son cen-
tre de symétrie ou encore pour la lemniscate de Bernoulli
et son point double (transformée de I’hyperbole équilatere
par inversion) se traduit analytiquement par I'équation

yr=1 4 a*.

Celle-ci est impossible et n’admet que la solution banale
x = 0. Cette impossibilité résulte du théoréme négatif de
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Fermar sur 'équation x* + y* = z* ou encore du théoréme
dtt a FrénicLe de non-existence d’arithmotriangle pythago-
rique dont l'aire soit double d’un carré. (Voir a ce sujet § 6
de manote sur Le probléme de Jean de Palerme et de Léonard
de Pise).

Cette impossibilité est encore équivalente a celle de

tang § = 2, tang— étant rationnel. En d’autres termes il

n’existe pas d’arithmotriangle pythagorique dont le rapport
des cathétes soit un carré parfait.

53. — PROBLEME DES ARITHMODISTANCES POUR UNE ARITHMO-
coNIQUE — Plus généralement, étant donnée une conique
douée d’arithmopoints et, par suite, représentable par des
équations

wh
b]ﬁlo’
)

L]

=
1o

dans lesquelles f,, g, et &, sont des polynomes du second
degré d’'une méme variable ¢, le probleme des arithmodis-
tances pour cette arithmoconique et pour un arithmopoint

du plan, — qui peut sans restriction de généralité étre pris
pour origine des coordonnées, — se traduit par I’équation
fi + &

— = carré parfait ;
}l2

ou encore f’ 4+ g’ = Y*. De sorte qu’en exp11c1tant la variable
¢t on est ramené a une équation de la forme

Azt + Bx® 4 Cz® 4 Dz + E = °

Ce résultat s’étend d’ailleurs au cas d’une arithmoconique
de I'espace. On a alors

b[;ﬁ
<
I
|2
&
I
> >~

¥

on est par suite amené a une équation

fi+ &+ =Y,
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qui, aprés développement, donne encore une équation de
Brahmagupta-Fermat du quatriéme ordre.
La réciproque n’est pas exacte. Toute équation

Axt 4 Bx® 4 Cx? 4 D 4+ E = 4?2

ne serait susceptible d’étre rattachée a un probléme d’arith-
modistance pour une arithmoconique de 'espace, ni @ fortior:
pour une arithmoconique de l’espace. Les équations pour
lesquelles A et E ne sont pas sommes de deux ou trois carrés
ne sont pas susceptibles d’une telle interprétation géomé-
trique : par exemple aucune des équations

y2=at—1, yr=a*4+ 7,

ne peut étre associée a une arithmoconique de l'espace ou
du plan au titre de courbe représentative de 1'équation du
probléme des arithmodistances.

Le probléme de Bhaskara et les équations

.2

ela, y) = w*, Yz, y) = v .

54. — LE proBLEME DE BHAskARA. — Le systéeme des deux
équations indéterminées

x4y —1=u?,
2?2 — 3t —1 =2,
a quatre inconnues x, ¥, #, ¢, dont Buaskara' a donné les
trois solutions particuliéres suivantes dépendant d’un para-
metre rationnel arbitraire

x=8\ 4+1 == BA2
1
x:)\+§5\_ , y=1 |,
___(87\2——1)2 ___8)\2~—1
T= gy Y= g

1 Le Lilavati, section 1V, regle 59-60, Cf. Nouvelles Annales de Mathématiques, question
206, (2], t. VIII, 1849, p. 107; E. CLERE en donna une solution incompléte, t. IX, 1850, pp.
116-118.
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et dont la solution générale a été obtenue par A. GENoccHI?,
pourrait de diverses maniéres étre rattaché aux considéra-
tions qui précédent, en supposant que 'une des inconnues
prend une valeur précisée, ou encore que u et ¢, par exemple,
sont deux fonctions linéaires d'une variable z a coeflicients
rationnels et connus. On pourrait aussi songer a des consi-
dérations d’hypergéométrie.

Je me bornerai a signaler que le systéme des deux équa-
tions de Bhaskara est équivalent au systéme suivant :

2 — 1) = w? + v?, 292 = — P

il suffit de poser

pour réduire toute la question a I'étude arithmogéométrique
d’'une surface unicursale du quatriéme degré d’équation

1
X2—Y2:4)\2—|—-ﬁ

en coordonnées cartésiennes (X, Y, A). En posant alors

: G 41 , "
X 17 - —_— X — Y — &
N A n
il vient ainsi :
e ol e L i
TR T —pr T o e

Telle est la solution générale dépendant de deux paramé-

tres rationnels arbitraires, 1 et p, des deux équations de
Bhaskara.

55. — Les équations, analogues aux précédentes,

e,

x2+:’2+1
x2+y2__1

|

2
ve o,

1

* Angelo GeNoccHI, Solution de la question 206, Nouvelles Annales de Mathematiques, (2],
t. X, 1851, p. 80-85.
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se traitent de la méme maniére. Elles sont équivalentes aux
équations

2= u — ¢?,

2(;1}2 _I__JZ) — u2 __I_ V2 :
en posant donc

u:)\—{—-%\, v:l—%—\,

I'étude de ces équations est ramenée a celle d’'une surface
unicursale du quatriéme degré représentée par I’équation
(en coordonnées cartésiennes x, ¥, A):

1
.2 2 . 52 -
x® 4y = N+ eI
Cette surface peut étre envisagée comme engendrée par
: : : 1

un arithmocercle passant par 'arithmopoint (x =AY :;—,7),
de sorte que les expressions rationnelles des coordonnées
d’un point quelconque de la surface s’obtiennent en posant

i
tanggztet
x:)\cosﬁ—}—%\sinﬁ,
= Asin0 — — cos 0
\‘:}__ sSin ’-—2’—')\COS .

La solution générale du systéeme des deux équations

(2241 =1u,
?x2_|_y2__1:‘,2’

est ainsi
0 t 1— ¢
LML=y =g
* 1 4 2 ’ )= 14 ¢
56. — Le systéme formé par les deux équations simulta-

nées, encore analogues aux équations de Bhaskara:

~
o~
s

xi’ +32_/1
2 —yP41=

g
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peut étre traité par un procédé semblable, a la seule diffé-
rence que la surface unicursale qui se présente ici est du
troisieme degré. De ’équation

2% — u® 4+ v?
et des résultats du § 5, il résulte qu'il faut poser actuellement

u = x(cos 4 sinf) ,

4 p = x(cos § — sinf) ,

] : ; : ”
tang 5 = ¢ étant un nembre rationnel arbitraire. En portant

ensuite ces expressions de u et de ¢ dans I'équation

il vient
2,2
Eiii_)_ (y2 —1),

9
bx*

i1 — %) =
de sorte que ’étude des équations proposées est réductible
a celle d’'une surface cubique unicursale d’équation
Z(1 — 7% = X2 — Y? .

Les expressions générales des solutions (z, y), en fonction
de deux parametres, obtenues par ce procédé, sont les sui-
vantes:

v — 2% (1 + ¢3) 2 (1 4 3 41
— ORI+ ) —1 T RhAd o —1°
57. — THEOREME FONDAMENTAL SUR LES EQUATIONS SIMUL-
TANEES
ole, y) =, Yz, y) = v

Les équations de Bhaskara et autres équations analogues
qui viennent d’étre résolues dans les trois paragraphes pré-
cédents appartiennent a la classe trés générale d’équations
du type ¢(r,y) = u? ¢ (x,y) = ¢%, ou ¢ et sont deux poly-
noémes a coefficients rationnels en x et y, et qui sont douées
d’une solution particuliére manifestement connue a priori :
les équations de Bhaskara sont ainsi douées de la solution
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(x = 1, y = 0); les équations du § 56 sont douées de la solu-

tion (r =0, ¥ = 1). Quant aux équations du §55, il est facile

' . 1
d’obtenir une solution telle que v =5, y = 1.

Il est important d’observer que le probleme actuel de deux
équations a quatre indéterminées, qui semblerait se ratta-
cher a des considérations d’arithmogéométrie pour un hyper-
espace a quatre dimensions est réductible a une étude arith-
mogéométrique d’une surface de I'espace ordinaire.

D’une maniére précise et en se bornant, pour fixer les
idées, au cas de deux équations quadratiques simultanées,
il y a lieu d'énoncer le théoréme fondamental suivant :

Le systéme formé par deux équations simultanées quadra-
liques a quatre inconnues

ela, y) = b, dla, y) =7,

n‘admet pas de solution en général. La connaissance d’une
solution particuliére entraine la réductibilité de la question
a Uétude arithmogéoméirique d’une surface cubique.

Soit, en effet, (x,, y,, ¢y, ¢,) la solution connue a priori.
Je pose alors

x=x, 4 at , y =y, + Bt , w=u, + vt , p = v, + 8t ,

a, 3. y. 0, t étant cinq indéterminées. Chacune des équations
quadratiques données admet la solution £ = 0 et peut étre
résolue par rapport a ¢, de sorte que I'on obtient ainsi deux
expressions différentes de ¢

P, v,
t — -- , t — — ,

&, T,
sous formes de fractions rationnelles dont les numérateurs
sont des formes linéaires en («, . y, 9) tandis que les déno-
minateurs sont des formes quadratiques par rapport aux
mémes variables. Il résulte de cette remarque que toute la
question est réduite a T'étude arithmogéométrique de la sur-

face du troisiéme degré dont ’équation est
O, W, — W, b, =0

dans le systéme de coordonnées homogénes («yd).

R

k|
3
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La réductibilité a 'étude arithmogéométrique d’'une sur-
face de 'espace ordinaire n’est évidemment pas particuliére
aux systémes d’équations quadratiques. Lorsqu'en effet les
équations o == u? et ¢ = ¢? a étudier sont de degrés plus
élevés, laméthode précédente conduit a deux équations algé-
briques en ¢; I’élimination de ¢ permet alors de se ramener
a I'étude d'une relation unique entre «, 38, 7. 0, homogéne
par rapport & ces mémes-variables.

La réductibilité a I’étude d’une surface cubique de l'es-
pace ordinaire du systéme des deux équations quadratiques
o(r, y) = u® et Y(x,y) = o® étant acquise, il faut maintenant
observer que les conclusions du § 36 peuvent en outre étre
appliquées a la nouvelle équation cubique. La surface cubi-
que obtenue est précisément douée de trois arithmopoints non-
singuliers. Ce sont les arithmopoints de coordonnées respec-
tives

o« =20, 6 =10, vy=20, 5 =0,
a—20 5 =20, y7= 0, 6 =20,
a—0, p=10 , ¥ o= Ry o 8 =w

c'est-a-dire deux des sommets du tétraédre de référence et
un troisieme point de l'aréte qui les joint. La connaissance
d’un seul de ces arithmopoints suffit pour assurer et diriger
par le procédé du § 36 la représentation rationnelle de la sur-
face cubique au moyen de deux paramétres indépendants.
Dans ces conditions, la connaissance d’une solution parti-
culiere du systéme d'équations quadratiques généralisées de
Bhaskara entraine la résolubilité du systéme ; la solution dé-
pend de deux paramétres. Si la représentation trouvée de la

surface cubique est propre, cette solution est la solution géné-
rale.

Arithmogéométrie autour des cubiques de Lucas.

58. — Pour un nombre assez considérable d’équations
indéterminées ayant été l'objet de recherches spéciales, le
groupement x® + y? -+ z? intervient dans la structure de ces
équations. Il semble donc qu'il y ait intérét — et effective-

L’Enseignement mathém., 19¢ année; 1917. 12
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ment il y a trés souvent un réel intérét — de rattacher une
équation de celte espéce a 'étude d’une arithmosphére.

C’est ainsi que, pour une courbe sphérique, tracée sur une
sphére de rayon pris pour unité, les coordonnées d’un point
quelconque et leurs dérivées des deux premiers ordres par
rapport au parametre qui repeére le point courant de cette
courbe sphérique sont liées par une identité due a L. Ca-
TALAN :

(x/2 + J./2 + :/2) [(2"’)‘” . yxl/)2 _]L (}'Z" o :),H}Q + (ZZL’” - 1’5”]2}
= (@'a" 4+ )" 4 ) 4 [y — 30" o (3727 — &) 2 (" =y

Cette identité donne une infinité de solutions de 1'’équation
indéterminée
(P + Q* 4 R (P 4+ Q" + R™) = U? + V¥ ;
on en conclut, par exemple !,

(247 -+ 7% 4+ 152)(30% + 362 4 232) = 375% 4+ 1475% |

Mais en pareil cas il convient de ne pas se laisser fasciner
par la présence du groupement x*+4 y? + z2; il peut y avoir
au contraire avantage a chercher des solutions arithmogéo-
métriques n'ayant absolument aucun rapport avec I'arithmo-
sphere.

59. — L'EqQuatioNn &% + y? + 22 = x'? 4 y'? 4 z'%. Celte
équation quadratique homogéne a six indéterminées se rat-
tache manifestement a I'arithmospheére. Sil'on se donne, en
effet, arbitrairement les trois indéterminées ', ', 2, la dé-
termination de x, y, z n’est autre que la recherche d’un arith-
mopoint quelconque sur l'arithmosphere de centre O qui
passe par l'arithmopoint de coordonnées &/, 3, z’. L’équa-
tion considérée peutdonc étre résolue par une des méthodes
indiquées au § 8 (représentation géographique, ou mieux :
projection stéréographique).

La méme équation peut étre étudiée arithmogéométrique-
ment d’'une maniére toute différente. Jobserverai dans ce
but que cette équation est susceptible d’une interprétation

1 Question n° 1124 des Nouvelles Annales de Mathématiques.
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géométrique remarquable. Etant considéré un triangle de
référence ABC, si l'on prend sur les cotés des points A’ sur
BC, B’ sur CA et C' sur AB, délerminant sur cés mémes cotés
siX segnients

BA! = x , A'C = 27,
CB’ =y, B’A :3" ,
AC = =z | C'B ==z,

la condition nécessaire et suffisante de concours des perpen-
diculaires aux co6tés en ces points A’ B’ C’ est précisément
la relation

e i i S M

Cette remarque élémentaire faite, je supposerai que les
sommes x + &', y -+ y’ et z + z’ sont imposées; soient:

x4+ =a, y+y =0, 4+ =c.

Je suppose en outre que les nombres «, 0, ¢ peuvent étre
considérés comme étant les mesures des cotés d’un arithmo-
triangle héronien.

La solution générale de I'équation indéterminée dépend
alors de @, b et c et de deux parameétres arbitraires. Pour
avoir celte solution générale, il suffira de se donner arbitrai-
rement un arithmopoint du plan de Uarithmotriangle héro-
nien et de le projeter sur les droites arithmodirigées qui por -
tent les trois cotés de ce triangle : les six segments déterminés
par ces trois projections constituent précisément la solution
générale désirée.

60. — L'équation x? + y* + 2> — 2’2 + ¥'% qui de son
coté a fait aussi l'objet d’assez nombreuses remarques® se
rattache a la précédente au titre de cas particulier. Les for-
mules déduites de 'élude arithmogéométrique d’une arith-
mosphere de centre O et qui passe par 'arithmopoint des
coordonnées (z', ¥’ et 0) se simplifient du fait que 'arithmo-
point connu @ priori a sa cote nulle.

1 Cette équation indéterminée x% 4 32 4 32 = /2 4 /2 4 /2 a été fréquemment considérée
{question n° 3621 de VIntermeédiaire des Mathématiciens). Je pense toutefois que la solution
géométrique ci-dessus doit étre nouvelle.

1 Question 4383 de Vintermédiaire des Mathématiciens.
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Cette équation comme la précédente est susceptible d’une
solution dépendant de la considération de l'arithmotriangle
héronien général. Ici toutefois la solution générale dépend
des cotés de arithmotriangle héronien et d’'un seul para-
metre. Cette solution générale s’obtient, en effet, en suppo-
sant que l'arithmopoint que l'on projette sur les cotés du
triangle n’est plus arbitraire dans le plan mais appartient a
une autre droite arithmodirigée spéciale du plan (perpendi-
culaire en B a I'arithmodirigée AB).

61. — LE PROBLEME DES PARALLELEPIPEDES RECTANGLES
EQUIVALENTS ET ISODIAGONAUX. — Le probleme du § 46 peut
étre étudié sous un nouveau pointde vue et rattaché al’étude
arithmogéométrique de l'une ou l'autre de deux cubiques
remarquables du plan d’un triangle. Ces cubiques ayant été
I'objet de deux questions trés précises posées par Ed. Lucas,
il m’a paru justifié de proposer de leur donner le nom de
I'illlustre géometre, puisqu'il s’agit ici d’une application
arithmologique que Lucas aurail parfaitement pu suggérer,
s'il ne 1'a pas fait d’ailleurs dans des mnotles aujourd’hui
perdues.

L’énoncé du probléme des parallélépipedes rectangles
équivalents et isodiagonaux, au sujet desquels toutes mes
recherches bibliographiques sont restées infructueuses, est
le suivant :

Etudier les couples de parallélépipédes rectangles a arétes
rationnelles dont les diagonales sont égales, sans étre néces-
sairement rationnelles, et dont les volumes sont équivalents,
Soient (r, y, z) et (X', y', 2’) les arétes respectives des deux
parallélépipedes que 'on désire associer ainsi. Les équations
du probléme sont alors les suivantes :

x2 + 9‘2 £ ;2 — x/z + ).’2 _+_ z'? .

x.y.z=a .y .z

La question se traduisant ainsi par deux équations homo-
génes respectivement des second et troisieme degrés a six
inconnues, il convient de se donner arbitrairement trois con-
ditions supplémentaires. Pour chaque choix de ces condi-
tions supplémentaires, on aura a résoudre un probleme du
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genre de celui traité au § 44, ol j'avais imposé une aréte
d'un des volumes et deux de l'autre.

Le probléme des parallélépipedes équivalents et isodiago-
naux se rattache a des considérations particuliérement élé-
gantes d’arithmogéométrie lorsqu’on impose les trois sommes
formées avec une aréte de chacun des deux parallélépipedes.
Soient, en effet. «, b, ¢ les sommes

x+x' =a, y+9' =0, 547 =0e.

Pour simplifier, je supposerai que ces longueurs «, 0, ¢
sont les cotés d’un triangle ; cette hypothése nécessaire pour
pouvoir introduire des considérations d’arithmogéométrie
conduit & des formules qui sont plus généralement valables
pour (a, b, c¢) absolument quelconques.

Si donc ABC est un triangle de cotés (a, b, c) et si
(¢, X'y v, y', 2, 3') sont les mesures de six segments consécu-
tifs, dans 'ordre méme de ces lettres, pris sur les cotés
BC, CA, AB du triangle, les équations ci-dessus écrites expri-
ment des propriétés géométriques remarquables.

La relation de J. CEva,

ayz = a’y’z"
exprime le concours des trois droites AA’, BB, CC’." Quant
a la seconde relation

a? - 3*2 -}—:3 = 22 4 )"2 4 =12,

elle exprime que les perpendiculaires en A'B'C’ aux cotés
BC, CA, AB du triangle sont trois droites concourantes (§59).

Dans ces conditions, une solution particuliére apparait
manifestement; elle est tellement remarquable qu’elle mérite
d’étre signalée avant de pousser plus loin 1'étude générale
du systéme d’équations ci-dessus. En se bornant au cas d’un
triangle acutangle, les parallélépipédes rectangles admetiant
respectivement pour arétes les segments d’ordre pair et d’ordre
impair déterminés sur les cotés d’'un triangle quelconque par
les hauteurs du triangle sont des solutions particuliéres du
probléme.

Si a, b, c désignent les mesures rationnelles des cotés du
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triangle figuratif ABC, les expressions correspondantes des
arétes des deux parallélépipédes associés sont :

A Ny T'_az_bz_{__ca
2a ' T 2a '
h? 4+ ¢? — , P — 4 @
B : ¥ 2= :
J 20 ~ 25
z__c2+a2——l;5’ , P —a? 4 h?
T 2e ' T 2¢ )

C'est ainsi que le triangle de cotés (4, b, 6) donne, apres
multiplication par 8, les deux parallélépipédes rectangles
d’arétes respectives

& =27 y = &, z = 30 ,
= B, 3 =36 , =48 .
62. — LA PREMIERE CUBIQUE D Epouarp Lucas. — Clest aux

cubiques qui font ’objet de la question suivante que se rat-
tache I'étude générale du probléme des parallélépipedes
rectangles équivalents et isodiagonaux. « On joint les trois
sommets d’un triangle ABC a un point P et 'on prend les
« intersections A’B’C’ des lignes de jonction avec les cotés
« opposés. Trouver le lieu des points P de telle sorte que les
« perpendiculaires élevées sur les cotés aux points A’ B/
« se rencontrent en un méme point Q. Ce lieu est une cubi-
« que dont il est facile de déterminer seize points et trois
« tangentes. Déterminer les asymptotes et, aussi, trouver le
« lieu du point Q. »

Soient X. Y, Z les coordonnées barycentriques du point
courant P de la premiére cubique de Lucas, le triangle ABC
étant pris pour triangle de référence. La droite AP a pour
équation

1 Ed. Lucas, Nouvelles Annales de Mathématiques, 2¢ série, t. XV, 1876, question ne 1207,
p- 240. Solution p. 550-555 (DEWULF).

Enoncé analogue par Ed. Lucas, Nouvelle correspondance mathematique, t. 11, 1876, ques-
tion no 83, p. 94. Solutions : 1re partie, 1880, p. 56-65 et 2¢ partie, 1878, pp. 261-272 par
H. van AUBEL.

Cf. aussi un article de H. van AuBEL, Nouvelle correspondance mathématique, t. V,
1879, p. 87, Sur un lieu géométrique (trouver le lieu des points Q tels que les perpendicu-
laires QA’, QB’, QC’ abaissées sur les trois cotés d’un triangle ABC déterminent sur ces
cOtés des segments en involution.
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— x' déterminés

et, par suite, les segments BA' == x et A'C
£y x 7 [
sur le coté £ = 0 sont entre eux dans le rapport = eS8

valeurs des six segments BA’, A’C, CB’, BA, AC et C'B
sont donc

—_ Z S Y
r=eyrz YT%Yxzo
X Vi
s e r— b ,
r=bgrxe ? 7 + X
—_ Xr s SRS X .
Z—__C.X_l_Y 5 % —CX—-}—Y s

la relation &% + y® + 22 = 2'* + y’? 4+ z'* donne alors 'équa-
tion de la premiére cubique de Lucas en ce systéme de coor-
données barycentriques :

Y —Z Z — X X — Y
2 2 .2 s
(l.Y ,:—}—I).Z X—}—L,‘, =0 .

Celte cubique se transforme en elle-méme dans la trans-
formation quadratique définie par les formules

=YY

1

XX , = ZZ,

et qui est analogue a la transformation isogonale. Cette in-
variance de la cubique correspond a I'échange entre eux des
deux parallélépipédes associés.

En revenant au probléme des parallélépipédes rectangles
équivalents etisodiagonaux, il résulte des considérations qui
précedent que sa solution générale s’exprime par les for-
mules suivantes ou «, b, ¢ sont des parameétres absolument
quelconques (qui ne sont pas de toute nécessité les mesures
des cotés d'un triangle ABC):

x = a Z V= Y
= Y+7° x_a.Y+Z,
{ b 4 l Z
_ 0 == - .
! Zz+x Y =UhIoxo
z — ¢ T i X
= XY “—_CX—{-Y’
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X.Y, Z sont les coordonnées homogeénes d’'un arithmopoint
quelconque de la cubique d’équation homogéne

passant par les sommets du triangle de référence (qui n’est
plus nécessairement le triangle A, B, C).

Il est essentiel de remarquer que la premiére cubique
d’Edouard Lucas permet de résoudre le probleme des paral-
lélépipedes lorsque a, b, ¢ sont les mesures des cotés d’'un
triangle et que, si cette derniére condition n’est pas satis-
faite, les formules obtenues gardent un sens et, par conti-
nuité, donnent la solution générale du méme probleme.

La premiere cubique de Lucas [ou sa généralisation pour
le cas de a, b, c quelconques] est douée d’un certain nombre
de points remarquables: les sommets ABC du triangle de
référence, le centre de gravité, l'orthocentre, les sommets
A, B, C, du triangle formé par les paralléles aux cotés de
ABC, ete..... D’ou a priori un certain nombre d’arithmo-
points tres simples

X=20, Y=0, Z=1,
X=0, Y=1, Z=0,
X —1, Y=0, Z =0,
X=1, Y=1, Z =1,
X=1. ¥ ==, Z=--1,
X=1, Y=——1, Z =1,
Ne=— 1, Y=1, Z—1,
X =02 4 ¢ — a®, Y —=¢?+ a®— b?, Z =a*+ b2 — 2 ;

Ce dernier arithmopoint correspond, par exemple, au point
transformé de 'orthocentre dans la transformation quadra-
tique signalée précédemment.

63. — LA SECONDE CUBIQUE DE Lucas. — Soient maintenant
X, Y, Z les coordonnées trilinéaires du point Q. Le théoréme
des projections donne immédiatement les expressions des
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segments BA’, A’C... déterminés sur les cotés du triangle
ABC par les projections de Q :

____Z—I—-X(‘,OSB _,_Y—-}—XcosC
v = sin B ' r= sin C ’
X 4 YecosC ’_,___Z—{—YcosA
= sin C ’ y = sin A ’

Y L ZcosA , X A4 ZcosB
T sin A ’ 2= sin B ’

I'équation de la seconde cubique de Lucas résulte du théo-
reme de J. CEva :

(Y 4 Z cos A)(Z + X cos B)(X + Ycos C) = (Z + Y.cos A)(X 4 Z cos B)
(Y 4+ X cos C).

Cette cubique est invariante dans la transformation isogo-
nale. Elle passe par les sommets A, B, C du triangle ABGC,
par l'orthocentre, par le centre du cercle circonscrit qui est
d’ailleurs le centre de cette cubique, par les centres des
quatre cercles tritangents aux cotés du triangle, par les
points a l'infini des trois médiatrices qui sont asymptotes de
la cubique.....

Revenons au probleme des parallélépipédes. Il résulte
des considérations qui précédent que 'on doit poser

2acZ + (a® 4 ¢ — 13X ,  2abY + (a® + b? — ¢?)X
X = — , 2’ = s
45 ‘ 45

S représentant la surface du triangle ABC; 'équation de la
seconde cubique de Lucas est alors:

2acZ + (a® 4 ¢ — ))X
2abY 4 (@ 4 b* — ¢3) X

1.

Il est absolument indispensable de supposer actuellement
que @, b, ¢ sont les mesures d’un véritable triangle el en
outre que ce triangle est un arithmotriangle héronien. A la
différence des considérations du paragraphe précédent relatif
a la premiere cubique de Lucas, ot aucune hypothése res-
trictive n’était nécessaire sur la nature de «, 0, ¢, ce n’est
actuellement que moyennant cette double condition que le
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probléme des parallélépipédes restangles équivalents et iso-
diagonaux étudié sera susceptible d’étre rattaché a I'étude
des arithmopoints de la seconde cubique de Lucas.

64. — AUTRE DEFINITION DE LA SECONDE CUBIQUE DE Liucas.—
Je crois devoir indiquer ici une propriété importante® qui
peut servir a définir la seconde cubique de Lucas.

La seconde cubique d’E. Lucas est le lieu des points ()
du plan d’un triangle ABC tels que les droites QA, QB et QC
sotent normales en A, B et C a une méme conique.

Si 'on représente, en effet, en coordonnées trilinéaires
par rapport au triangle de référence ABC, une droite issue
du sommet A par 'équation

Y = mZ |

I'involution des droites orthogonales autour du point A, qui
comprend comme couples de droites associées d'une part les

deux bissectrices (m — 1, m' = — 1) et d’autre part la
hauteur AH (m S C) et le parallele au coté opposé BCG
cos B
r Sin C , . Y, .
(m = =— m) , est définie par I'équation

mm’ + 1 4+ (m + m')cos A =0 .

Si donc (z, ¥y, z) sont les coordonnées trilinéaires du point
Q du lieu étudié, les perpendiculaires en A, B et C aux
droites QA, QB, QC ont pour équations respectives

Ye—=gZ, Z =X, X=+vY,
avec
sz +49rcosA B = x 4+ zcosB v — y 4+ x cos C
OL~-_-_)'—I—zcosA’ T Tz 4 xcosB ‘7 x4+ ycosC

Il résulte, d’autre part, de I’équation générale d'une coni-
que circonscrite a ABC,

E 4240,

que les coeflicients jouant le role de coefficients angulaires

1 A porter au compte d’un auteur dont Je ne puis préciser le nom, n’ayant pu retrouver
la référence utile.
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des tangentes aux sommets A, B, C du triangle de référence
sont

La condition nécessaire et suffisante pour que QA, QB, QC
soient normales a une méme conique en A, B et C est donc

afy=—=—1;
elle se traduit, par conséquent, par I’équation

(z 4+ y cosA)(x + zcos B)(y 4+ xcos C)
= (y + zcos A)(z 4 x cos B)(x 4 y cos C)

représentative de la seconde cubique d’E. Lucas.

Les arithmotriangles télémétriques.

65. — Le probléme télémétrique conduit a la considération
de triangles obtusangles particuliers ABC qui sont définis
par la relation®

sin 2C 4+ 2sin 2B = 0 , <B>%>.

J'appellerai triangles télémétriques les triangles de cette
nature. Par exemple, les triangles d’angles

A = 30° , B = 105° , C = 45°

qui peuvent étre facilement construits a partir des triangles
équilatéraux sont des triangles télémétriques particuliers.
Soient maintenant A’ B’ C' les pieds des hauteurs d'un
triangle télémétrique. Le triangle pédal A’ B’ C' de ABC a
pouar angles
Al = 2A B —=2B — =, C'=2C .

Il en résulte que la relation de définition d’un triangle télé-
métrique quelconque se traduit par une condition trés sim-

1 J.-E. EsTiENNE, Note sur les télémétres, Revue d’artillerie, novembre 1904%.

Jules RaiBaup, Instruments d’optique, d’observation et de mesure, Encyclopédie scienti-
fique, Paris, 1910, p. 321-322.
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ple: L’un des cétés du triangle pédal d’un triangle télémé-
irique est double d’'un autre coté :

A'B" = 2A'C’ .

Cette relation trés simple permet de résoudre graphique-
ment le probleme télémétrique.

66. — LES ARITHMOTRIANGLES TELEMETRIQUES HERONIENS. —
Le probleme qui consiste a rechercher les arithmotriangles
télémétriques, c'est-a-dire ceux de ces triangles télémétri-
(ques qui sont a cotés rationnels se rattache a I’étude arithmo-
géométrique d’une quartique plane. La relation entre les
cotés a, b, ¢ d’un triangle télémétrique général se déduit
immédiatement de la condition

sin 2C 4 2sin 2B = 0 ;
c’est la relation homogeéne
(b2 — ¢?) (e — 2b%) -+ (2 + 2b%a® =0 .

En posant donc
b
—_— :/Y .
a
on réduit ainsi I'étude des arithmotriangles télémétriques a
celle des arithmopoints de la quartique plane représentée
par 1’équation

(a2 — 2%) (22 — 29%) = 2? 4+ 27 .

L’étude arithmogéométrique de cette quartique plane
échappe aux procédés qui ont été développés dans les pages
précédentes. Mais il est toutefois possible a 1'occasion du
probléme de la détermination de ceux de ces arithmotriangles
télémétriques qui sont aussi héroniens, d’établir la proposi-
tion négative suivante.

Le triangle pédal de tout arithmotriangle héronien est
lui-méme un arithmotriangle héronien. De sorte que 'arith-
motriangle télémétrique héronien le plus général a pour
sommets le centre du cercle inscritl et deux des centresl, et 1,
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des cercles exinscrils @ Uarithmotriangle héronien A'B'C’ le

’ 1
plus général dont deux cdtés sotent entre eux dans le rapport ;.
A’B’ = 2A’C’ .

Reste a déterminer ceux-ci.

67. — Il s’agit donc de déterminer 'arithmotriangle héro-
nien le plus général A'B'C’ tel que A'B’=2 A'C’. De tels
triangles se rencontrent a propos de I'équilibre sur un plan
incliné d’un cercle vertical, dont le centre de gravité est au
milieu d’un rayon'.

En application de la regle du paragraphe 10, pour repré-
senter un triangle héronien quelconque A'B’C’, je dois poser

LA 11—y LB WO
8 =31z B3 Ty BT

y et z étant deux nombres rationnels assujettis a certaines
inégalités. La condition

A’B" = 2A’C’
se traduit ici par

sin C’ — 2sin B’ ,

c’est-a-dire encore par I’équation

Par conséquent [’éiude des arithmotriangles télémétriques
héroniens (ou encore celle des arithmotriangles héroniens

A ’ 1 ’ . \
dont deux cotés sont dans le rapport§> est équivalente a

Uétude arithmogéométrigue d’une cubique plane douée de
quatre arithmopoints (I'origine et les arithmopoints a I'infini)
mais ne possédant pas d’autre arithmopoint.

Cette propriété négative résulte de ce que I'équation du

1 C. f. H. BrocArp, Journal de Spéciales, 1885, pp. 108-109. L’équation d’équilibre
sin (0 4+ &) = 2sin w, ou w est l'angle que fait le plan incliné avec I’horizon, a été rencon-
trée par le méme géométre dans des recherches bien différentes concernant une question de
géométrie du triangle et un certain groupe de trois paraboles. Journal de Spéciales, 1885,
PpP. 77-80, et Mémoires de U'Académie des Sciences et Lettres de Montpellier, Propriétés d’un
groupe de trois paraboles, t. XL, 1885-1886, p. 51-58.
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second'degré, en y ne peut admettre de racine rationnelle
que sila quantité
' )
—1
4

est un carré parfait. On est ainsi conduit a une équation

‘ L e B
qui admet la seule solution banale z =— 0 et dont I'impossi- 35'
bilité a été établie en 1777 par EuLer L. I/ n’existe donc pas i
d’arithmotriangle télémétrique qui soit ausst un arithmo- :
triangle héronien. |
68. — D’une maniere générale, il convient d’observer que

le probleme qui consiste a déterminer l'arithmotriangle
héronien le plus général dont le rapport de deux cotés est
imposé a prior: se tradnit par 'équation d’une cubique plane

Considérée comme une équation du second degré en z elle
entraine la condition

2t 201 — 2t 1=,

Le probléme considéré est donc réductible a I'équation
étudiée par EuLER dans les mémoires cités plus haut.
On peut encore poser

z Y 1

T+ 2 "Trp2=— o
la question est alors réduite a l'étude d’une biquadratique
gauche représentée par le systeme d’équations: J
W=, Rn?— 1=, ‘
obtenues en écrivant que les deux équations quadratiques

enz et en y e Bs o 1 0
T z = 5

¥ —2any +1 =20,

ont des racines rationnelles.

1 L. EuLgRr1, Commentationes arithmetice, édition de 1849, t. 2. De casibus, quibus hanc
formulam x% 4+ kx?y2? + y4 ad quadratum reducere licet [avril 1777 et mai 1782] (pp. 183-189
et pp. 492-500).

A.GeNoccHI, Sur I'impossibilité de quelques équations doubles, C. R., 1874, t. 78, pp. 433-435.
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69. — Ici s’arréte l'article que je m’étais initialement pro-
posé d’écrire sur les notions d’arithmogéométrie, la suite
devant étre consacrée a des compléments et a des considé-
rations d'un tout autre ordre. Le but poursuivi était d’in-
sister sur l'intérét considérable qu’offrent les remarques
géométriques dans toutes ces questions d'arithmologie. L’ab-
sence de remarques de cette nature dans presque toutes les
études faites sur des problémes spéciaux de la théorie des
nombres est une lacune que j’ai souvent jugée regrettable.
C’est pourquoi je me suis décidé a entreprendre cet examen,
certainement trés incomplet encore, de toute une série de
questions arithmétiques susceptibles d’étre interprétées géo-
métriquement d'une maniére intéressante.

Je me suis principalement efforcé de rester dans le domaine
le plus élémentaire. C’est ainsi que j'ai systématiquement
écarté les fonctions elliptiques, qui ne figurent point dans
nos programmes d'enseignement secondaire. Le lecteur dé-
sireux d’aller plus loin pourra d’ailleurs introduire la notion
de fonctions elliptiques a 'occasion des propriétés arithmo-
géométriques des cubiques et des biquadratiques gauches,
en suivant la voie tracée par J. BERTRAND !, par H. LEaUTE?,
par M. Prcquetr ? et par H. PoiNcARE *.

La plus grande partie du présent travail a été effectuée
dans des conditions matérielles désastreuses, loin notam-
ment de toute bibliothéque. Je n’aurais certainement pas eu
la possibilité de le mener & bonne fin sans le concours pré-
cieux de MM. H. Brocarp et A. AuBry, que j'ai souvent et
toujours tres utilement consultés.

Je me permets donc, des maintenant, de leur adresser ici
mes plus vifs remerciements.

(A sutore.)

1 J. BerTrAND, Traité de Calcul différentiel et intégral, t. 11, p. 583.
H. Liavrk, Etude géométrique sur les fonctions elliptiques de premiére espéce, Journal
de UEcole polytechnique, 46e cahier, 1879 (t. XXVIII, p. 67-99.
8 Picquet, Application de la représentation des courbes du 3¢ degré a Vaide des fonctions
elliptiques, Journal de UEcole polytechnique, 54¢ année, 1884.
H. PoiNcARE, Sur les propriétés arithmétiques des courbes algébriques, Journal de ma-
thématiques pures et appliquées de Liouville, 5¢ série, t. VII, 1901, pp. 161-233.
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