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SUR
CERTAINES FONCTIONS ANALYTIQUES UNIFORMES
| OBTENUES
COMME LIMITES DE FONCTIONS MULTIFORMES

PAR

D. PowmpEeiu (Bucarest).

1. — On connait le procédé, aujourd’hui classique, pour
définir sur un segment rectiligne un ensemble de points :
parfait et partout non dense. |

On enleve du segment donné («, b) les points intérieurs
appartenant a une suite dénombrable d’intervalles («,, 0)), ces
intervalles étant assujettis aux deux conditions suivantes :

1° Deux quelconques de ces intervalles n’empiétent ja-
mais 'un sur lautre et n’ont aucune extrémité commune ;

2° Dans toute portion de (a, 0) il y a des points apparte-
nant & des segments (a,, b,).
Il est clair que
(b, —a,)=b—a.

Dans le cas de 1’égalité I'’ensemble obtenu est de longueur
nulle ; dans 'autre cas il est de longueur finie.

2. — Parallélement a cette opération qui donne 'ensemble
parfait partout non dense, considérons une fonction non
uniforme F(z) admettant les points @ et b comme points cri-
tiques et supposons qu'il soit possible de trouver une autre
fonction F,(z) admettant @, et b, comme points critiques, et
telle que la différence
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n'admette plus (e,0,) comme coupure, ®,(z) ayant deux cou-
pures aa, et b),.

Supposons maintenant que l'on puisse trouver F,(z) de
facon que retranchant I,(z) de ®,(z) la fonction

Dy (z) = Fiz) — F,(z) — Fy(2)

soit uniforme le long de a,b,, les points a, et b, étant des
points critiques pour F,(z). — Et ainsi de suite.
On serait ainsi conduit a une série

®(z) = F(z) — ZF, (2)

définissant une fonction analytique uniforme possédant des
points singuliers formant un ensemble parfait non dense.
Dans ce qui suit nous nous proposons de développer ces
indications générales et de préciser la méthode qui en dé-
coule.
3. — Soit F(z) une fonction analytique possédant deux
points critiques a et b. Nous écrirons

F(z, a, b)

pour mettre en évidence les points critiques ; il est clair qu’en
dehors des points d’une coupure (@, b) (qu'on peut supposer
rectiligne) une quelconque des déterminations de F est uni-
forme : autrement le point a I'infini serait lui-méme critique,
ce qui n’est pas dans nos hypothéses.
Cela posé, soit
Gz, a,. b))

une autre fonction analytique non uniforme, possédant les
points critiques a, et b,; je suppose, pour simplifier 'expo-
sition, que «, et b, sont deux points situés sur le segment
ab, de facon que |
- | e — b <la—1b].

Cela précisé, je suppose que la fonction

H=F — G

(ou, d’'une facon plus claire, toute détermination de cette
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fonction) est uniforme en dehors des segments rectilignes
aa, et b, . |

En d’autres termes nous admettons que: en retranchant
de F (qui posséde la coupure ad) la fonction G (qui possede
la coupure a,b,) on neutralise la portion a,4, de la coupure
ab. Nous nous proposons, en prenant ce fait analytique
comme prémisse, de chercher la forme générale des fonc-
tions F et G.

4. — Pour cela partons d’un point ¢, situé sur ab, avec
une certaine détermination F, de F et tournons autour du
point critique @, dans le sens direct, pour revenir au méme
point £ : nous arriverons avec une autre détermination
F, de F:

La différence

F () — Fo(0) = 1(5) (1)

n’est pas nulle, en général, lorsque ¢ décrit le segment ab:
c’est d’ailleurs une fonction analytique qui peut étre pro-
longée en dehors du segment ab.

Un raisonnement analogue nous conduit a une fonction

G, () — G, () = g(¥) (2)

définie sur le segment ab et qui est aussi analytique et pro-
longeable en dehors de ab.

Il est clair que le fait analytique qui constitue notre hypo-
these se traduit par la condition

g(l) = f(€) (& une condition uniforme preés) . (3)

Je dis que cette condition entraine la conclusion suivante:
f(z) est nécessairement une fonction uniforme.

En effet, envisageons la relation (1) par laquelle est dé-
finie f(z).

St cette fonction est non uniforme elle ne peut admettre
d’autres points critiques que a et &, d'aprés nos hypothéses
relatives a F.

De la méme maniére raisonnant sur la relation (2) nous

voyons que g(z) ne peut admettre d’autres points critiques
que a, et b, .
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Mais dans ces conditions, on le voit clairement, la relation
(3) ne peut subsister que si f(z) = g(z) est une fonction uni-
forme. '

C’est la conclusion a laquelle nous voulions arriver. Mais
cette conclusion nous conduit au probléme général suivant :

Soit F(z) une fonction non uniforme ayant deux points
critiques a et b : elle est, par suite, uniforme le long de tout
contour fermé contenant @ et & dans son intérieur (autrement
le point a l'infini serait aussi critique).

Joignons @ et b par un segment rectiligne ab. Lorsque
I'on part d’un point £, silué sur b avec une certaine déter-
mination F,(z) de F(z) et que 'on tourne autour du point «
on revient en ¢ avec une valeur F,(¢) différente de la valeur
initiale F(z) : c’est en quoi consiste la non-uniformité autour
de a. ’

Si maintenant on considére la différence

flg) = F1(Z) — F,(©)

pour tous les points £ du segment ab on définit ainsi une
fonction f(%) qui est réguliére en tout point £ autre que « et b,
et par suite prolongeable en dehors du segment ab.

- Maintenant deux cas peuvent se présenter :

1° f(z) est une fonction uniforme ;

2° f(z) est une fonction non uniforme.

Nous ne nous occuperons que du premier cas et nous nous
proposons de trouver la forme générale de F(z).

5. — Prenons, pour cela, la fonction
1 z— a
G(Z) it 27_”]((") logz _ b
et considérons la différence
u(z) = F(z) — G(z) .

Partons du point ¢ avec la valeur

u,(z) = Fy(z) — Gy(z
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G, (z) étant une, quelconque, des déterminations de G(z): on
voit qu’en tournant autour de @ on revient au point de dé-
part avec la méme valeur u,. Donc u(z) est une fonction
uniforme.
Ainsi
z— Qa

Fle) = u(s) + 5 /(c) log =

271

qui est la forme générale de F(z).
6. — Maintenant, pour simplifier et considérer un cas pré-
cis, supposons

u(z) =0, flz) =1,
alors

. 1 z — a

F(z) 271 g‘z—— b’

que nous écrivons aussi sous la forme F(z, @, 0) pour mettre
en évidence les points critiques.

Soit maintenant F(z, a,, b,) une fonction de méme forme
mais dont les points critiques sont «, et b, situés dans l'in-
térieur du segment ab. Si je forme la différence

F(z, a, b) — F(z,

a, , l)1) ,

j'observe que cette fonction est uniforme en dehors des cou-
pures aa, et bb,. Donc la soustraction de F(z, «,, b,) a eu
comme effet de neutraliser la portion @, b, de la coupure pri-
mitive

Cette propriété peut étre utilisée pour obtenir une fonc-
tion uniforme intéressante comme somme d'une série de
fonctions non uniformes.

7. — En effet, sur un intervalle (¢, b) découpons une suite
dénombrable, d’intervalles (a,, 0,) de maniére a définir sur
ab un ensemble parfait, partout non dense.

Cela fait, considérons la série

z—/;
— Eloo‘ ,
z—a z

qui est convergente en dehors de @b, comme on peut facile-
ment 1'établir.

o(z) = log
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On démontre aisément.que tous les points a, et b, sont
des points singuliers pour o (z).

En effet, la série étant absolument et uniformément con-
vergente dans tout domaine termé ne contenant aucun des
points a, ou b,, on peut dériver terme a terme et repré-
senter ¢'(z) par la série

Pt 1 1 N 1 1
:‘O(z>_'<z——b_—z——a>_2<z—bn~_Z—an).

Or, pour cette série tous les points a, et b, sont singu-
liers, comme on le voit tout de suite. Donc il en est de méme
pour la fonction primitive ¢(z).

Ainsi la fonction ¢(z) est uniforme et admet un ensemble
parfait et non dense de points singuliers, cette fonction étant
obtenue comme somme d’une série de fonctions non uni-
formes.

8. — Reprenons la série qui définit ¢(z) et cherchons une
limite supérieure des modules des termes de cette série pour
une valeur donnée de la variable z. N

Prenons la fonction

. Z — a;
k(z) = logz — 3,
on a
r eiel Z—Qq, =7Tr eiel
k(z) = log 21— ( 1—1.>
i, . i,
ry€ Z— Gy =Ty €
et 'on peut supposer
lel’—ezl <=,

si 'on prend la détermination de %(z) qui s’annule a 'infini.
En écrivant %(z) sous la forme

k(z) = log(z — a,) — log(z — a,)
et appliquant le théoreme des accroissements finison arrive a

1)) = L 4l g

0 étant la distance du point z au segment rectiligne ab.
L’inégalité ci-dessus pouvant d’ailleurs s’établir aussi en
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écrivant %(z) sous la forme d'une intégrale définie ou z enire
comme parametre.

9. — La relation (4) va nous permettre d'établir un résultat
intéressant, relatif a la fonction ¢(z) du n° 7.

Soit ab l'intervalle primitif et ,b, le premier intervalle
d'uniformité obtenu en retranchant F(z, a,, b,) de F(z, @, b).

On a

z — b . logz—b1

zZ2 — a z—a1

F(z, a, b) — F(z, a;, b)) = log

Mais le second membre peut s’écrire aussl

a, z— b
a +10gz—b ’

1

A
~

P4

(z) = log

et sous cette forme en appliquant larelation (4) nous trouvons

la — a,| +[1)— b, |

lo, ()| < - ; ,

o et (3 étant les nombres qui remplacent ici 0.

Mais on peut prendre au lieu de « et 3 la distance de z au
segment (@, b) c’est-a-dire la plus petite valeur de |Z — z|
lorsque Z parcourt l'intervalle (@, b): nous désignerons cette
valeur par d.

On aura alors en général

1
2ae) ] <5 Dla,— bl

Cela nous fait voir que: si 'ensemble des points £ qu'on
veul conserver sur (a, b) comme points singuliers est de lar-
geur nulle la fonction ¢(z) est identiquement nulle.

En d’autres termes : On ne peut pas former, avec le pro-
cédé que nous avons employé ici, une fonction analytique
uniforme et possédant des points singuliers formant un en-
semble de longueur nulle.

Ce résultat négatif ne tient nullement a une particularité
de la méthode employée pour construire ¢(z): il peut étre
expliqué d’une maniére générale et rattaché a une propriété
des fonctions uniformes, relative a4 la maniére de se com-
porter de ces fonctions autour des points singuliers.
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Si le degré d'infinitude de la fonction dans le voisinage
d'un point singulier est inférieur a 'unité, ou encore si la
fonction est bornée dans le voisinage des points singuliers,
alors ces points ne peuvent pas former un ensemble de lon-
gueur nulle.

Mais il n’est pas possible d’insister ici sur cette propriété
fondamentale des points singuliers.

10. — J'indiquerai, en terminant, une recherche qui géné-
ralise celle que nous avons développée ici.

Au lieu de considérer des fonctions multiformes dont les
points singuliers sont fous situés sur un segment rectiligne,
on peut considérer des fonctions multiformes dont les points
critiques sont distribués dans le plan, et, reliant ces points
par des lignes (segments rectilignes), obtenir une région R
en dehors de laquelle la fonction considérée soit uniforme.

Ensuite on peut se proposer de retrancher de la fonction
F, premierement définie, une autre fonction F,, de méme
nature, et telle que, faisant la différence

F—F,,

la fonction obtenue continue a étre uniforme en dehors
de R, mais qui soit aussi uniforme en certaines régions
R, R,, ..., R, intérieures a R, qu'on peut appeler régions
neutralisées par la soustraction de F,. En continuant a re-
trancher de F — F, une autre fonction F, on obtiendrait
d’autres régions neutralisées dans l'intérieur de R et, a la
fin, on obtiendrait comme somme d’une série une fonction
® uniforme possédant un ensemble parfait et non dense de
points singuliers (si, bien entendu, les régions neutralisées
ont été introduites de facon convenable).

J’ai pu oblenir par cette méthode la fonction uniforme que
j'ai donnée dans les Comptes Rendus (28 novembre 1904)
comme exemple d’une fonction analytique partout continue,
donc continue aussi-sur 'ensemble des points singuliers.

Dans les Comptes Rendus la fonction en question est dé-
finie par une intégrale double. D’ailleurs aussi la fonction
du n°7, qui est désignée par ¢(z), peut étre définie par une
intégrale ; mais 'intérét de la recherche qui précede nous
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parait résider dans le fait que le probleme général posé au
n° 2 conduit a la forme générale de la fonction F(z) donnée
au n° 5. |

Une recherche analogue et présentant méme intérét peut
étre faite pour le probleme généralisé que nous venons d'in-
diquer.

Jassy, décembre 1916.

NOTIONS D’ARITHMOGEOMETRIE

(3¢ article) !
PAR

Emile Turritre (Montpellier).

Les quartiques gauches.

43. — METHODE DU PLAN OSCULATEUR. — De méme que, sur
une cubique plane dont I'équation a ses coefficients ration-
nels, l'existence de deux arithmopoints quelconques entraine
par alignement celle d'un troisieme arithmopoint, sur une
quartique gauche d’équations rationnelles I'existence de trois
arithmopoints particuliers quelconques entraine celle d’un
quatrieme arithmopoint, trace de la courbe gauche sur l'arith-
moplan défini par les trois arithmopoints connus.

Le plan défini par une tangente en un arithmopoint d’une
quartique gauche et par un autre arithmopoint rencontre la
courbe en un nouvel arithmopoint.

Enfin, le plan osculateur en un arithmopoint rencontre a
nouveau la quartique gauche en un nouvel arithmopoint.

! Voir L’Enseignement mathématique, 18° année, 15 mars 1916, pp. 81-110, et 15 novembre
1916, pp. 397-428.
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