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v

Comme derniére application de la méthode exposée je
reviens a ’équation (3) poura = 1.

d . o
xdf‘l———xp(x;y:x.cp(xj § (22)
p(.r] = 3 bnx" ,
n=>0

olx) = 2 D, xm

m=0

plx) et ¢(x) étant des séries de Taylor a rayon de conver-
gence non nul. L'intégrale del'équation sans second membre

est
y (x) = e =¥ Einja"™ , (4)
n=0

et il reste a calculer les différentes parties de la formule (9)
pour le cas présent.

V(x) \“ . f@(t)dt
‘ =S

Lo

et 'on obtient

D,=(n+ 1A, — _EJ by A .
A=

) [« o]
Je dispose des A, = 3 @,;z" de la maniére suivante :
=

@y | A=10 1 2 3
n=20 0 0 0 0
1 E(1)a, 0 0 0

- E{2)a, E(2)a, 0 0

3 E3)a, E(3)a, E(3)a, 0
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d’ou -

n—1
A =E@n 3 arzr,

n
r=20

et par suite

= (n41) Eaz—zl)n JE (A

r=90
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r=>0

n—1 ) n=1-r
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n
—_— r
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Donc on est arrivé a I’équation

o n—1

2 E(n)z" ( 2 arzr>
n=1 r=0
S E(n)2"

n=—0

S dt
tn n() 0+dnlaz+ + n,nnn]i—“

23
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Pour le moment je considere cette formule seulement en

n

supposant v, (x) 2 E(n)x" fonction entiére transcendante.

n=>0
Dans ce cas M. Mittag-Lefller! donne pour l'expression a
gauche dans (23) la valeur

< r 1 1 F(z.y) x
£ z  — R . 2
Sl —mnm /=)y

ou

Le contour S doit étre la limite d’'une surface simplement

! Voir: Sur la représentation, ete., Acta Math., T. 29, p. 170.
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connexe pour laquelle la fonction F(z.y) reste réguliére; il
doit étre parcouru dans le sens direct et embrasser les deux
points y = 0, y = 1. |

En discutant l'intégrale curviligne M. G. Mittag-Lefller

a démontré que
n—1
S B <2 )
lim 2= =1 = FA

F=eo 2 E (n) 2"

(%) (29)

est uniformément convergente pour tout domaine intérieur
a I'étoile principale A et représente la branche fonctionnelle
FA(') partout a U'intérieur de cette étoile, silafonction entiére

2 E(n)x" est choisie telle que:

n=>0
x.u

S plE)aE— [p(E)dE

Iim — lim " 0 — 0
z=w J1lX) Z=o0

Iy (x.u)

d’'une maniére uniforme tant que « appartient 4 un domaine
fini situé en dehors de la partie de I'axe réel positif compris
entre x = 1 et l'infini. Cette condition est satisfaite par toute
fonction entiére

fp(';') df = T (x) : (26)

possédant la propriété :
lim T(r.e?) =0
r——ae
uniformément pour
e < o< 2 — &,

¢ étant un nombre positif arbitrairement petit,

lim T (r. ei?) = pour o=20.
r—o

En outre M. Mittag-Leffler démontre que la série

EE <§]az]>

n=1 r=0



150 _ A. KIENAST

est pour toute valeur de z une série toujours convergente
par rapport 4 x. Elle est, x étant fixé, uniformément con-
vergente pour un domaine quelconque de la variable z.
plxr) = T'(x) est fonction entiére transcendante, donc
o(x) = V'(x) — p(x).V(x) est une série de x et de z qui
partage avec V(r) les deux propriétés exposées il y a un
moment. La fonction entiére transcendante y,(z) — e ne .
s’annule pour aucune valeur finie £ et par suite l'intégrale
dans (23) a un sens pour chaque valeur finie x.

En passant a la limite on est conduit a cause de (25) a la
formule

® ; . dt .
f Et‘[dn,oao+dn,1alz+... +dn’nanzn]z———-:PA(z) . (27)
0

n=—0 5 J1 (t)

L’intégrale converge uniformément pour tout domaine
intérieur a ’étoile principale A. C’est une généralisation de
Iintégrale Laplace-Abel, de l'intégrale de M. Mittag-Leffler
et une formule analogue a la troisieme des formules (125)
p. 177 démontrées par M. Mittag-Lefller (Acta Math. t. 29).

Je termine par la remarque que les applications de la mé-
thode exposée peuvent étre augmentées considérablement,
car elle contient trois éléments arbitraires: 1. I’équation
différentielle de liaison d'ordre quelconque; 2. le pointi z,,
qui peut étre point singulier de cette équation différentielle
en lequel toutes ses intégrales sont réguliéres ou point sin-
gulier en lequel les intégrales sont irréguliéeres; 3. le che-
min d’intégration.

D’autres résultats que jai obtenus paraitront dans la

Vierteljahrsschrifi der naturforschenden Gesellschaft in
Zirich 1.

Kiisnacht (Zirich), octobre 1916,

1 ¢ Neue Entwicklungen iiber die Abel’sche Integralumkehrungsformel. » Jahrgang 62
(1917).




	V

