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V

Gomme dernière application de la méthode exposée je
reviens à l'équation (3) pour a 1.

dr
x-~ xp (x)y — x © (x) (22)

p(x) -- 2 bn^1
n=0

fW 2
m=0

p[x) et y[x) étant des séries de Taylor à rayon de convergence

non nul. L'intégrale de l'équation sans second membre
est

X

f
f%{x) — e° 2 E (/i)xn (4)

n=0

et il reste à calculer les différentes parties de la formule (9)

pour le cas présent.
V {x) |x /» o (t) dt
y^x)\x~ J TiW

0 ^0

Le théorème du second cas dans I montre qu'on aura

\(X) 2 An xn
71 0

et l'on obtient

Dn (n + t) A/I+1 — 2 bn—l •

•

/=y
00

}Je dispose des An 2 de la manière suivante :

\=o

a *»X
>-* il o 1 2 3

71 0 0 0 0 0

1 E(1K 0 0 0

2 E (2) aQ E (2)0, 0 0

3 E (3) aQ E (3j E(3K 0
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cToù

A. KIENAST

A0 0

A„ E(n)V
r= 0

et par suite

D„ (« +1) E (n + 1) 2 «r - 2 hn-\ E W 2 ar *r
r=0 ^=0 r=z0 j

ti—1 r n-l-r ~|
(n -f l)E(/i + ^)an z" + 2 arz \ (n ~H 1 E (/I + 1)— 2 b^E(n — (j.)

I

r=z 0 L f*=0 J

~^dn,rarzr-
r=0

Donc on est arrivé à l'équation

±E(n)a^r2arA
n=1 \r=0 J_

^E(n)xn
n=z0

X QQ

— f • (23)
J »=0 )Jilr)

Pour le moment je considère cette formule seulement en
00

supposant yx{x) — 2 E(ri)xn fonction entière transcendante.
n=0

Dans ce cas M. Mittag-Leffler1 donne pour l'expression à

gauche dans (23) la valeur

*(!)*• («I

où

F(*) 2Är»r-
7=0

Le contour S doit être la limite d'une surface simplement

1 Voir: Sur la représentation, etc., Acta Math., T. 20, p. 170.
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connexe pour laquelle la fonction F(z.y) reste régulière; il
doit être parcouru dans le sens direct et embrasser les deux

points ?/ 0, y 1.

En discutant l'intégrale curviligne M. G. Mittag-Leffler
a démontré que

2e(*)W 2«rg
lim^^ FA (z) (25)

2E(n)*»
n—0

est uniformément convergente pour tout domaine intérieur
à l'étoile principale A et représente la branche fonctionnelle
FA (s) partout à l'intérieur de cette étoile, si la fonction entière

oc

2AO) 2 xn est choisie telle que :

n—0

x.u x
fP{t)d%—f'p[Ç)d%

Hm lim
' « =0

X=ao J i [*£) X=X

d'une manière uniforme tant que u appartient à un domaine
fini situé en dehors de la partie de l'axe réel positif compris
entre x 1 et l'infini. Cette condition est satisfaite par toute
fonction entière

X

fp it) <% ?{*)(26)

0

possédant la propriété :

lim T (r e1^) m 0
r=oo

uniformément pour
£ 9 ^ — £

>

£ étant un nombre positif arbitrairement petit,

lim T (r e1^) ~ oo pour ® — 0
r—oo

En outre M. Mittag-Leffler démontre que la série

2E(n)*M 2l«r
«—i

z
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est pour toute valeur de z une série toujours convergente
par rapport à x. Elle est, x étant fixé, uniformément
convergente pour un domaine quelconque de la variable z.
p[x) Tr (x) est fonction entière transcendante, donc
<p(x) V'(x) — p(x).\T(x) est une série de x et de z qui
partage avec V(.r) les deux propriétés exposées il y a un
moment. La fonction entière transcendante yt(^) cT^x) ne
s'annule pour aucune valeur finie x et par suite l'intégrale
dans (23) a un sens pour chaque valeur finie x.

En passant à la limite on est conduit à cause de (25) à la

formule
M / » Jf + + ^ FA{»J (27)

q
in=0 )h\t\

L'intégrale converge uniformément pour tout domaine
intérieur à l'étoile principale A. C'est une généralisation de

l'intégrale Laplace-Abel, de l'intégrale de M. Mittag-Lefïler
et une formule analogue à la troisième des formules (125)

p. 177 démontrées par M. Mittag-Lefïler [Acta Math. t. 29).
Je termine par la remarque que les applications de la

méthode exposée peuvent être augmentées considérablement,
car elle contient trois éléments arbitraires: 1. l'équation
différentielle de liaison d'ordre quelconque ; 2. le point x0,
qui peut être point singulier de cette équation différentielle
en lequel toutes ses intégrales sont régulières ou point
singulier en lequel les intégrales sont irrégulières; 3. le chemin

d'intégration.
D'autres résultats que j'ai obtenus paraîtront dans la

Vierteljahrsschrift der naturforschenden Gesellschaft in
Zürich l.

Küsnacht (Zürich), octobre 1916.

1 «Neue Entwicklungen über'die Abel'sche Integralumkehrungsformel. » Jahrgang 62

(1917).
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