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FONCTIONS ANALYTIQUES 145

Enfin les relations

montrent qu’on est arrivé a la représentation par intégrales
définies des fonctions cylindriques de troisiéme espéce?!
(Hankel).

On voit que la formule (16) et d’autres qu’on obtient par le
méme procédé fournissent un moyen indispensable pour des
calculs effectifs, notamment pour les séries dérivant des
équations différentielles linéaires du type hypergéométrique.

v

Je reprends les considérations du commencement de III,
en disposant des constantes a,; comme il suit
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Il en résulte
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t N. NieLseN. Handbuch der Theorie der Cylindcrfunktionen.

L’Enseignement mathém., 19¢ année, 1917. | 10



Gt

146 A. KIENAST

et la formule (12) devient
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Cette équation est démontrée pour R (a) > 0, mais on voit
aisément qu’elle reste valable pour « =— 0. En outre ona par
rapport aux a,; et z a remplir la condition que
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B} o
soit une série convergente. Elle est satisfaite si 3 a¢, z* est
A=0 '

une série convergente; elle peut ’étre encore pour une infi-

nité de séries asymptotiques. Il est permis de donner dans
© N

(21) &4 & une valeur finie quelconque, si 3 @) z" est conver-
=0

gente, mais si c’est une série asymptotique il y a des res-

trictions spéciales pour chaque choix des constantes ay; .

De la définition de la notion limite on conclut que pour
limx = 4 « les deux membres de (21) convergent pour
les mémes valeurs de z.

L’intégrale du second membre a été considérée dans III.

Cette formule (21) danslecas a =1, a = 0, lim v = +
est la découverte de M. E. Borel! et M. G. Mittag-Leffler en
parle a plusieurs occasions *

Il me semble du plus haut intérét qu’il ne subsiste pas
seulement pour lim x = + <« mais z étant fixé pour chaque
valeur x qui est point régulier de la fonction analytique dé-
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fini par la série de Taylor 1§0m

gence fini plus grand que zéro.

a rayon de conver-

1 Voir: Legcons sur les séries divergentes, Paris, 1901.
2 Par exemple, Sur la représentation, etc., Acta Math., T. 26 (1902), p. 374.
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