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FONCTIONS ANALYTIQUES 145

Enfin les relations
/— n~

\J\-e 2
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montrent qu'on est arrivé à la représentation par intégrales
définies des fonctions cylindriques de troisième espèce1
(Hankel).

On voit que la formule (16) et d'autres qu'on obtient par le
même procédé fournissent un moyen indispensable pour des
calculs effectifs, notamment pour les séries dérivant des
équations différentielles linéaires du type hypergéométrique.

IV

Je reprends les considérations du commencement de III,
en disposant des constantes a^ comme il suit
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Il en résulte
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1 N. Nielsen. Handbuch der Theorie der Cylinderfunktionell.

L'Enseignement mathém., 19e année, 1917. iß



146 A. KIENAST
et la formule (12) devient

e-ax(aœf 2 (ax)'

}=0 T (a + X -j- 1)
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: Ïe-at(at)a \ y—;/ ' |èr(« + x + i)( (21)

Cette équation est démontrée pour R (a) > 0, mais on voit
aisément qu'elle reste valable pour a 0. En outre on a par
rapport aux et z à remplir la condition que

•Sç D x y
,,=o " ~ + + '

00

soit une série convergente. Elle est satisfaite si 2 ^o>£* est

une série convergente; elle peut l'être encore pour une infinité

de séries asymptotiques. Il est permis de donner dans
00 r

(21) à x une valeur finie quelconque, si 2 ao\zk est conver-
X=o

gente, mais si c'est une série asymptotique il y a des
restrictions spéciales pour chaque choix des constantes

De la définition de la notion limite on conclut que pour
lim x + oo les deux membres de (21) convergent pour
les mêmes valeurs de

L'intégrale du second membre a été considérée dans III.
Cette formule (21) dans le cas a — 1, a 0, lim x -f- 00

est la découverte de M. E. Borel1 et M. G. Mittag-Lefïler en
parle à plusieurs occasions2.

Il me semble du plus haut intérêt qu'il ne subsiste pas
seulement pour lim x — + co mais z étant fixé pour chaque
valeur x qui est point régulier de la fonction analytique dé-

00 a0*(azx)^
fini par la série de Taylor 2 ft, - à rayon de conver-1 *=or(fl + A-M) J

gence fini plus grand que zéro.

1 Voir : Leçons sur Les séries divergentes, Paris, 1901.
2 Par exemple, Sur la représentation, etc., Acta Math., T. 26 (1902), p. 374.
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