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136 A. KIENAST

IT1

Les applications de (9) qui suivent résultent de l'introduc-
tion d'un parametre. Je commence par le cas le plus simple :

y — ay = 2%, o(x) , (10)
x ¥
—_—ax x . —at —1
|e V(@) xo__fe 01 (4 dt . (1)
)

Iei V(x) est représenté par la série

V(o] == 2 Akxk+a ,
k=0

si « n’est ni nul ni entier négatif, et si en outre R(z) > 0,

on a
x

6™V (x) = fe“‘“‘.t“—‘.gou)dt . (12)

[ X

0

La condition de convergence étant remplie pour a =1,
on obtient pour
e o]
n
Via) = E A x",
n=y0

la formule

TN (@) = V(0) = [T g(g)de . (13)
0

La relation entre V(x) et o(x) se calcule en employant

dans (10):

)

\
2 Anx"—*_a !
n=0

ce qui donne :

xa_i‘ ?(x) — 2 an"+°‘ = 2 [(ll -+ a) An — aA"__i]x”‘Fa_l ,
n=0 n=)

ou
D, = (n+4 o)A, — eA

(2 n—1 °




FONCTIONS ANALYTIQUES 137
Pour iniroduire le parametre menltionné je pose main-
tenant -

N )
An = 2 [Ln)\ s,
A—=0

ce qui entraine que les «,, et z doivent étre choisis confor-
o o]
mément a la condition que la série > D, 2" soit convergente.

n=0

En faisant usage du tableau suivant:

) — : 9
@y A—0 1 2 3
n=20| a, oy Ao *
n 0 aa,, aag, .
a2+ 1 a 4+ 1
21 0 0 A"y .
(@ 4+ 1)(a + 2)
3 | * * * *
i
on trouve
A, = 2 @, L2
k:()
n o)

— a - )
A, = (¢ 4+ Ljfa + 2) ... (2« + n 2“0)\*‘ ’

=1

¥

n n—1
— % @, n—1 - =

D
"ole+ e+ 2) o tad+n—1)°
et la formule (12) devient

@0

—ax | g (ax)" &
e clax) EF(‘Z-{— n T 1}[)2 ao)\zl}
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Elle est valable pour toutes les valeurs des a,, et z telle que

(azx)”

n__ N On .
D, x —“Z on® ”“’”Z (o 4 1) 2) ... (& 4+ n) (43)

n=y0 A=0 n=o"'

o
solt par rapport & .x une série convergente. Par suite > ao;\z)‘

)\:-_0
est nécessairement une série 4 rayon de convergence non
nul et z une valeur pour laquelle elle converge. Donc

Q0

0 (zx) , .
> o estune série toujours convergente. Pourtant
n=0 ((7. + n = 1)

je distingue deux cas :

or
Premier cas. — Soit >, a, " une série a rayon de con-
A=0

vergence non nul et z une valeur fixe pour laquelle elle con-
verge. A chaque quantité positive ¢ si petite qu'on veut, il
est possible de déterminer l'indice v tel qu'on a pour n >y

2 0)\)1<€'

\=n 1

Il est facile d’obtenir la formule

0 (ax)" % et dt
oA - ax
(ax) n____EOF(Ot T — e ’ '0/‘< >1_a )
(—1)"
— %% _ E I'n 1 — «a ,
’ F \1 _ O( n—() + ) <ax}

par exemple en calculant (12) pour ¢(xr) = 1. Donc le pre-
mier membre de (14) peut s’écrire |
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Cette forme conduit aisément a la valeur limite :

lim L = lim <Z @py z)‘> = 0

X==0 n—ow *A_:_,L

[’équation (14) est valable pour chaque valeur z, pour

laquelle S @y 2" est convergente et pour chaque valeur x
=
qui n’est pas point singulier de I’équation différentielle (10,

c'est-a-dire pour chaque valeur finie &, 2 = oo étant le seul
point singulier. Donc, le point x =« étant atleint tel que
R(ax) > 0, on conclut de

. - —_a S “on(azt)'
.iflfe t(“”ag 2 Fa g a5 )

. 7 _at a()n(ﬂat \
——5[ zzl’a—{—n—{-— 1) dla)

n=—>0

— [2 YK ] llm e"“‘(m)a“—ld((tt) _—glci:r_nx[, ,

le THEOREME @ L egallte

o0 @ aOIZ( \ ‘ | -
Z:)ao) / Llat)® én_ Flatn+1 )%d(at) ; Ra) >0 (16)

0

e o}
subsiste pour chaque valeur z pour laquelle > ayz" est
_ =
convergente. L'intégrale définie dans le second membre

converge au moins pour les mémes valeurs de z.

Dans son mémoire « Surla représentation analytique d'une
branche uniforme d’une fonction monogéne », Acta Math.,
T. 29, M. G. Mittag-Leffler a démontré trois théorémes (A,
B, C du §1) se rapportant & des intégrales de la forme de
I'intégrale définie dans (16). Il est facile d’étendre en suivant
le méme ordre d’idée les autres résullats des §§ 1 et 4 du
mémoire de M. Mittag-Lefller a cette nouvelle intégrale. On
est ainsi conduit au



150 A. KIENAST

THEOREME : L’intégrale

f(z) :fe—'t.t“
0

\ s , M "(1)
possede par rapport a z une étoile de convergence B

L'égalite

2, (Zl)n

2 M'a—+n-+41)

n=—0

dt

FB(I)(z) = f(z)

a lieu partout a l'intérieur de B,

Cette étoile de convergence que M. Mittag-Lefller, dans le
Tome 29 des Acta Math., désigne par B" est identique au
polygone de sommabilité de M. E. Borel.

Par le méme procédé on obtient pour 2 = 1 les formules
(14) et (16) en partant de (13). Une intégration par parties
conduit alors a la formule (16) dans laquelle on a fait « = 0.
C’est la formule célébre de Laplace-Abel-Borel.

Second cas. — Soit % o), 11 une série qui représenle une
A=0 z
fonction f(z) asymptotiquement. C'est une série divergenle
pour chaque valeur finie z. Les considérations [aites dans le
premier cas seront -en défaut, mais c’est M. Borel qui a
remarqué que l'intégrale Laplace-Abel peut pourtant étre
convergente. M. Borel! introduit par définition la valeur de
cette intégrale définie comme somme de la série divergente.
Et M. G. H. Haroy 2 a formulé a cet égard son « principle »:
« If two limiting processes performed in a definite order on
a function of two variables lead to a definite value X, but
when performed in reverse order lead to a meaningless
expression Y, we 'may agree to interpret Y as meaning X. »

Il est curieux® que personne ne semble avoir remarqué la
possibilité d’'une démonstration exacte. Dans le cas présent
il n’est pas nécessaire d’avoir recours a une nouvelle défi-

nition ou & un nouveau principe. Mais les séries conver-

1 Voir p. ex. ses Legons sur les séries divergentes, Gauthiepr-Villars, 1901.

2 Trans. Cambr. Phil. Soc., 19, p. 297, 1904.

3 Comparez la crilique sévére de M. G. MitrAG-LEFFLER, « Sur la représentation arith-
métique des fonctions analytiques générales d’'une variable complexe », Congres intern. des
mathématiciens, Rome, 1908, Atti, 1, et Bull. Americ. Math. Soc., sér. 2. vol. XIV (1998).
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gentes et les séries asymptotiques dans le sens de Poincaré
sont jusqu’a ce jour les seules qui ont un sens arithmétique
défini. La supposition faile signifie, d'apres la définition
introduite par Poincaré: il subsmte pour chaque entier m

I’équation
m 1223 ,1
lim z7 | flz) — a —]:O.
[ 2,3

=P
Donc on écrit I'équation (14) de la maniére suivanle :

[Ena )]
)

m —ax Z
T .€ 5 E
~ (d +n+1

n=g

_om — [z} x—-at o—1 x—az
3z (2] B/e 1 dt—{—:)/.e Ela—{-n—{—

ce quiest une équation exacle. En passant ala limite x= 4 o0 ,
on trouve pour R(a) > 0 et pour chaque valeur finie de z,
excepté z =0,

e at l_o m d(at)

B at\"
j m Qo <T>
0

Or il subsiste pour chaque entier m l’équation

(lt n
o m (l{)”(~ﬁ>
lim 7" flz) e (at)® = dlat){ —
= Of u—oI(a+n+1) la{ =0, {17)

: : : . . :
et c’est 'expression en formule du fait que l'intégrale

at n
K= [e""(an®| 3 <7> ' |
0/. “ ne—o (e 4+ n 1) d(at) (18)
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represente asymptothuement la fonction f(z) de méme que

la série 2 a01~ de laquelle on est parti.
=0 =
Mais il est possible que celte intégrale K converge et

représente une fonction analytique K(z) dans le sens ordi-
naire. Donc on conclut

flz) =K(¢z)+ E |,

ou E est une fonction représentée asymptotiquement par un
développement identiquement nul. Et parce que dans les
calculs faits on n'a pas introduit des parties élrangeres a f(z),

I’équation
flz) = K(z) (19)

sera exacte dans un grand nombre de cas.
La fonction f{z) est représentée asymptoliquement par la
. < 1 ! NP e .
série. 3 aoy 5 lorsque z==r.€' croit indéfiniment suivant
=0 -

un rayon déterminé. Pour les séries asymptotiques dont on
fait usage dans la théorie des équations différentielles, une
telle égalité asymptotique

flz) o N ayy —
).‘;0 0 z)k

r tendant vers l'infini, est unique pour tous les arguments
compris dans un certain angle

‘61<v‘L:ar‘gz<62

Donc I'équation (17) aura lieu dans le méme angle.
La série sous le signe d'intégration

R BT

~

. . : at
est convergenle ou représente une fonclion g<7> asympto-

tiquement.

i

T3 at L 1 -
Je suppose, faisant — = u =p.e", que la serie




+4
B
|
ko
5
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soit convergente et que la fonction g(u) quelle représente
soit holomorphe dans 'angle

0 < ¢ <N, (N nombre positif arbitrairement grand)

o, <9 < 9 -

Ainsi u = o est, pour 9, << ¢ <"y, le seul point singulier
possible. _

En outre, je suppose que, u = oo étant singulier, g(u) soit
tel que l'intégrale (18) converge pour

o, < argu < 9, ,
?
ou, ¢ ayant 'argument 0,

o, < arga — argz < 9, ,
arga — o, < argz < arga — 9; .

: .V’
— r.e'%? est

N

Il résulte que l'intégrale (18) converge si
une valeur quelconque dans I'angle

arga — 9, < ¢ <arga — g, ,

e <r<w quelque petit que snit le nombre positit ¢. Dans
cet angle l'intégrale (18) représente une fonction analytique
holomorphe.

Dans le cas le plus simple et tres important g(u) est fonc-
tion rationnelle, holomorphe pour « = . Sous cette condi-
tion 'intégrale (18) est convergente dans tout le plan de la
variable z saul peut-étre sur quelques rayons limitant un
nombre fini d’angles. Les fonctions qu’elle représente, holo-
morphes pour tout point z intérieur a ces différents angles
sont en général des fonctions analytiques différentes.

L’exemple suivant montre le grand avantage que présen-
tent les formules (16) et (19).

On sait par la méthode Poincaré-Horn, que ['équation
différentielle

x?y" 4+ xy’ + (2 — n¥y =0

admet un systéme fondamental qui, pour toutes les valeurs
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finies de n réelles ou complexes, est représenté asymptoti-
quement par les séries

1 . 1\
eix © F()\—{-n—{—‘é")F(/\—n—F—i) 1

:)‘I(x): —_— P R .-
Viey=op <n + %)F(-— n + é)F(l + 1) (2ix)*
1 1
=i o F(k-—}—n—}—?)F()\——n—i——Q—) 1
e (x) = >

N V—ix}gﬂr(n o+ %) I‘<— n—{—%)f’(k 41y (—2in)k |

lorsque r» = |x| augmente indéfiniment, si
pour la fonction y,(x) : — n 4 & < argax < 2r — 9,
» » Yo lx) - + 8 < argx < 3n — 0,

le nombre positif ¢ étant aussi pelit qu'on le veut.

1 ' .
Je pose @ =1, « = n — 5 el a cause de la formule

1
- F(}—-—n—}—é—) L1
2 (— u))‘ =14+ u 2;

4=0 F(—— n -+ %)FO\ + 1)
(16) donne

d’ou

o L] == 1 1+ u?) °“d
I (n —+ 3 Z

W MEY == - 1 /le_x“(l + u? 2du
I' (n -+ §> il

lci le chemin d'intégration doit atleindre l'infini tel que

R (xu) > 0.
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Enfin les relations

montrent qu’on est arrivé a la représentation par intégrales
définies des fonctions cylindriques de troisiéme espéce?!
(Hankel).

On voit que la formule (16) et d’autres qu’on obtient par le
méme procédé fournissent un moyen indispensable pour des
calculs effectifs, notamment pour les séries dérivant des
équations différentielles linéaires du type hypergéométrique.

v

Je reprends les considérations du commencement de III,
en disposant des constantes a,; comme il suit

@y A—0 1 2 3
n—20 0 0 0 0
Ay
1 | 0 0 0.
a.a a.a
2 00 01 ")
e+ Na+2? (@t it ’ .
3 T . a’.a,, a*. a,, 0
(e +1)a+2)(a+3) (a41a+2)(a+3) (a+1)at2)a+3)

Il en résulte

A, =0 ,
i n—1
a" . 2 aoy:“
A — =0
"= (a1 (o + 2) |
cor {0 4 nj
D, =0 ,
n—I1 n—1
@ * 00,71—1' “‘"

—_—

D =
n (¢ + 1) (a4 2) ... (& 4 1)’

t N. NieLseN. Handbuch der Theorie der Cylindcrfunktionen.

L’Enseignement mathém., 19¢ année, 1917. | 10
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