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III

Les applications de (9) cpii suivent résultent de l'introduction

d'un paramètre. Je commence par le cas le plus simple :

/ — ar-*01""1 M » (10)

x
I e~ax.V(x) !X f(11)
I Fo J

xQ

Ici V(x) est représenté par la série

V(*) 2At.r*+«
fc=o

si a. n'est ni nul ni entier négatif, et si en outre R(«) > 0,

on a
m

e~ax.\(x)|Y~a\ta_1 ,<f(t)dt(12)

0

La condition de convergence étant remplie pour a 1,

on obtient pour

\(x) >

n=0
la formule

e~ux. y [x)— Y(0) Je~a'.f{t)dt (13)
0

La relation entre V(x) et ff(x) se calcule en employant
dans (10) :

2 A*x"+a•
n=0

ce qui donne :

x*-l.9tx) 2 D»*"+a 2 + a»A« - «A«-i]^+a_1 •

77=0 71=

ou
Dn (" + a)Are — 1 '
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Pour introduire le paramètre mentionné je pose
maintenant

X=o

ce qui entraîne que les an\ et z doivent être choisis confor-
00

mément à la condition que la série 2 D»#71 soit convergente.
w=o

En faisant usage du tableau suivant :

». X 0 1 2 3

n — 0

1

2

3

aoo aoi

actaA

°02

aan
a -j- 1 a -}- 1

0
a~aM

(* + 1)(a +

on trouve

Ao S'
X=o

'or

(a -f 1» (a -f 2) (a + n)
SaoXsX -

D0 — a • A0

D.,
*0, 71—\ •

11 (a 1) la -f- 2) fa -f- n — 1) '

et la formule (12) devient

(ax)n s-.
A—a

or

À=0
2aoxzX)ï^T)/e a'<aOa 1

<*(«<)

P —at i 4\& ;
aotAazi) \

J' M<|2î>+T +T,j'"« (14)
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Elle est valable pour toutes les valeurs des a^n et telle queI~s(.+i)(:°;(r"+.> «i5)

soit par rapport à x une série convergente. Par suite 2 ao\z'k
X=o

est nécessairement une série à rayon de convergence non
nul et ^ une valeur pour laquelle elle converge. Donc

a()n izx)
Zj r (». -f n -r 1)

est une s^r,e toujours convergente. Pourtant

je distingue deux cas :
or

Premier cas. — Soit 2 ao) z^ une série à rayon de con-
X=o

vergence non nul et z une valeur fixe pour laquelle elle
converge. A chaque quantité positive s si petite qu'on veut, il
est possible de déterminer l'indice y tel qu'on a pour n^>v

— oX
X=n

< 6

Il est facile d'obtenir la formule

lax)* V _ ax _
{eue)"- Ç\ax> Zji r(a + n + 1)

—e r (a) J
a—1 *

+ " + *)- Ha) J (1 + ±V~*
ax

ax — l)n
r( 2 r 4- 1 — a)5 }-

a)Fil — a);Zj0 {ax)n

par exemple en calculant (12) pour <p(x) — 1. Donc le
premier membre de (14) peut s'écrire

(ax

« V ^OOC^'1
_L_ (ax^ Ç

,éf,r(a + „ + i) + r (a) J / v-
— L

ax

ax
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Cette forme conduit aisément à la valeur limite

139

lim L n=: lim 1 ^ ao\
x=<x> n=oo -

L'équation (14) est valable pour chaque valeur 3, pour

laquelle est convergente et pour chaque valeur x

qui n'est pas point singulier de l'équation différentielle (10),

c'est-à-dire pour chaque valeur finie x, x ce étant le seul

point singulier. Donc, le point x go étant atteint tel que
R(tf,r) >> 0, on conclut de

t (* —at, \ol i "'ST* (l0n{cizt)n \i, ,\i»/. "m' gr,. + + ni-"'"

il —0 v 1 ' i

le Théorème : L'égalité

S>.rx =/ j 2 rl!,+°;+i)i'i'°" ; 1,61

>,=0 0 f 71=0 11 1 '

subsiste pour chaque valeur z pour laquelle est

convergente. L'intégrale définie dans le second membre

converge au moins pour les mêmes valeurs de
Dans son mémoire « Sur la représentation analytique d'une

branche uniforme d'une fonction monogène », Acta Math
T. 29, M. G. Mittag-Lefïler a démontré trois théorèmes (A,
B, C du § 1) se rapportant à des intégrales de la forme de

l'intégrale définie dans (16). Il est facile d'étendre en suivant
le même ordre d'idée les autres résultats des §§ 1 et 4 du
mémoire de M. Mittag-Lefïler à cette nouvelle intégrale. On
est ainsi conduit au
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Théorème : L'intégrale

fiz]_?e-t tu\ Ä )" K
/„èorc + i + iif'

possède par rapport à £ une étoile de convergence B(1).

L'égalité
FB(1)(,)z=/-(,)

a lieu partout à l'intérieur de B(1).

Cette étoile de convergence que M. Mittag-Lefïler, dans le
Tome 29 des Acta Math., désigne par B(1; est identique au

polygone de sommabilité de M. E. Borel.
Par le même procédé on obtient pour a 1 les formules

(14) et (16) en partant de (13). Une intégration par parties
conduit alors à la formule (16) dans laquelle on a fait a 0.

C'est la formule célèbre de Laplace-Abel-Borel.
00 1

Second cas. — Soit 2 une série qui représente une
\=o zK

fonction f[z) asymptotiquement. C'est une série divergente
pour chaque valeur finie Les considérations laites dans le

premier cas seront en défaut, mais c'est M. Borel qui a

remarqué que l'intégrale Laplace-Abel peut pourtant être
convergente. M. Borel1 introduit par définition la valeur de

cette intégrale définie comme somme de la série divergente.
Et M. G. H. Hardy 2 a formulé à cet égard son « principle»:
«If two limiting processes performed in a definite order on
a function of two variables lead to a definite value X, but
when performed in reverse order lead to a meaningless
expression Y, we may agree to interpret Y as meaning X. »

Il est curieux3 que personne ne semble avoir remarqué la

possibilité d'une démonstration exacte. Dans le cas présent
il n'est pas nécessaire d'avoir recours à une nouvelle
définition ou à un nouveau principe. Mais les séries conver-

1 Voir p. ex. ses Leçons sur les séries divergentes, Gauthier-Villars, 1901.
2 Trans. Carnbr. Phil. Soc., 19, p. 297, 1904.
s Comparez la critique sévère de M. G. Mittag-Lkpflkh « Sur la représentation

arithmétique des fonctions analytiques générales d'une variable complexe », Congrès intern, des
mathématiciens, Rome, 1908, Atti, 1, et Bull. Americ. Math. Soc., sér. 2. vol. XIV (1908).
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gentes et les séries asymptotiques dans le sens de Poincaré
sont jusqu'à ce jour les seules qui ont un sens arithmétique
défini. La supposition faite signifie, d'après la définition
introduite par Poincaré : il subsiste pour chaque entier m

l'équation
m ^

M — 2 «o^-jr
)=0 "A

lim s riz 0

Donc on écrit l'équation (14) de la manière suivante :

1
(ax)'

.l=n
an a

„m p—ax a \" J0 r(a + B+l)
Zm\flz) S! aU--- *a~'

i -Jo z* J ri«) J

f[*
r<

i£) Ç e-at
,»+1

•J»r(« + n + i) dti

ce qui est une équation exacte. En passant à la limite x -f- oo

on trouve pour R(a) > 0 et pour chaque valeur finie de
excepté z — 0,

0 — zm f(z) — 2
X=o A

M + /e-a'(at)a Jo r (« + » +1)
d (at) |

Or il subsiste pour chaque entier m l'équation

/

lira z"l\f{z) — fe~a'(at)a
Z—CC f e/

d(at)î 0 (17)
«=o 1 (a ~f~ ~j~ 1

et c'est l'expression en formule dn lait que l'intégrale

fe-«'[at)a
n=o P (a ~\~ 11 ~~h 1)

d (at) (18)



1
la série 2 ao\^w de laquelle on est parti.

l=o
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représente asymptotiquement la fonction f(z) de même que
L

I
Mais il est possible que cetle intégrale K converge et

représente une fonction analytique K(js) dans le sens
ordinaire. Donc on conclut

f(z) K(z) + E

où E est une fonction représentée asymptotiquement par un
développement identiquement nul. Et parce que dans les
calculs faits on n'a pas introduit des parties étrangères à f(z)y
l'équation

fi*) K(Z) (19)

sera exacte dans un grand nombre de cas.
La fonction f{z) est représentée asymptotiquement par la

00 1 ysérie 2 ao\ v lorsque M — r. e1^ croît indéfiniment suivant
l=o ~A

un rayon déterminé. Pour les séries asymptotiques dont on
fait usage dans la théorie des équations différentielles, une
telle égalité asymptotique

f(z) ^ 2 ao^
1=0

A zk

r tendant vers l'infini, est unique pour tous les arguments
compris dans un certain angle

01 < + arg 3 < 02 '

Donc l'équation (17) aura lieu dans le même angle.
La série sous le signe d'intégration

at\k

est convergente ou représente une fonction
asymptotiquement.

Je suppose, faisant ~ — u p e*1, que la série

GO fd
^0 ^ (a ^ + 1)



FONCTIONS ANALYTIQUES 143-

soit convergente et que la fonction g(u) qu elle représente
soit holomorphe dans l'angle

0 ^ p ^ N (N nombre positif arbitrairement grand)

®1 © <C ®2 '

Ainsi u — oo est, pour ^ <C 9 <C y2 le seul point singulier
possible.

En outre, je suppose que, u —=co étant singulier, g*(m) soit
tel que l'intégrale (18) converge pour

<Pi < argu < cp2

011, t ayant l'argument 0,

®j < arg a — arg s < cp2

arg a — <p2 arg s arg a — ®1

11 résulte que l'intégrale (18j converge si z r. elV est

une valeur quelconque dans l'angle

arg a — cp9 é at>g' a — ?i '

£<(/'<( 00 quelque petit que soit le nombre positif e. Dans
cet angle l'intégrale (18) représente une fonction analytique
holomorphe.

Dans le cas le plus simple et très important g(u) est fonction

rationnelle, holomorphe pour u — go Sous cette condition

l'intégrale (18) est convergente dans tout le plan de la
variable 2 sauf peut-être sur quelques rayons limitant un
nombre fini d'angles. Les fonctions qu'elle représente,
holomorphes pour tout point z intérieur à ces différents angles
sont en général des fonctions analytiques différentes.

L'exemple suivant montre le grand avantage que présentent

les formules (16) et (19).
On sait par la méthode Poincaré-Horn, que l'équation

différentielle
+ xï' + D'2 — n2) y 0

admet un système fondamental qui, pour toutes les valeurs



144 A KIEN AST

finies de n réelles ou (complexes, est représenté asymptoti-
quement par les séries

jx n r x A- n — r a — n

Jl (x)
yixx=o r + r +1.^ r(x +1) (2j'x)A

yt(x)=~== 2
F X + n + —^ r/x — + —

V- ix>=0r + p „ + p (X + 1) (— 2i.r)X

lorsque /' |.r| augmente indéfiniment, si

pour la fonction jx (x) : — 7u -j- 8 <] arg a: <C 27: — S

» » j2 (a-) : 4- 8 < arg x < 3tu — 8

le nombre positif $ étant aussi petit qu'on le veut.

Je pose ci — 1, oc n — et à cause de la formule

r fx — n+ 4) 1
00 1 1 o / n)X =(14- u\ 2

>=«r(- " + y) r ix + î)

(16) donne

(- (1 +

-(-1 f .ix 00 1 fi + (_ i)s4_l
4 /•» //— p

v 2IX J/ \ e • e 4 f — * *n~~ 9 2 ix 7

0 r " + 2

(e l,2)
d'où

lY'. V2~- ^
Xjx) ~7 e X"(1 + "2>

2 du •

r + 2

V2.
m

e

?2 (X) / \ t + U2)
2

•

r(« + ï) 4

Ici le chemin d'intégration doit atteindre l'infini tel que
IS (.r// > I).
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Enfin les relations
/— n~

\J\-e 2
• J"i(^) Hi'V) •

\J--e* .J,(x)H|tV)

montrent qu'on est arrivé à la représentation par intégrales
définies des fonctions cylindriques de troisième espèce1
(Hankel).

On voit que la formule (16) et d'autres qu'on obtient par le
même procédé fournissent un moyen indispensable pour des
calculs effectifs, notamment pour les séries dérivant des
équations différentielles linéaires du type hypergéométrique.

IV

Je reprends les considérations du commencement de III,
en disposant des constantes a^ comme il suit

1! O 1 2 3

n — 0 0 0 0 0

1 «00

a-j- 1
0 0 0

2
a aQQ

(a + 1)(a + 2)

a «01

(a + 1) (a 4- 2)
0 Û

3
à2. ^00 a2 aQ1 a2. a02

0
(a —h-1 (a —f— 2 a —(— 3 (a~f*t)(a4-2)(a4-3) (a 4~ tj>a 4~ 2){a 4"

Il en résulte
A0 0

U=zO

(a l)(a 2) (a -f- n)

0

D -

n (a + t) (a 2) (a n)
'

1 N. Nielsen. Handbuch der Theorie der Cylinderfunktionell.

L'Enseignement mathém., 19e année, 1917. iß
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