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134 A. KIENAST

grale représentée par la série convergente

V(.x) 2 [«» + logx],r"
n=Q

Les considérations faites se rapportent au cas le plus spécial

du problème suivant : Déterminer le développement en
série d'une intégrale particulière de l'équation différentielle
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valable dans le voisinage du point singulier x 0 pour
lequel les intégrales de F (y) 0 sont toutes régulières. On
trouvera les résultats pour le cas général dans le mémoire
cité plus haut.

De la même manière j'arrive dans ce mémoire à l'expression

en série représentant asymptotiquement une intégrale
particulière de l'équation différentielle
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quand x grandit indéfiniment en étant positif.

II

On connaît plusieurs moyens pour former une intégrale
définie représentant une solution particulière de (3). A ce
but conduisent la méthode de la variation des constantes et
un théorème de Cauchy, voir Comptes Rendus, T. 11, p. 2

(1840). Soit
X

JW(.r t)dt
x0
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celte intégrale définie cherchée, il doit être possible de déterminer

la constante C telle que l'équation subsiste

Cyjx) + \(x)=fW{x, t)dt
x0

Or dans le cas présent il est plus simple de la tirer des équations

xy' — ocp [x)y xa o(x)

qui donnent

xyx — xp{x)y\ — 0
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car on a

|V(*)
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yM X Cri(x) + V (at) X \(x) X

Xi x0 Ti (x) XQ Ji (x) XQ

(9)

G'est la formule principale et, comme l'équation différentielle

(3) joue un rôle fondamental, je l'appelle équation
différentielle de liaison.

Dans le mémoire plusieurs fois cité je fais la démonstration

d'une formule analogue pour le cas général d'une équation

différentielle de liaison de /zième ordre.
Connaissant la forme analytique des fonctions Y, yi, <p il

s'ensuit :

Théorème : Les deux membres de (9) convergent pour
lim^0 — 0, si R(«) > 0, R(a) désignant la partie réelle de la

quantité a.
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