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134 . A. KIENAST

grale représentée par la série convergente

[e's}
Vix) = D la, + b, logx]2" .
n=>0
Les considérations faites se rapportent au cas le plus spé-
cial du probléeme suivant: Déterminer le développement en
série d'une intégrale particuliere de I'équation différentielle
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valable dans le voisinage du point singulier x =0 pour
lequel les intégrales de P(y) = 0 sont toutes réguliéres. On
trouvera les résultats pour le cas général dans le mémoire
cité plus haut.
De la méme maniere jarrive dans ce mémoire a l'expres-
sion en série représentant asymptotiquement une intégrale
particuliére de 1’équation différentielle
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quand x grandit indéfiniment en étant positif.

I1

On connait plusieurs moyens pour former une intégrale
définie représentant une solution particuliére de (3). A ce
but conduisent la méthode de la variation des constantes et
un théoréme de Céuchy, voir Comples Rendus, T. 11, p. 2

(1840). Soit
fVV(x ) di
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celte intégrale définie cherchée, il doit étre possible de déter-
miner la constante C telle que l’équation subsiste

Cy, (%) + V{x) :/'W(x, fdt .

Or dans le cas présent il est plus simple de la tirer des équa-
tions

xy’ — ap(x)y = x*.9(x) ,
ay, — aplx)y; =0,

qui donnent
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C'est la formule principale et, comme l'équation différen-
tielle (3) joue un role fondamental, je I'appelle équation dif-
férentielle de liaison. .

Dans le mémoire plusieurs fois cité je fais la démonstra-
tion d’une formule analogue pour le cas général d'une équa-
tion différentielle de liaison de n'**° ordre.

Connaissant la forme analytique des fonctions V, y,, ¢ il
s’ensuit : |

TreEorEME : Les deux membres de (9) convergent pour
limx, = 0, si R(a) > 0, R(«) désignant la partie réelle de la
quantité a. . -
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