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130 A. KIENAST

FK(.£). En désignant le cercle de convergence de la série (1)

par C, l'expression

2 ±F(^(«)
u.=0 k

donne la représentation analytique de FC(.r). Cette expression

est composée des éléments (2) et des nombres ration-
1

nels -- y indépendants du choix des dits éléments.

Le problème dont je vais m'occuper consiste à construire
des expressions arithmétiques formées au moyen des
constantes (2) valables dans une étoile de convergence K de
centre a et circonscrite au cercle C. MM. Mittag-Leffler et
Borel en ont publié des solutions des plus importantes,
M. Mittag-Leffler demandant une représentation valable et
gardant sa forme dans tout le domaine de la branche
uniforme d une fonction monogène.

Laissant de côté de telles conditions supplémentaires, les
considérations suivantes contiennent la démonstration dans
le cas le plus spécial1 d'une méthode qui permet d obtenir
une infinité de formules à l'aide desquelles on peut
transformer une expression limite 2 dans une autre. Le reste de
la note sera consacré aux applications.

I

L'intégrale générale de l'équation différentielle linéaire

x — xp (x)y — xCLo(x) (3)

/>(#) 2 bnx* •

n=0

QO

xCLo{x) — 2
m=0

1 La démonstration pour tous les cas aujourd'hui accessibles est développée dans un
mémoire : « Ueber eine Integralformel und die Eigenschaften der darin vorkommenden
Funktionen », Vierteljahrsschrift der naturforschenden Gesellschaft in Zürich, 61. Jahrgang
1916, drittes und viertes Heft.

2 Gr. Mittag-Lffflfr, Sur la représentation, etc., Acta Math., t. 24, p. 184, la note.
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où p{x)et<f(x) sont supposés des séries de Taylor à rayon
de convergence non nul, se compose d'une intégrale
particulière V(a?) de (3) et de l'intégrale générale

X

fpli) 4
yA*) e° ^E(k)xk (4)

A-=0

de l'équation sans second membre

xd\{x) — xp(x)y\{x) ~ Q
» w

c'est-à-dire
y ix) Jt (#) + y M •

On peut arriver à la représentation d'une intégrale
particulière de deux manières.

La differentiation de (3) donne

y" — p(x)yf — jo'(x)y — x*"2 [x ?' {x) + (a — l)ç(.x*)] ®1 (a-)

d'où

x2.o{x)y" — [xp(x)v(x) -f y^x^xy' -- x\xp'{x)®(x) — p^o^x^y — 0 (6)

L'équation déterminante de cette équation différentielle

f !§) Y (y — '1) — (0) Y — y <p(0) [y — 1 — (a — 1 »j 0

possède comme racine 0 et a. Par conséquent (6) admet un
système fondamental d'intégrales ziz2 dont on connaît la
forme analytique dans le voisinage de x 0.

Chaque intégrale de (3) doit être intégrale de (6); mais la

réciproque n'est pas vraie. Donc il est toujours possible de
déterminer les constantes D telles qu'on ait

JiM D, =i(*) + (7)

V(ar) DJ (a;) + DJ z2 (x) (8)

Il faut distinguer trois cas :

Premier cas : Supposons que a ne soit pas un entier. Le
système fondamental de (6) est de la forme

2
77=0

h ~2 kxl+a
71=0
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De l'équation (7) résulte à cause des expressions pour
yA, Zt, z2 valables dans le voisinage de x — 0

Ü.; 0 et (x) D1 z1 (x)

Par suite l'équation (8) s'écrit

d;
V(*) jJ-Ji U) + D2^("r) '

mais si Y esl intégrale particulière de (3)

d;

i

en est une autre. Donc on est conduit au
Théorème : L'équation différentielle (3) admet une

intégrale complètement déterminée par la propriété d'être, dans
le voisinage de x — 0, développable en la série convergente

V (x) 2 A„ A0 ^ 0

n={)

Inversement :

Théorème : Si la fonction y est donnée par la série
convergente

i.r V A
nx":»•

: A0 ^ 0

n=()

l'expression (3)

dy
P(j) ~Xtx~

est égale à la série convergente

2D,^"I+a 5 D0^0
m—is

Second cas : Soit « un entier positif. Un système
fondamental pour (6) est

CO CO

*1 2 k,X"+a =2=2 [«« + dn l°s a-]«"
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et, certaines conditions étant remplies, la seconde intégrale
ne contient pas de logarithme.
Si dans le développement de le terme logarithmique ne

manquait pas, on concilierait de l'équation (7) D2 — 0, et

puisque l'égalité entre les deux membres restant est impossible,

le développement de £2 ne renferme pas de logarithme

Z2(x) 2 Cnxtl '
n—0

Par suite l'équation (8)

y (x) i>;. 2 + D;. 2
«=0 n=0

conduit au
Théorème: L'équation différentielle (3) admet une

intégrale complètement déterminée par la propriété d'être, dans
le voisinage de .r 0, développable en la série convergente

^) 2¥l;k~0

et inversement.
Maintenant l'équation (7) pour la valeur x 0 montre que

le coefficient de z2 ne peut pas disparaître. Introduisant

dans (8) on aura
Dg D0 — Ds

Y
D^'1 (,r) + ~—1~d2 '

et l'on est amené au même théorème trouvé dans le premier
cas. Cette substitution est seulement impossible si (8) ne
renferme pas ; mais dans ce cas (8) prouve le théorème.

Troisième cas: Supposons a nul ou entier négatif. Le
système fondamental de (6) est

2 A»x" ' 2 P» + c,> '°s *] *".
n=0 7i=()

et de (8) on tire le
Theoreme : L'équation différentielle (3) admet une inté-
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grale représentée par la série convergente

V(.x) 2 [«» + logx],r"
n=Q

Les considérations faites se rapportent au cas le plus spécial

du problème suivant : Déterminer le développement en
série d'une intégrale particulière de l'équation différentielle

il m

plr) ^pM)xlyU) 2+ + ?ß Wig«r*] -

i=0 k=0
1 k

pM) — 2 aAxX -

X=o

valable dans le voisinage du point singulier x 0 pour
lequel les intégrales de F (y) 0 sont toutes régulières. On
trouvera les résultats pour le cas général dans le mémoire
cité plus haut.

De la même manière j'arrive dans ce mémoire à l'expression

en série représentant asymptotiquement une intégrale
particulière de l'équation différentielle

n i^+1 ËlA _l_ _L. A x r r -,p= ' " ..'5 -x
i=o L x J

ai ai
pAx) a -f -\ J-}-...; a o

1 x X il '

quand x grandit indéfiniment en étant positif.

II

On connaît plusieurs moyens pour former une intégrale
définie représentant une solution particulière de (3). A ce
but conduisent la méthode de la variation des constantes et
un théorème de Cauchy, voir Comptes Rendus, T. 11, p. 2

(1840). Soit
X

JW(.r t)dt
x0
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