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SUR

QUELQUES REPRÉSENTATIONS ARITHMÉTIQUES
DES FONCTIONS ANALYTIQUES

PAR

A. Ki enäst (Kiisnacht-Zurich).

D'après We lebst lias s la fonction analytique est définie par
la série

V{x\a)2 Af,1A)'") — «f(U

P=o' '

et par son prolongement analytique. La fonction est
parfaitement déterminée par la suite infinie de quantités

F(a) F W(a),F(î)(a) F(0(fl) (2)

si elle est choisie telle que la limite supérieure des valeurs
limites des modules

^ / 1 VW,
Vin-

soit un nombre fini, par exemple —. On désigne en général

par F (x) la fonction qui, dans sa totalité, est définie par les
éléments (2).

Si K est un continu formé d'une seule pièce qui ne se

recouvre nulle part elle-même, renfermant le point ci, et tel
que la branche de la fonction F(.x), formée par P(.r |#) et son
prolongement analytique à l'intérieur de K, reste uniforme
et régulière, M. Mittag-Leffler désigne cette branche par
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130 A. KIENAST

FK(.£). En désignant le cercle de convergence de la série (1)

par C, l'expression

2 ±F(^(«)
u.=0 k

donne la représentation analytique de FC(.r). Cette expression

est composée des éléments (2) et des nombres ration-
1

nels -- y indépendants du choix des dits éléments.

Le problème dont je vais m'occuper consiste à construire
des expressions arithmétiques formées au moyen des
constantes (2) valables dans une étoile de convergence K de
centre a et circonscrite au cercle C. MM. Mittag-Leffler et
Borel en ont publié des solutions des plus importantes,
M. Mittag-Leffler demandant une représentation valable et
gardant sa forme dans tout le domaine de la branche
uniforme d une fonction monogène.

Laissant de côté de telles conditions supplémentaires, les
considérations suivantes contiennent la démonstration dans
le cas le plus spécial1 d'une méthode qui permet d obtenir
une infinité de formules à l'aide desquelles on peut
transformer une expression limite 2 dans une autre. Le reste de
la note sera consacré aux applications.

I

L'intégrale générale de l'équation différentielle linéaire

x — xp (x)y — xCLo(x) (3)

/>(#) 2 bnx* •

n=0

QO

xCLo{x) — 2
m=0

1 La démonstration pour tous les cas aujourd'hui accessibles est développée dans un
mémoire : « Ueber eine Integralformel und die Eigenschaften der darin vorkommenden
Funktionen », Vierteljahrsschrift der naturforschenden Gesellschaft in Zürich, 61. Jahrgang
1916, drittes und viertes Heft.

2 Gr. Mittag-Lffflfr, Sur la représentation, etc., Acta Math., t. 24, p. 184, la note.
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où p{x)et<f(x) sont supposés des séries de Taylor à rayon
de convergence non nul, se compose d'une intégrale
particulière V(a?) de (3) et de l'intégrale générale

X

fpli) 4
yA*) e° ^E(k)xk (4)

A-=0

de l'équation sans second membre

xd\{x) — xp(x)y\{x) ~ Q
» w

c'est-à-dire
y ix) Jt (#) + y M •

On peut arriver à la représentation d'une intégrale
particulière de deux manières.

La differentiation de (3) donne

y" — p(x)yf — jo'(x)y — x*"2 [x ?' {x) + (a — l)ç(.x*)] ®1 (a-)

d'où

x2.o{x)y" — [xp(x)v(x) -f y^x^xy' -- x\xp'{x)®(x) — p^o^x^y — 0 (6)

L'équation déterminante de cette équation différentielle

f !§) Y (y — '1) — (0) Y — y <p(0) [y — 1 — (a — 1 »j 0

possède comme racine 0 et a. Par conséquent (6) admet un
système fondamental d'intégrales ziz2 dont on connaît la
forme analytique dans le voisinage de x 0.

Chaque intégrale de (3) doit être intégrale de (6); mais la

réciproque n'est pas vraie. Donc il est toujours possible de
déterminer les constantes D telles qu'on ait

JiM D, =i(*) + (7)

V(ar) DJ (a;) + DJ z2 (x) (8)

Il faut distinguer trois cas :

Premier cas : Supposons que a ne soit pas un entier. Le
système fondamental de (6) est de la forme

2
77=0

h ~2 kxl+a
71=0
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De l'équation (7) résulte à cause des expressions pour
yA, Zt, z2 valables dans le voisinage de x — 0

Ü.; 0 et (x) D1 z1 (x)

Par suite l'équation (8) s'écrit

d;
V(*) jJ-Ji U) + D2^("r) '

mais si Y esl intégrale particulière de (3)

d;

i

en est une autre. Donc on est conduit au
Théorème : L'équation différentielle (3) admet une

intégrale complètement déterminée par la propriété d'être, dans
le voisinage de x — 0, développable en la série convergente

V (x) 2 A„ A0 ^ 0

n={)

Inversement :

Théorème : Si la fonction y est donnée par la série
convergente

i.r V A
nx":»•

: A0 ^ 0

n=()

l'expression (3)

dy
P(j) ~Xtx~

est égale à la série convergente

2D,^"I+a 5 D0^0
m—is

Second cas : Soit « un entier positif. Un système
fondamental pour (6) est

CO CO

*1 2 k,X"+a =2=2 [«« + dn l°s a-]«"
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et, certaines conditions étant remplies, la seconde intégrale
ne contient pas de logarithme.
Si dans le développement de le terme logarithmique ne

manquait pas, on concilierait de l'équation (7) D2 — 0, et

puisque l'égalité entre les deux membres restant est impossible,

le développement de £2 ne renferme pas de logarithme

Z2(x) 2 Cnxtl '
n—0

Par suite l'équation (8)

y (x) i>;. 2 + D;. 2
«=0 n=0

conduit au
Théorème: L'équation différentielle (3) admet une

intégrale complètement déterminée par la propriété d'être, dans
le voisinage de .r 0, développable en la série convergente

^) 2¥l;k~0

et inversement.
Maintenant l'équation (7) pour la valeur x 0 montre que

le coefficient de z2 ne peut pas disparaître. Introduisant

dans (8) on aura
Dg D0 — Ds

Y
D^'1 (,r) + ~—1~d2 '

et l'on est amené au même théorème trouvé dans le premier
cas. Cette substitution est seulement impossible si (8) ne
renferme pas ; mais dans ce cas (8) prouve le théorème.

Troisième cas: Supposons a nul ou entier négatif. Le
système fondamental de (6) est

2 A»x" ' 2 P» + c,> '°s *] *".
n=0 7i=()

et de (8) on tire le
Theoreme : L'équation différentielle (3) admet une inté-
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grale représentée par la série convergente

V(.x) 2 [«» + logx],r"
n=Q

Les considérations faites se rapportent au cas le plus spécial

du problème suivant : Déterminer le développement en
série d'une intégrale particulière de l'équation différentielle

il m

plr) ^pM)xlyU) 2+ + ?ß Wig«r*] -

i=0 k=0
1 k

pM) — 2 aAxX -

X=o

valable dans le voisinage du point singulier x 0 pour
lequel les intégrales de F (y) 0 sont toutes régulières. On
trouvera les résultats pour le cas général dans le mémoire
cité plus haut.

De la même manière j'arrive dans ce mémoire à l'expression

en série représentant asymptotiquement une intégrale
particulière de l'équation différentielle

n i^+1 ËlA _l_ _L. A x r r -,p= ' " ..'5 -x
i=o L x J

ai ai
pAx) a -f -\ J-}-...; a o

1 x X il '

quand x grandit indéfiniment en étant positif.

II

On connaît plusieurs moyens pour former une intégrale
définie représentant une solution particulière de (3). A ce
but conduisent la méthode de la variation des constantes et
un théorème de Cauchy, voir Comptes Rendus, T. 11, p. 2

(1840). Soit
X

JW(.r t)dt
x0



FONCTIONS ANALYTIQUES 135

celte intégrale définie cherchée, il doit être possible de déterminer

la constante C telle que l'équation subsiste

Cyjx) + \(x)=fW{x, t)dt
x0

Or dans le cas présent il est plus simple de la tirer des équations

xy' — ocp [x)y xa o(x)

qui donnent

xyx — xp{x)y\ — 0

x [ji • / — y • ri • (x)

d_ r y1 _dx LJiJ Ji(4

OU

car on a

|V(*)
IJi (*) J Tt (*)

Xq

yM X Cri(x) + V (at) X \(x) X

Xi x0 Ti (x) XQ Ji (x) XQ

(9)

G'est la formule principale et, comme l'équation différentielle

(3) joue un rôle fondamental, je l'appelle équation
différentielle de liaison.

Dans le mémoire plusieurs fois cité je fais la démonstration

d'une formule analogue pour le cas général d'une équation

différentielle de liaison de /zième ordre.
Connaissant la forme analytique des fonctions Y, yi, <p il

s'ensuit :

Théorème : Les deux membres de (9) convergent pour
lim^0 — 0, si R(«) > 0, R(a) désignant la partie réelle de la

quantité a.
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III

Les applications de (9) cpii suivent résultent de l'introduction

d'un paramètre. Je commence par le cas le plus simple :

/ — ar-*01""1 M » (10)

x
I e~ax.V(x) !X f(11)
I Fo J

xQ

Ici V(x) est représenté par la série

V(*) 2At.r*+«
fc=o

si a. n'est ni nul ni entier négatif, et si en outre R(«) > 0,

on a
m

e~ax.\(x)|Y~a\ta_1 ,<f(t)dt(12)

0

La condition de convergence étant remplie pour a 1,

on obtient pour

\(x) >

n=0
la formule

e~ux. y [x)— Y(0) Je~a'.f{t)dt (13)
0

La relation entre V(x) et ff(x) se calcule en employant
dans (10) :

2 A*x"+a•
n=0

ce qui donne :

x*-l.9tx) 2 D»*"+a 2 + a»A« - «A«-i]^+a_1 •

77=0 71=

ou
Dn (" + a)Are — 1 '



FONCTIONS ANALYTIQUES 137

Pour introduire le paramètre mentionné je pose
maintenant

X=o

ce qui entraîne que les an\ et z doivent être choisis confor-
00

mément à la condition que la série 2 D»#71 soit convergente.
w=o

En faisant usage du tableau suivant :

». X 0 1 2 3

n — 0

1

2

3

aoo aoi

actaA

°02

aan
a -j- 1 a -}- 1

0
a~aM

(* + 1)(a +

on trouve

Ao S'
X=o

'or

(a -f 1» (a -f 2) (a + n)
SaoXsX -

D0 — a • A0

D.,
*0, 71—\ •

11 (a 1) la -f- 2) fa -f- n — 1) '

et la formule (12) devient

(ax)n s-.
A—a

or

À=0
2aoxzX)ï^T)/e a'<aOa 1

<*(«<)

P —at i 4\& ;
aotAazi) \

J' M<|2î>+T +T,j'"« (14)
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Elle est valable pour toutes les valeurs des a^n et telle queI~s(.+i)(:°;(r"+.> «i5)

soit par rapport à x une série convergente. Par suite 2 ao\z'k
X=o

est nécessairement une série à rayon de convergence non
nul et ^ une valeur pour laquelle elle converge. Donc

a()n izx)
Zj r (». -f n -r 1)

est une s^r,e toujours convergente. Pourtant

je distingue deux cas :
or

Premier cas. — Soit 2 ao) z^ une série à rayon de con-
X=o

vergence non nul et z une valeur fixe pour laquelle elle
converge. A chaque quantité positive s si petite qu'on veut, il
est possible de déterminer l'indice y tel qu'on a pour n^>v

— oX
X=n

< 6

Il est facile d'obtenir la formule

lax)* V _ ax _
{eue)"- Ç\ax> Zji r(a + n + 1)

—e r (a) J
a—1 *

+ " + *)- Ha) J (1 + ±V~*
ax

ax — l)n
r( 2 r 4- 1 — a)5 }-

a)Fil — a);Zj0 {ax)n

par exemple en calculant (12) pour <p(x) — 1. Donc le
premier membre de (14) peut s'écrire

(ax

« V ^OOC^'1
_L_ (ax^ Ç

,éf,r(a + „ + i) + r (a) J / v-
— L

ax

ax
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Cette forme conduit aisément à la valeur limite

139

lim L n=: lim 1 ^ ao\
x=<x> n=oo -

L'équation (14) est valable pour chaque valeur 3, pour

laquelle est convergente et pour chaque valeur x

qui n'est pas point singulier de l'équation différentielle (10),

c'est-à-dire pour chaque valeur finie x, x ce étant le seul

point singulier. Donc, le point x go étant atteint tel que
R(tf,r) >> 0, on conclut de

t (* —at, \ol i "'ST* (l0n{cizt)n \i, ,\i»/. "m' gr,. + + ni-"'"

il —0 v 1 ' i

le Théorème : L'égalité

S>.rx =/ j 2 rl!,+°;+i)i'i'°" ; 1,61

>,=0 0 f 71=0 11 1 '

subsiste pour chaque valeur z pour laquelle est

convergente. L'intégrale définie dans le second membre

converge au moins pour les mêmes valeurs de
Dans son mémoire « Sur la représentation analytique d'une

branche uniforme d'une fonction monogène », Acta Math
T. 29, M. G. Mittag-Lefïler a démontré trois théorèmes (A,
B, C du § 1) se rapportant à des intégrales de la forme de

l'intégrale définie dans (16). Il est facile d'étendre en suivant
le même ordre d'idée les autres résultats des §§ 1 et 4 du
mémoire de M. Mittag-Lefïler à cette nouvelle intégrale. On
est ainsi conduit au
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Théorème : L'intégrale

fiz]_?e-t tu\ Ä )" K
/„èorc + i + iif'

possède par rapport à £ une étoile de convergence B(1).

L'égalité
FB(1)(,)z=/-(,)

a lieu partout à l'intérieur de B(1).

Cette étoile de convergence que M. Mittag-Lefïler, dans le
Tome 29 des Acta Math., désigne par B(1; est identique au

polygone de sommabilité de M. E. Borel.
Par le même procédé on obtient pour a 1 les formules

(14) et (16) en partant de (13). Une intégration par parties
conduit alors à la formule (16) dans laquelle on a fait a 0.

C'est la formule célèbre de Laplace-Abel-Borel.
00 1

Second cas. — Soit 2 une série qui représente une
\=o zK

fonction f[z) asymptotiquement. C'est une série divergente
pour chaque valeur finie Les considérations laites dans le

premier cas seront en défaut, mais c'est M. Borel qui a

remarqué que l'intégrale Laplace-Abel peut pourtant être
convergente. M. Borel1 introduit par définition la valeur de

cette intégrale définie comme somme de la série divergente.
Et M. G. H. Hardy 2 a formulé à cet égard son « principle»:
«If two limiting processes performed in a definite order on
a function of two variables lead to a definite value X, but
when performed in reverse order lead to a meaningless
expression Y, we may agree to interpret Y as meaning X. »

Il est curieux3 que personne ne semble avoir remarqué la

possibilité d'une démonstration exacte. Dans le cas présent
il n'est pas nécessaire d'avoir recours à une nouvelle
définition ou à un nouveau principe. Mais les séries conver-

1 Voir p. ex. ses Leçons sur les séries divergentes, Gauthier-Villars, 1901.
2 Trans. Carnbr. Phil. Soc., 19, p. 297, 1904.
s Comparez la critique sévère de M. G. Mittag-Lkpflkh « Sur la représentation

arithmétique des fonctions analytiques générales d'une variable complexe », Congrès intern, des
mathématiciens, Rome, 1908, Atti, 1, et Bull. Americ. Math. Soc., sér. 2. vol. XIV (1908).
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gentes et les séries asymptotiques dans le sens de Poincaré
sont jusqu'à ce jour les seules qui ont un sens arithmétique
défini. La supposition faite signifie, d'après la définition
introduite par Poincaré : il subsiste pour chaque entier m

l'équation
m ^

M — 2 «o^-jr
)=0 "A

lim s riz 0

Donc on écrit l'équation (14) de la manière suivante :

1
(ax)'

.l=n
an a

„m p—ax a \" J0 r(a + B+l)
Zm\flz) S! aU--- *a~'

i -Jo z* J ri«) J

f[*
r<

i£) Ç e-at
,»+1

•J»r(« + n + i) dti

ce qui est une équation exacte. En passant à la limite x -f- oo

on trouve pour R(a) > 0 et pour chaque valeur finie de
excepté z — 0,

0 — zm f(z) — 2
X=o A

M + /e-a'(at)a Jo r (« + » +1)
d (at) |

Or il subsiste pour chaque entier m l'équation

/

lira z"l\f{z) — fe~a'(at)a
Z—CC f e/

d(at)î 0 (17)
«=o 1 (a ~f~ ~j~ 1

et c'est l'expression en formule dn lait que l'intégrale

fe-«'[at)a
n=o P (a ~\~ 11 ~~h 1)

d (at) (18)



1
la série 2 ao\^w de laquelle on est parti.

l=o
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représente asymptotiquement la fonction f(z) de même que
L

I
Mais il est possible que cetle intégrale K converge et

représente une fonction analytique K(js) dans le sens
ordinaire. Donc on conclut

f(z) K(z) + E

où E est une fonction représentée asymptotiquement par un
développement identiquement nul. Et parce que dans les
calculs faits on n'a pas introduit des parties étrangères à f(z)y
l'équation

fi*) K(Z) (19)

sera exacte dans un grand nombre de cas.
La fonction f{z) est représentée asymptotiquement par la

00 1 ysérie 2 ao\ v lorsque M — r. e1^ croît indéfiniment suivant
l=o ~A

un rayon déterminé. Pour les séries asymptotiques dont on
fait usage dans la théorie des équations différentielles, une
telle égalité asymptotique

f(z) ^ 2 ao^
1=0

A zk

r tendant vers l'infini, est unique pour tous les arguments
compris dans un certain angle

01 < + arg 3 < 02 '

Donc l'équation (17) aura lieu dans le même angle.
La série sous le signe d'intégration

at\k

est convergente ou représente une fonction
asymptotiquement.

Je suppose, faisant ~ — u p e*1, que la série

GO fd
^0 ^ (a ^ + 1)
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soit convergente et que la fonction g(u) qu elle représente
soit holomorphe dans l'angle

0 ^ p ^ N (N nombre positif arbitrairement grand)

®1 © <C ®2 '

Ainsi u — oo est, pour ^ <C 9 <C y2 le seul point singulier
possible.

En outre, je suppose que, u —=co étant singulier, g*(m) soit
tel que l'intégrale (18) converge pour

<Pi < argu < cp2

011, t ayant l'argument 0,

®j < arg a — arg s < cp2

arg a — <p2 arg s arg a — ®1

11 résulte que l'intégrale (18j converge si z r. elV est

une valeur quelconque dans l'angle

arg a — cp9 é at>g' a — ?i '

£<(/'<( 00 quelque petit que soit le nombre positif e. Dans
cet angle l'intégrale (18) représente une fonction analytique
holomorphe.

Dans le cas le plus simple et très important g(u) est fonction

rationnelle, holomorphe pour u — go Sous cette condition

l'intégrale (18) est convergente dans tout le plan de la
variable 2 sauf peut-être sur quelques rayons limitant un
nombre fini d'angles. Les fonctions qu'elle représente,
holomorphes pour tout point z intérieur à ces différents angles
sont en général des fonctions analytiques différentes.

L'exemple suivant montre le grand avantage que présentent

les formules (16) et (19).
On sait par la méthode Poincaré-Horn, que l'équation

différentielle
+ xï' + D'2 — n2) y 0

admet un système fondamental qui, pour toutes les valeurs



144 A KIEN AST

finies de n réelles ou (complexes, est représenté asymptoti-
quement par les séries

jx n r x A- n — r a — n

Jl (x)
yixx=o r + r +1.^ r(x +1) (2j'x)A

yt(x)=~== 2
F X + n + —^ r/x — + —

V- ix>=0r + p „ + p (X + 1) (— 2i.r)X

lorsque /' |.r| augmente indéfiniment, si

pour la fonction jx (x) : — 7u -j- 8 <] arg a: <C 27: — S

» » j2 (a-) : 4- 8 < arg x < 3tu — 8

le nombre positif $ étant aussi petit qu'on le veut.

Je pose ci — 1, oc n — et à cause de la formule

r fx — n+ 4) 1
00 1 1 o / n)X =(14- u\ 2

>=«r(- " + y) r ix + î)

(16) donne

(- (1 +

-(-1 f .ix 00 1 fi + (_ i)s4_l
4 /•» //— p

v 2IX J/ \ e • e 4 f — * *n~~ 9 2 ix 7

0 r " + 2

(e l,2)
d'où

lY'. V2~- ^
Xjx) ~7 e X"(1 + "2>

2 du •

r + 2

V2.
m

e

?2 (X) / \ t + U2)
2

•

r(« + ï) 4

Ici le chemin d'intégration doit atteindre l'infini tel que
IS (.r// > I).
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Enfin les relations
/— n~

\J\-e 2
• J"i(^) Hi'V) •

\J--e* .J,(x)H|tV)

montrent qu'on est arrivé à la représentation par intégrales
définies des fonctions cylindriques de troisième espèce1
(Hankel).

On voit que la formule (16) et d'autres qu'on obtient par le
même procédé fournissent un moyen indispensable pour des
calculs effectifs, notamment pour les séries dérivant des
équations différentielles linéaires du type hypergéométrique.

IV

Je reprends les considérations du commencement de III,
en disposant des constantes a^ comme il suit

1! O 1 2 3

n — 0 0 0 0 0

1 «00

a-j- 1
0 0 0

2
a aQQ

(a + 1)(a + 2)

a «01

(a + 1) (a 4- 2)
0 Û

3
à2. ^00 a2 aQ1 a2. a02

0
(a —h-1 (a —f— 2 a —(— 3 (a~f*t)(a4-2)(a4-3) (a 4~ tj>a 4~ 2){a 4"

Il en résulte
A0 0

U=zO

(a l)(a 2) (a -f- n)

0

D -

n (a + t) (a 2) (a n)
'

1 N. Nielsen. Handbuch der Theorie der Cylinderfunktionell.

L'Enseignement mathém., 19e année, 1917. iß
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et la formule (12) devient

e-ax(aœf 2 (ax)'

}=0 T (a + X -j- 1)

"X-i
2 v"

: Ïe-at(at)a \ y—;/ ' |èr(« + x + i)( (21)

Cette équation est démontrée pour R (a) > 0, mais on voit
aisément qu'elle reste valable pour a 0. En outre on a par
rapport aux et z à remplir la condition que

•Sç D x y
,,=o " ~ + + '

00

soit une série convergente. Elle est satisfaite si 2 ^o>£* est

une série convergente; elle peut l'être encore pour une infinité

de séries asymptotiques. Il est permis de donner dans
00 r

(21) à x une valeur finie quelconque, si 2 ao\zk est conver-
X=o

gente, mais si c'est une série asymptotique il y a des
restrictions spéciales pour chaque choix des constantes

De la définition de la notion limite on conclut que pour
lim x + oo les deux membres de (21) convergent pour
les mêmes valeurs de

L'intégrale du second membre a été considérée dans III.
Cette formule (21) dans le cas a — 1, a 0, lim x -f- 00

est la découverte de M. E. Borel1 et M. G. Mittag-Lefïler en
parle à plusieurs occasions2.

Il me semble du plus haut intérêt qu'il ne subsiste pas
seulement pour lim x — + co mais z étant fixé pour chaque
valeur x qui est point régulier de la fonction analytique dé-

00 a0*(azx)^
fini par la série de Taylor 2 ft, - à rayon de conver-1 *=or(fl + A-M) J

gence fini plus grand que zéro.

1 Voir : Leçons sur Les séries divergentes, Paris, 1901.
2 Par exemple, Sur la représentation, etc., Acta Math., T. 26 (1902), p. 374.
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V

Gomme dernière application de la méthode exposée je
reviens à l'équation (3) pour a 1.

dr
x-~ xp (x)y — x © (x) (22)

p(x) -- 2 bn^1
n=0

fW 2
m=0

p[x) et y[x) étant des séries de Taylor à rayon de convergence

non nul. L'intégrale de l'équation sans second membre
est

X

f
f%{x) — e° 2 E (/i)xn (4)

n=0

et il reste à calculer les différentes parties de la formule (9)

pour le cas présent.
V {x) |x /» o (t) dt
y^x)\x~ J TiW

0 ^0

Le théorème du second cas dans I montre qu'on aura

\(X) 2 An xn
71 0

et l'on obtient

Dn (n + t) A/I+1 — 2 bn—l •

•

/=y
00

}Je dispose des An 2 de la manière suivante :

\=o

a *»X
>-* il o 1 2 3

71 0 0 0 0 0

1 E(1K 0 0 0

2 E (2) aQ E (2)0, 0 0

3 E (3) aQ E (3j E(3K 0
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cToù

A. KIENAST

A0 0

A„ E(n)V
r= 0

et par suite

D„ (« +1) E (n + 1) 2 «r - 2 hn-\ E W 2 ar *r
r=0 ^=0 r=z0 j

ti—1 r n-l-r ~|
(n -f l)E(/i + ^)an z" + 2 arz \ (n ~H 1 E (/I + 1)— 2 b^E(n — (j.)

I

r=z 0 L f*=0 J

~^dn,rarzr-
r=0

Donc on est arrivé à l'équation

±E(n)a^r2arA
n=1 \r=0 J_

^E(n)xn
n=z0

X QQ

— f • (23)
J »=0 )Jilr)

Pour le moment je considère cette formule seulement en
00

supposant yx{x) — 2 E(ri)xn fonction entière transcendante.
n=0

Dans ce cas M. Mittag-Leffler1 donne pour l'expression à

gauche dans (23) la valeur

*(!)*• («I

où

F(*) 2Är»r-
7=0

Le contour S doit être la limite d'une surface simplement

1 Voir: Sur la représentation, etc., Acta Math., T. 20, p. 170.
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connexe pour laquelle la fonction F(z.y) reste régulière; il
doit être parcouru dans le sens direct et embrasser les deux

points ?/ 0, y 1.

En discutant l'intégrale curviligne M. G. Mittag-Leffler
a démontré que

2e(*)W 2«rg
lim^^ FA (z) (25)

2E(n)*»
n—0

est uniformément convergente pour tout domaine intérieur
à l'étoile principale A et représente la branche fonctionnelle
FA (s) partout à l'intérieur de cette étoile, si la fonction entière

oc

2AO) 2 xn est choisie telle que :

n—0

x.u x
fP{t)d%—f'p[Ç)d%

Hm lim
' « =0

X=ao J i [*£) X=X

d'une manière uniforme tant que u appartient à un domaine
fini situé en dehors de la partie de l'axe réel positif compris
entre x 1 et l'infini. Cette condition est satisfaite par toute
fonction entière

X

fp it) <% ?{*)(26)

0

possédant la propriété :

lim T (r e1^) m 0
r=oo

uniformément pour
£ 9 ^ — £

>

£ étant un nombre positif arbitrairement petit,

lim T (r e1^) ~ oo pour ® — 0
r—oo

En outre M. Mittag-Leffler démontre que la série

2E(n)*M 2l«r
«—i

z
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est pour toute valeur de z une série toujours convergente
par rapport à x. Elle est, x étant fixé, uniformément
convergente pour un domaine quelconque de la variable z.
p[x) Tr (x) est fonction entière transcendante, donc
<p(x) V'(x) — p(x).\T(x) est une série de x et de z qui
partage avec V(.r) les deux propriétés exposées il y a un
moment. La fonction entière transcendante yt(^) cT^x) ne
s'annule pour aucune valeur finie x et par suite l'intégrale
dans (23) a un sens pour chaque valeur finie x.

En passant à la limite on est conduit à cause de (25) à la

formule
M / » Jf + + ^ FA{»J (27)

q
in=0 )h\t\

L'intégrale converge uniformément pour tout domaine
intérieur à l'étoile principale A. C'est une généralisation de

l'intégrale Laplace-Abel, de l'intégrale de M. Mittag-Lefïler
et une formule analogue à la troisième des formules (125)

p. 177 démontrées par M. Mittag-Lefïler [Acta Math. t. 29).
Je termine par la remarque que les applications de la

méthode exposée peuvent être augmentées considérablement,
car elle contient trois éléments arbitraires: 1. l'équation
différentielle de liaison d'ordre quelconque ; 2. le point x0,
qui peut être point singulier de cette équation différentielle
en lequel toutes ses intégrales sont régulières ou point
singulier en lequel les intégrales sont irrégulières; 3. le chemin

d'intégration.
D'autres résultats que j'ai obtenus paraîtront dans la

Vierteljahrsschrift der naturforschenden Gesellschaft in
Zürich l.

Küsnacht (Zürich), octobre 1916.

1 «Neue Entwicklungen über'die Abel'sche Integralumkehrungsformel. » Jahrgang 62

(1917).
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