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SUR
QUELQUES REPRESENTATIONS ARITHMETIQUES
DES FONCTIONS ANALYTIQUES

PAR

A. Kienast (Kusnacht-Zurich).

D’aprés WeiersTrass la fonction analytique est définie par
la série "
o« 1 - &
Pl{x|a) = E —F(‘L)(a) (x — a){)‘ (1)

EJ.:O & !

et par son prolongement analytique. La fonction est parfai-
tement déterminée par la suite infinie de quantités
Fla), Fla, Fa,.., ¥t¥qa, .. (2)

si elle est choisie telle que la limite supérieure des valeurs

limites des modules
ST (w)
VKU—"F ((L)

soit un nombre fini, par exemple =. On désigne en general
Y

par F(r) la fonction qui, dans sa totalité, est définie par les
éléments (2).

Si K est un continu formé d'une seule piéce qui ne se
recouvre nulle part elle-méme, renfermant le poiht a, et tel
que la branche de la fonction F(x), formée par P(r|a) et son
prolongement analytique a l'intérieur de K, reste uniforme
et réguliere, M. Mirrac-LerrLer désigne cette branche par

L’Enseignement mathém., 19¢ année; 1917. 9




130 A. KIENAST

FK(x). En désignant le cercle de convergence de la série (1)
par C, 'expression

donne la représentation analytique de FC(x). Cette expres-
sion est composée des éléments (2) et des nombres ration-

1 . , . . 1y
nels — indépendants du choix des dits éléments.
o !

Le probleme dont je vais m’occuper consiste a construire
des expressions arithmétiques formées au moyen des cons-
tantes (2) valables dans une étoile de convergence K de
centre a et circonscrite au cercle C. MM. Mirrac-LEFFLER et
BoreL en ont publié des solutions des plus importantes,
M. Mittag-Leffler demandant une représentation valable et
gardant sa forme dans tout le domaine de la branche uni-
forme d'une fonction monogene. |

Laissant de coté de telles conditions supplémentaires, les
considérations suivantes contiennent la démonstration dans
le cas le plus spécial! d’'une méthode qui permet d'obtenir
une infinité de formules a 'aide desquelles on peut trans-
former une expression limite? dans une autre. Le reste de
la note sera consacré aux applications.

-

L'intégrale générale de I'équation différentielle linéaire

dy .
X — Ap ()y = x%o(x) , (3)

plx) = E b,x" ,

n=0

(o o}
x*o(x) = D, amte

m=0

1 La démonstration pour tous les cas aujourd’hui accessibles est développée dans un
mémoire : « Ueber eine Integralformel und die Eigenschaften der darin vorkommenden
Funktionen », Vierteljahrsschrift der naturforschenden Gesellschaft in Ziirich, 61. Jahrgang
1916, drittes und viertes Heft.

2 . MiTTAG-LEFFLER, Sur la representation, ete., Acta Math., t. 24, p. 184, la note.
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olt plx) et g(x) sont supposés des séries de Taylor a rayon
de convergence non nul, se compose d'une intégrale parti-
culiere V(x) de (3) et de U'intégrale générale

|

y, (x) = ¢’ = N E (k)" (4)
k=0 °

de I'équation sans second membre

xy () — xp(x)yy(x) =0, ()

c¢’est-a-dire
ylx) =3, (x) + Vi) .

On peut arriver a la représentation d’une intégrale parti-
culiere de deux manieres.
La différentiation de (3) donne

y"— pla)y’ — plla)y = a® P lx.¢ (x) + (¢ — Vsla)] = 2 g (a)
d’ou
x ola)y" — [xp(a)p(x) + o (x)]x)y” — x[xp(2)9(x) — pl®)pyx)]y =0 . (6)
L’équation déterminante de celte équation différentielle

o (0)y(y

possede comme racine 0 et «. Par conséquent (6) admet un
systeme fondamental d'intégrales z,z, dont on connait la
forme analytique dans le voisinage de x = 0.

Chaque intégrale de (3) doit étre intégrale de (6); mais la
réciproque n'est pas vraie. Donc il est toujours possible de
déterminer les constantes D telles qu'on ait

]

=0y =v.20y—1—(e—1]=0

J1(®) = Dy 5 (x) + Dyz, () | (7)
Viz) = D)z (x) + D)z, () . (8)

Il faut distinguer trois cas:
Premter cas: Supposons que « ne soit pas un entier. Le
systeme fondamental de (6) est de la forme

= o} [=a}
- — n PR N s
5 = N B,a", = A, ante

n=y0 n=>y0
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De l'équation (7) résulte a cause des expressions pour
Yy, 21, 2, valables dans le voisinage de x =0

D, =20 et ¥ () =D, 5 (x) .
Par suite I'équation (8) s’écrit

D’

‘ 1
Vix) = NS () 4 Dy zy (),

1

mais si V est intégrale particuliere de (3)

D,
vV — FD‘I (x)

1

en est une autre. Donc on est conduit au

TueorEME : L’équation différentielle (3) admet une inté-
grale complétement déterminée par la propriété d’étre, dans
le voisinage de x — 0, développable en la série conver-
gente

V(.T):EAHQC”'*‘“ , A, =0
=0
Inversement:

TueoreME : Si la fonction y est donnée par la série con-
vergente

rla)= N Aate A 0
n=0
I’expression (3)
d .
P(y) = xdir — ap(x)y

est égale a la série convergente

o

N D- amto D, =0 .

m’
m=u

Second cas : Soil & un entier positif. Un systeme fonda-
mental pour (6) est

(e 2] e o]
-~ — n—+a - a— [ . I
B == WA ZE 2, = > [e, + d, loga]a",
n=y0H

n=0
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et, certaines conditions étant remplies, la seconde intégrale
z, ne contient pas de logarithme.

Si dans le développement de z, le terme logarithmique ne
manquait pas, on concluerait de ’équation (7) D, =0, et
puisque I'égalité entre les deux membres restant est impos-
sible, le développement de z, ne renferme pas de logarithme

o o]
al n
By k] == 2 C,x" .

n=y40

Par suite [’équation (8)

Viz) = Dy. A 2t 4+ D, B C "
n=0 n=0

conduit au
TueorEME : L’équation différentielle (3) admet une inté-
grale completement déterminée par la propriété d’étre, dans
le voisinage de x==0, développable en la série convergente
o0

V(’x)::Ekak; B, =0,
k=

=]

et inversement.
Maintenant I'équation (7) pour la valeur x = 0 montre que
le coeflicient de z, ne peut pas disparaitre. Introduisant

dans (8) on aura

D, D;D, — D
Viz) = -0 x) + 3 (),

et I'on est amené au méme théoréme trouvé dans le premier
cas. Cette substitution est seulement impossible si (8) ne
renferme pas z,; mais dans ce cas (8) prouve le théoreme.

Troisteme cas: Supposons o nul ou entier négatif. Le sys-
teme fondamental de (6) est

= o} PR
= DA ", 5 = > [B, + C, log x]x",
n=90 n=y0

et de (8) on tire le
Tneoreme : L’équation différentielle (3) admet une inté-
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grale représentée par la série convergente

[e's}
Vix) = D la, + b, logx]2" .
n=>0
Les considérations faites se rapportent au cas le plus spé-
cial du probléeme suivant: Déterminer le développement en
série d'une intégrale particuliere de I'équation différentielle

m

P(y) =3 pila)a’y' = I aloy(2) + oel@) g2+ o+ g () (1) ,
=0

k=0

oo
p;lx) = 2 ai)\xk .
A=
valable dans le voisinage du point singulier x =0 pour
lequel les intégrales de P(y) = 0 sont toutes réguliéres. On
trouvera les résultats pour le cas général dans le mémoire
cité plus haut.
De la méme maniere jarrive dans ce mémoire a l'expres-
sion en série représentant asymptotiquement une intégrale
particuliére de 1’équation différentielle

. LR
. / . —_ ... P C
P() = 2" pya)y = 1 -xG[CO + L4 ] ,
=0 b
a; a;
1 2
pz<“):az+’;+?+’ a, =0,

quand x grandit indéfiniment en étant positif.

I1

On connait plusieurs moyens pour former une intégrale
définie représentant une solution particuliére de (3). A ce
but conduisent la méthode de la variation des constantes et
un théoréme de Céuchy, voir Comples Rendus, T. 11, p. 2

(1840). Soit
fVV(x ) di
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celte intégrale définie cherchée, il doit étre possible de déter-
miner la constante C telle que l’équation subsiste

Cy, (%) + V{x) :/'W(x, fdt .

Or dans le cas présent il est plus simple de la tirer des équa-
tions

xy’ — ap(x)y = x*.9(x) ,
ay, — aplx)y; =0,

qui donnent
x[y -y =yl =%y 0x)

d [l] . ;ra—'l;cp (1’)
dely, | = xlx)

ou
Vi) [ _ patlgla) .
Y1 (T) X ;/. S B (T) ’ ( )
car on a
y(x) |= ,Cyl(x) + V(x)|* _ V(x) |x
¥1 (%) |, 7y (%) z, I REN

C'est la formule principale et, comme l'équation différen-
tielle (3) joue un role fondamental, je I'appelle équation dif-
férentielle de liaison. .

Dans le mémoire plusieurs fois cité je fais la démonstra-
tion d’une formule analogue pour le cas général d'une équa-
tion différentielle de liaison de n'**° ordre.

Connaissant la forme analytique des fonctions V, y,, ¢ il
s’ensuit : |

TreEorEME : Les deux membres de (9) convergent pour
limx, = 0, si R(a) > 0, R(«) désignant la partie réelle de la
quantité a. . -
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IT1

Les applications de (9) qui suivent résultent de l'introduc-
tion d'un parametre. Je commence par le cas le plus simple :

y — ay = 2%, o(x) , (10)
x ¥
—_—ax x . —at —1
|e V(@) xo__fe 01 (4 dt . (1)
)

Iei V(x) est représenté par la série

V(o] == 2 Akxk+a ,
k=0

si « n’est ni nul ni entier négatif, et si en outre R(z) > 0,

on a
x

6™V (x) = fe“‘“‘.t“—‘.gou)dt . (12)

[ X

0

La condition de convergence étant remplie pour a =1,
on obtient pour
e o]
n
Via) = E A x",
n=y0

la formule

TN (@) = V(0) = [T g(g)de . (13)
0

La relation entre V(x) et o(x) se calcule en employant

dans (10):

)

\
2 Anx"—*_a !
n=0

ce qui donne :

xa_i‘ ?(x) — 2 an"+°‘ = 2 [(ll -+ a) An — aA"__i]x”‘Fa_l ,
n=0 n=)

ou
D, = (n+4 o)A, — eA

(2 n—1 °
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Pour iniroduire le parametre menltionné je pose main-
tenant -

N )
An = 2 [Ln)\ s,
A—=0

ce qui entraine que les «,, et z doivent étre choisis confor-
o o]
mément a la condition que la série > D, 2" soit convergente.

n=0

En faisant usage du tableau suivant:

) — : 9
@y A—0 1 2 3
n=20| a, oy Ao *
n 0 aa,, aag, .
a2+ 1 a 4+ 1
21 0 0 A"y .
(@ 4+ 1)(a + 2)
3 | * * * *
i
on trouve
A, = 2 @, L2
k:()
n o)

— a - )
A, = (¢ 4+ Ljfa + 2) ... (2« + n 2“0)\*‘ ’

=1

¥

n n—1
— % @, n—1 - =

D
"ole+ e+ 2) o tad+n—1)°
et la formule (12) devient

@0

—ax | g (ax)" &
e clax) EF(‘Z-{— n T 1}[)2 ao)\zl}
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Elle est valable pour toutes les valeurs des a,, et z telle que

(azx)”

n__ N On .
D, x —“Z on® ”“’”Z (o 4 1) 2) ... (& 4+ n) (43)

n=y0 A=0 n=o"'

o
solt par rapport & .x une série convergente. Par suite > ao;\z)‘

)\:-_0
est nécessairement une série 4 rayon de convergence non
nul et z une valeur pour laquelle elle converge. Donc

Q0

0 (zx) , .
> o estune série toujours convergente. Pourtant
n=0 ((7. + n = 1)

je distingue deux cas :

or
Premier cas. — Soit >, a, " une série a rayon de con-
A=0

vergence non nul et z une valeur fixe pour laquelle elle con-
verge. A chaque quantité positive ¢ si petite qu'on veut, il
est possible de déterminer l'indice v tel qu'on a pour n >y

2 0)\)1<€'

\=n 1

Il est facile d’obtenir la formule

0 (ax)" % et dt
oA - ax
(ax) n____EOF(Ot T — e ’ '0/‘< >1_a )
(—1)"
— %% _ E I'n 1 — «a ,
’ F \1 _ O( n—() + ) <ax}

par exemple en calculant (12) pour ¢(xr) = 1. Donc le pre-
mier membre de (14) peut s’écrire |
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Cette forme conduit aisément a la valeur limite :

lim L = lim <Z @py z)‘> = 0

X==0 n—ow *A_:_,L

[’équation (14) est valable pour chaque valeur z, pour

laquelle S @y 2" est convergente et pour chaque valeur x
=
qui n’est pas point singulier de I’équation différentielle (10,

c'est-a-dire pour chaque valeur finie &, 2 = oo étant le seul
point singulier. Donc, le point x =« étant atleint tel que
R(ax) > 0, on conclut de

. - —_a S “on(azt)'
.iflfe t(“”ag 2 Fa g a5 )

. 7 _at a()n(ﬂat \
——5[ zzl’a—{—n—{-— 1) dla)

n=—>0

— [2 YK ] llm e"“‘(m)a“—ld((tt) _—glci:r_nx[, ,

le THEOREME @ L egallte

o0 @ aOIZ( \ ‘ | -
Z:)ao) / Llat)® én_ Flatn+1 )%d(at) ; Ra) >0 (16)

0

e o}
subsiste pour chaque valeur z pour laquelle > ayz" est
_ =
convergente. L'intégrale définie dans le second membre

converge au moins pour les mémes valeurs de z.

Dans son mémoire « Surla représentation analytique d'une
branche uniforme d’une fonction monogéne », Acta Math.,
T. 29, M. G. Mittag-Leffler a démontré trois théorémes (A,
B, C du §1) se rapportant & des intégrales de la forme de
I'intégrale définie dans (16). Il est facile d’étendre en suivant
le méme ordre d’idée les autres résullats des §§ 1 et 4 du
mémoire de M. Mittag-Lefller a cette nouvelle intégrale. On
est ainsi conduit au
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THEOREME : L’intégrale

f(z) :fe—'t.t“
0

\ s , M "(1)
possede par rapport a z une étoile de convergence B

L'égalite

2, (Zl)n

2 M'a—+n-+41)

n=—0

dt

FB(I)(z) = f(z)

a lieu partout a l'intérieur de B,

Cette étoile de convergence que M. Mittag-Lefller, dans le
Tome 29 des Acta Math., désigne par B" est identique au
polygone de sommabilité de M. E. Borel.

Par le méme procédé on obtient pour 2 = 1 les formules
(14) et (16) en partant de (13). Une intégration par parties
conduit alors a la formule (16) dans laquelle on a fait « = 0.
C’est la formule célébre de Laplace-Abel-Borel.

Second cas. — Soit % o), 11 une série qui représenle une
A=0 z
fonction f(z) asymptotiquement. C'est une série divergenle
pour chaque valeur finie z. Les considérations [aites dans le
premier cas seront -en défaut, mais c’est M. Borel qui a
remarqué que l'intégrale Laplace-Abel peut pourtant étre
convergente. M. Borel! introduit par définition la valeur de
cette intégrale définie comme somme de la série divergente.
Et M. G. H. Haroy 2 a formulé a cet égard son « principle »:
« If two limiting processes performed in a definite order on
a function of two variables lead to a definite value X, but
when performed in reverse order lead to a meaningless
expression Y, we 'may agree to interpret Y as meaning X. »

Il est curieux® que personne ne semble avoir remarqué la
possibilité d’'une démonstration exacte. Dans le cas présent
il n’est pas nécessaire d’avoir recours a une nouvelle défi-

nition ou & un nouveau principe. Mais les séries conver-

1 Voir p. ex. ses Legons sur les séries divergentes, Gauthiepr-Villars, 1901.

2 Trans. Cambr. Phil. Soc., 19, p. 297, 1904.

3 Comparez la crilique sévére de M. G. MitrAG-LEFFLER, « Sur la représentation arith-
métique des fonctions analytiques générales d’'une variable complexe », Congres intern. des
mathématiciens, Rome, 1908, Atti, 1, et Bull. Americ. Math. Soc., sér. 2. vol. XIV (1998).
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gentes et les séries asymptotiques dans le sens de Poincaré
sont jusqu’a ce jour les seules qui ont un sens arithmétique
défini. La supposition faile signifie, d'apres la définition
introduite par Poincaré: il subsmte pour chaque entier m

I’équation
m 1223 ,1
lim z7 | flz) — a —]:O.
[ 2,3

=P
Donc on écrit I'équation (14) de la maniére suivanle :

[Ena )]
)

m —ax Z
T .€ 5 E
~ (d +n+1

n=g

_om — [z} x—-at o—1 x—az
3z (2] B/e 1 dt—{—:)/.e Ela—{-n—{—

ce quiest une équation exacle. En passant ala limite x= 4 o0 ,
on trouve pour R(a) > 0 et pour chaque valeur finie de z,
excepté z =0,

e at l_o m d(at)

B at\"
j m Qo <T>
0

Or il subsiste pour chaque entier m l’équation

(lt n
o m (l{)”(~ﬁ>
lim 7" flz) e (at)® = dlat){ —
= Of u—oI(a+n+1) la{ =0, {17)

: : : . . :
et c’est 'expression en formule du fait que l'intégrale

at n
K= [e""(an®| 3 <7> ' |
0/. “ ne—o (e 4+ n 1) d(at) (18)
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represente asymptothuement la fonction f(z) de méme que

la série 2 a01~ de laquelle on est parti.
=0 =
Mais il est possible que celte intégrale K converge et

représente une fonction analytique K(z) dans le sens ordi-
naire. Donc on conclut

flz) =K(¢z)+ E |,

ou E est une fonction représentée asymptotiquement par un
développement identiquement nul. Et parce que dans les
calculs faits on n'a pas introduit des parties élrangeres a f(z),

I’équation
flz) = K(z) (19)

sera exacte dans un grand nombre de cas.
La fonction f{z) est représentée asymptoliquement par la
. < 1 ! NP e .
série. 3 aoy 5 lorsque z==r.€' croit indéfiniment suivant
=0 -

un rayon déterminé. Pour les séries asymptotiques dont on
fait usage dans la théorie des équations différentielles, une
telle égalité asymptotique

flz) o N ayy —
).‘;0 0 z)k

r tendant vers l'infini, est unique pour tous les arguments
compris dans un certain angle

‘61<v‘L:ar‘gz<62

Donc I'équation (17) aura lieu dans le méme angle.
La série sous le signe d'intégration

R BT

~

. . : at
est convergenle ou représente une fonclion g<7> asympto-

tiquement.

i

T3 at L 1 -
Je suppose, faisant — = u =p.e", que la serie
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soit convergente et que la fonction g(u) quelle représente
soit holomorphe dans 'angle

0 < ¢ <N, (N nombre positif arbitrairement grand)

o, <9 < 9 -

Ainsi u = o est, pour 9, << ¢ <"y, le seul point singulier
possible. _

En outre, je suppose que, u = oo étant singulier, g(u) soit
tel que l'intégrale (18) converge pour

o, < argu < 9, ,
?
ou, ¢ ayant 'argument 0,

o, < arga — argz < 9, ,
arga — o, < argz < arga — 9; .

: .V’
— r.e'%? est

N

Il résulte que l'intégrale (18) converge si
une valeur quelconque dans I'angle

arga — 9, < ¢ <arga — g, ,

e <r<w quelque petit que snit le nombre positit ¢. Dans
cet angle l'intégrale (18) représente une fonction analytique
holomorphe.

Dans le cas le plus simple et tres important g(u) est fonc-
tion rationnelle, holomorphe pour « = . Sous cette condi-
tion 'intégrale (18) est convergente dans tout le plan de la
variable z saul peut-étre sur quelques rayons limitant un
nombre fini d’angles. Les fonctions qu’elle représente, holo-
morphes pour tout point z intérieur a ces différents angles
sont en général des fonctions analytiques différentes.

L’exemple suivant montre le grand avantage que présen-
tent les formules (16) et (19).

On sait par la méthode Poincaré-Horn, que ['équation
différentielle

x?y" 4+ xy’ + (2 — n¥y =0

admet un systéme fondamental qui, pour toutes les valeurs
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finies de n réelles ou complexes, est représenté asymptoti-
quement par les séries

1 . 1\
eix © F()\—{-n—{—‘é")F(/\—n—F—i) 1

:)‘I(x): —_— P R .-
Viey=op <n + %)F(-— n + é)F(l + 1) (2ix)*
1 1
=i o F(k-—}—n—}—?)F()\——n—i——Q—) 1
e (x) = >

N V—ix}gﬂr(n o+ %) I‘<— n—{—%)f’(k 41y (—2in)k |

lorsque r» = |x| augmente indéfiniment, si
pour la fonction y,(x) : — n 4 & < argax < 2r — 9,
» » Yo lx) - + 8 < argx < 3n — 0,

le nombre positif ¢ étant aussi pelit qu'on le veut.

1 ' .
Je pose @ =1, « = n — 5 el a cause de la formule

1
- F(}—-—n—}—é—) L1
2 (— u))‘ =14+ u 2;

4=0 F(—— n -+ %)FO\ + 1)
(16) donne

d’ou

o L] == 1 1+ u?) °“d
I (n —+ 3 Z

W MEY == - 1 /le_x“(l + u? 2du
I' (n -+ §> il

lci le chemin d'intégration doit atleindre l'infini tel que

R (xu) > 0.




N R A

FONCTIONS ANALYTIQUES 145

Enfin les relations

montrent qu’on est arrivé a la représentation par intégrales
définies des fonctions cylindriques de troisiéme espéce?!
(Hankel).

On voit que la formule (16) et d’autres qu’on obtient par le
méme procédé fournissent un moyen indispensable pour des
calculs effectifs, notamment pour les séries dérivant des
équations différentielles linéaires du type hypergéométrique.

v

Je reprends les considérations du commencement de III,
en disposant des constantes a,; comme il suit

@y A—0 1 2 3
n—20 0 0 0 0
Ay
1 | 0 0 0.
a.a a.a
2 00 01 ")
e+ Na+2? (@t it ’ .
3 T . a’.a,, a*. a,, 0
(e +1)a+2)(a+3) (a41a+2)(a+3) (a+1)at2)a+3)

Il en résulte

A, =0 ,
i n—1
a" . 2 aoy:“
A — =0
"= (a1 (o + 2) |
cor {0 4 nj
D, =0 ,
n—I1 n—1
@ * 00,71—1' “‘"

—_—

D =
n (¢ + 1) (a4 2) ... (& 4 1)’

t N. NieLseN. Handbuch der Theorie der Cylindcrfunktionen.

L’Enseignement mathém., 19¢ année, 1917. | 10
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et la formule (12) devient

—az | & (ax)* ! n
e (ax) )‘go (a+)\+1)|:2 a()nz

n=—0

Cette équation est démontrée pour R (a) > 0, mais on voit
aisément qu’elle reste valable pour « =— 0. En outre ona par
rapport aux a,; et z a remplir la condition que

w © @ a (azx))‘
N D 2" =« % ,
— 1§0(a 4+ 1) ... (a 4+ 2)

B} o
soit une série convergente. Elle est satisfaite si 3 a¢, z* est
A=0 '

une série convergente; elle peut ’étre encore pour une infi-

nité de séries asymptotiques. Il est permis de donner dans
© N

(21) &4 & une valeur finie quelconque, si 3 @) z" est conver-
=0

gente, mais si c’est une série asymptotique il y a des res-

trictions spéciales pour chaque choix des constantes ay; .

De la définition de la notion limite on conclut que pour
limx = 4 « les deux membres de (21) convergent pour
les mémes valeurs de z.

L’intégrale du second membre a été considérée dans III.

Cette formule (21) danslecas a =1, a = 0, lim v = +
est la découverte de M. E. Borel! et M. G. Mittag-Leffler en
parle a plusieurs occasions *

Il me semble du plus haut intérét qu’il ne subsiste pas
seulement pour lim x = + <« mais z étant fixé pour chaque
valeur x qui est point régulier de la fonction analytique dé-

@4y (azax)h

fini par la série de Taylor 1§0m

gence fini plus grand que zéro.

a rayon de conver-

1 Voir: Legcons sur les séries divergentes, Paris, 1901.
2 Par exemple, Sur la représentation, etc., Acta Math., T. 26 (1902), p. 374.
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v

Comme derniére application de la méthode exposée je
reviens a ’équation (3) poura = 1.

d . o
xdf‘l———xp(x;y:x.cp(xj § (22)
p(.r] = 3 bnx" ,
n=>0

olx) = 2 D, xm

m=0

plx) et ¢(x) étant des séries de Taylor a rayon de conver-
gence non nul. L'intégrale del'équation sans second membre

est
y (x) = e =¥ Einja"™ , (4)
n=0

et il reste a calculer les différentes parties de la formule (9)
pour le cas présent.

V(x) \“ . f@(t)dt
‘ =S

Lo

et 'on obtient

D,=(n+ 1A, — _EJ by A .
A=

) [« o]
Je dispose des A, = 3 @,;z" de la maniére suivante :
=

@y | A=10 1 2 3
n=20 0 0 0 0
1 E(1)a, 0 0 0

- E{2)a, E(2)a, 0 0

3 E3)a, E(3)a, E(3)a, 0
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d’ou -

n—1
A =E@n 3 arzr,

n
r=20

et par suite

= (n41) Eaz—zl)n JE (A

r=90

—1
2 a.z’ g

r=>0

n—1 ) n=1-r
:(n—}—l)E(n-{-i)anz"—{—Earzr[(n—{— En+1)— > b En—g]
r=0 =0

n
—_— r
e 2 dn, P A3

r=0

Donc on est arrivé a I’équation

o n—1

2 E(n)z" ( 2 arzr>
n=1 r=0
S E(n)2"

n=—0

S dt
tn n() 0+dnlaz+ + n,nnn]i—“

23
71 (¢) 23]

-/

Pour le moment je considere cette formule seulement en

n

supposant v, (x) 2 E(n)x" fonction entiére transcendante.

n=>0
Dans ce cas M. Mittag-Lefller! donne pour l'expression a
gauche dans (23) la valeur

< r 1 1 F(z.y) x
£ z  — R . 2
Sl —mnm /=)y

ou

Le contour S doit étre la limite d’'une surface simplement

! Voir: Sur la représentation, ete., Acta Math., T. 29, p. 170.
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connexe pour laquelle la fonction F(z.y) reste réguliére; il
doit étre parcouru dans le sens direct et embrasser les deux
points y = 0, y = 1. |

En discutant l'intégrale curviligne M. G. Mittag-Lefller

a démontré que
n—1
S B <2 )
lim 2= =1 = FA

F=eo 2 E (n) 2"

(%) (29)

est uniformément convergente pour tout domaine intérieur
a I'étoile principale A et représente la branche fonctionnelle
FA(') partout a U'intérieur de cette étoile, silafonction entiére

2 E(n)x" est choisie telle que:

n=>0
x.u

S plE)aE— [p(E)dE

Iim — lim " 0 — 0
z=w J1lX) Z=o0

Iy (x.u)

d’'une maniére uniforme tant que « appartient 4 un domaine
fini situé en dehors de la partie de I'axe réel positif compris
entre x = 1 et l'infini. Cette condition est satisfaite par toute
fonction entiére

fp(';') df = T (x) : (26)

possédant la propriété :
lim T(r.e?) =0
r——ae
uniformément pour
e < o< 2 — &,

¢ étant un nombre positif arbitrairement petit,

lim T (r. ei?) = pour o=20.
r—o

En outre M. Mittag-Leffler démontre que la série

EE <§]az]>

n=1 r=0
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est pour toute valeur de z une série toujours convergente
par rapport 4 x. Elle est, x étant fixé, uniformément con-
vergente pour un domaine quelconque de la variable z.
plxr) = T'(x) est fonction entiére transcendante, donc
o(x) = V'(x) — p(x).V(x) est une série de x et de z qui
partage avec V(r) les deux propriétés exposées il y a un
moment. La fonction entiére transcendante y,(z) — e ne .
s’annule pour aucune valeur finie £ et par suite l'intégrale
dans (23) a un sens pour chaque valeur finie x.

En passant a la limite on est conduit a cause de (25) a la
formule

® ; . dt .
f Et‘[dn,oao+dn,1alz+... +dn’nanzn]z———-:PA(z) . (27)
0

n=—0 5 J1 (t)

L’intégrale converge uniformément pour tout domaine
intérieur a ’étoile principale A. C’est une généralisation de
Iintégrale Laplace-Abel, de l'intégrale de M. Mittag-Leffler
et une formule analogue a la troisieme des formules (125)
p. 177 démontrées par M. Mittag-Lefller (Acta Math. t. 29).

Je termine par la remarque que les applications de la mé-
thode exposée peuvent étre augmentées considérablement,
car elle contient trois éléments arbitraires: 1. I’équation
différentielle de liaison d'ordre quelconque; 2. le pointi z,,
qui peut étre point singulier de cette équation différentielle
en lequel toutes ses intégrales sont réguliéres ou point sin-
gulier en lequel les intégrales sont irréguliéeres; 3. le che-
min d’intégration.

D’autres résultats que jai obtenus paraitront dans la

Vierteljahrsschrifi der naturforschenden Gesellschaft in
Zirich 1.

Kiisnacht (Zirich), octobre 1916,

1 ¢ Neue Entwicklungen iiber die Abel’sche Integralumkehrungsformel. » Jahrgang 62
(1917).
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