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ditifs à ses élèves avant que ceux-ci se fassent une idée claire du

but à atteindre.
B. En classe, l'enfant apprend moins à observer et à chercher

qu'à répondre à des questions prévues.
C. Faire débiter à un élève une démonstration dont il ne sent

pas la rigueur, c'est lui demander de convaincre les autres avant

qu'il soit convaincu lui-même.
D. On se hâte beaucoup trop de mettre l'écolier en mesure de

montrer qu'il sait quelque chose.
E. On lui enlève sa liberté d'esprit en le traitant comme un

prévenu qui, à chaque instant, peut être pris en flagrant délit
d'ignorance.

F. Parles frontières trop nombreuses qu'elle trace tout de suite
entre les matières de l'enseignement, l'Ecole supprime les
relations qu'il y a entre les phénomènes et compromet l'éducation
intellectuelle de ses élèves.

G. La somme des connaissances qu'un écolier doit acquérir
dans un temps donné ne dépend ni de ses goûts, ni de ses
aptitudes.

CHRONIQUE

Gaston Darboux.

La science mathématique vient de faire une perte cruelle en la

personne de l'un des plus éminents géomètres de notre époque,
M. Gaston Darboux, secrétaire perpétuel de l'Académie des
Sciences pour les sciences mathématiques, doyen honoraire de
la Faculté des Sciences de Paris, fondateur et rédacteur du Bulletin

des Sciences mathématiques et astronomiques, décédé à Paris
le 23 février 1917.

Né à Nîmes le 13 août 1842, Jean-Gaston Darboux fut reçu
premier, en 1861, à la fois à l'Ecole Normale supérieure et à l'Ecole
Polytechnique. Il opta pour la première; il y fut admis à l'agrégation

en 1864 et docteur ès sciences en 1866 sur la présentation
de sa thèse sur les surfaces orthogonales.

D'après la Notice que M. Ern. Lebon consacre à Darboux dans
sa belle collection des Savants du Jour1 et à laquelle nous
renvoyons nos lecteurs, Darboux débuta dans l'enseignement comme
professeur suppléant de mathématiques spéciales, à Paris, au
Lycée Saint-Louis (1864-1865), puis au Lycée Louis-le-Grand
(professeur de 1868 à 1872). En 1872 il devient maître de confé-

1 Gaston Darboux. Biographie, Bibliographie analytique des écrits, par Ern. Lisbon. —
Gauthicr-^Villars. Paris, 1910.
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rences à l'Ecole Normale supérieure. 11 supplée Joseph Bertrand
dans sa chaire de Physique mathématique au Collège de France
et Chasles pour son cours de Géométrie supérieure à la Faculté
des Sciences, puis, en 1881, il succéda à ce dernier comme
professeur titulaire. Depuis cette même année il remplit aussi les
fonctions de maître de conférences à l'Ecole Normale d'enseignement

secondaire pour les jeunes filles, à Sèvres. Il fut doyen de
la Faculté des Sciences de 1889 à 1903. Admis à l'Académie des
Sciences en 1884, en remplacement de Puiseux, il devint secrétaire

perpétuel en 1900 comme successeur de Joseph Bertrand.
Ce que fut Darboux comme professeur et comme savant, les

savants les plus compétents l'ont dit, en 1912, à l'occasion de son
jubilé scientifique1. M. P. Appell a rappelé «l'influence décisive
sur le développement des mathématiques en France » exercée par
Darboux et l'a signalé comme « le véritable initiateur de l'enseignement

de la Mécanique rationnelle et de la Mécanique analytique,
si élevé et si solide, qui se donne aujourd'hui dans toutes les
universités françaises». En parlant de Darboux comme successeur
de Chasles, M. Appell s'est exprimé en ces termes : « Vous
développez alors l'enseignement dans une voie nouvelle, où Bonnet
l'avait déjà engagée, la voie de la géométrie générale, considérée
comme application de l'analyse dont les fondateurs furent Euler,
Monge et Gauss; c'est dans cette chaire, où vous professez depuis
trente-trois ans, que vous avez fondé cette brillante école de
géométrie, dont les disciples sont maintenant répandus dans tous les
pays, et que vous avez développé les méthodes et les résultats qui
font de vous un créateur et qui préserveront votre nom de l'oubli. »

A côté de ses remarquables travaux en Géométrie supérieure,
dont nous nous bornerons à rappeler ici ses magistrales Leçons
sur la théorie générale des surfaces et les applications géométriques
du Calcul infinitésimal et ses Leçons sur les systèmes orthogonaux
et les coordonnées curvilignes, Darboux laisse des recherches
fondamentales en Analyse mathématique, en Algèbre, en Mécanique
analytique et en Physique mathématique.

Par ses fonctions de membre du Conseil supérieur de l'Instruction

publique (depuis 1888), Darboux a exercé une grande
influence sur le développement de l'enseignement scientifique en
France. C'est en qualité de vice-président de ce Conseil,
représentant le ministre de l'Instruction publique, qu'il présida, le
2 avril 1914, la séance générale d'ouverture de la Conférence
internationale organisée par la Commission internationale de
l'enseignement mathématique2. H. F.

1 Les discours et les adresses ont été reproduits en appendice dans le volume publié par
le Comité du Jubilé sous le titre Gaston Darboux, Eloges académiques et discours, Librairie
Hermann & fils, Paris, 1912.

2 Voir le discours d'ouverture dans YEnseign. mathcm. du 15 mai 1914.
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Société mathématique suisse.

Schuls, 8 août 1916.

La Société mathématique suisse a tenu sa septième réunion
ordinaire à Schuls (Basse-Engadine), le 8 août 1916, sous la présidence

de M. le prof. Marcel Gro^smann (Zurich), à l'occasion delà
réunion annuelle de la Société helvétique des Sciences naturelles.
Quatorze communications ont été présentées à la Section
mathématique ; en voici les résumés :

1. — M. le prof. K. Merz (Coire). — Note historique sur la
surface de Steiner. — Steiner n'a rien publié sur la surface qui porte
son nom ; la méthode qu'il a employée pour l'engendrer m'a été
communiquée par M. le prof. Geiser. Schröter simplifie cette
méthode en remplaçant la gerbe de quadriques, utilisée par
Steiner, par un réseau de coniques. On doit à Kummer la première
étude analytique. Voici un tableau1 résumant l'historique delà
surface :

Steiner (Rome 1843) j I860
Schröter. 1863

Cremona 1864

Reye 1867

Sturm 1871

Berner 1864

Reye 1867

Stahl. 1885

Reye 1896

Timerding 1898

Kummer 1863 — Weierstrass
Cayley 1864

Clebsch 1867

Laguerre. 1872

Gerbaldi 1881

Lacour. 1896

Bertini 1872

Röhn. 1890

Berzolari. 1892

Beltrami 1879

Les travaux synthétiques sont mentionnés dans la première
colonne; les travaux analytiques basés sur une représentation
plane, dans la troisième ; ceux qui emploient une transformation
quadratique ont été intercalés dans la deuxième colonne; enfin,
les quatrième et cinquième colonnes renferment les travaux qui
conduisent à la théorie de certaines formes biquadratiques en
rapport avec cette surface.

Le développement historique montre comment le problème,

1 Voir les indications bibliographiques complètes dans : K. Miîrz. Parallelflächen u. Cen-
tralfläche eines besonderen Ellipsoïdes u. die Steinersche Fläche. Beispiel einer quadratischen

Transformation. — Aux indications données dans ce dernier travail, il faut ajouter
les suivantes : Lacuiîrrk, Œuvres II, pages 281, et Brltrami, Opere, 111, p. 168. — Voir
aussi : Verhandlungen der schw. naturfofîsch. Gesellschaft, 1914, II, p. 102.
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aperçu à la suite d'une vision géométrique géniale, se transforme
peu à peu en un problème purement algébrique. La connaissance
géométrique de la surface apparaît comme l'intuition qui guide à

travers le dédale des relations arithmétiques et conduit à des
résultats nouveaux et féconds.

2. — M. le prof. L. Crelier (Berne-Bienne). — Puissance d'une
droite par rapport à un cercle.

I. — Puissance. — Théorème : Etant donné tous les couples de

tangentes à un cercle que Von peut mener par les dicers points
d'une droite quelconque du plan de ce cercle, le produit des tangentes
des demi-angles de la première tangente et du prolongement de la
seconde tangente de chaque couple avec la droite donnée est constant.

Cette constante s'appellera la puissance delà droite par rapport
au cercle et nous aurons :

oc 7Z — a' ß 7z — ß' r 4- p
ig 2

• * —2"" tg 2 •tg -f- ••= y^p =const-

a angle de la première tangente avec la droite
a' » » deuxième » » »

r - rayon
p distance du centre à la droite.
II. — Faisceaux. — Nous appellerons faisceaux de cercle F3 ou

F4 l'ensemble des cercles admettant un même premier centre de
similitude extérieur ou intérieur par rapport à tous les cercles.
Nous aurons :

a) Etant donné deux faisceaux F^ et F^ de même centre radical
principal S, les points de coupe des tangentes extérieures communes
de deux cercles quelconques des faisceaux, pris l'un dans F315 et

l'autre dans F32) sont tous sur une même droite appelée l'axe radical
principal des faisceaux. Les points de coupe des tangentes
intérieures communes des mêmes cercles sont tous sur une autre droite
appelée Taxe radical secondaire des deux faisceaux.

Soient C2 un cercle de F^1} et C3 un cercle de F32). Leurs
tangentes extérieures communes se coupent en A. La droite SA est
de mêmes puissances relatives par rapport à tous les cercles
de Fg1} et par rapport à tous ceux de Ff\ Elle est encore de mêmes

puissances relatives par rapport à C2 et C3 Les puissances relatives

par rapport aux cercles de F3X) sont ainsi les mêmes que celles

par rapport aux cercles de F31}, puisqu'elles sont déterminées par
C2 et C3.

La droite SA est de mêmes puissances relatives par rapport à

deux cercles quelconques pris, l'un dans F^et l'autre dans F32).
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Elle passe par les premiers centres de similitude correspondants,
autrement dit les points de coupe des tangentes extérieures
communes aux deux cercles sus-indiqués sont tous sur SA.

Le même raisonnement subsiste avec les tangentes intérieures
et donne une nouvelle droite SD.

SA ou ai devient Y axe radical principal des deux faisceaux SD ou

a2 Yaxe radical secondaire. Si nous désignons par et F3 ' les

faisceaux compris dans les angles opposés des précédents, ax

est aussi l'axe radical principal pour F31}' et F g*0' et l'axe radical
secondaire pour F^ et F32>. Il en est de même pour a2.

b) Etant donne deux faisceaux F41} et F^2), les points de coupe
des tangentes extérieures communes à deux cercles pris, un dans

F^ et l'autre dans F42), sont tous sur une même droite, l'axe radical
principal des deux faisceaux. Les points de coupe des tangentes
extérieures communes à deux autres cercles pris9 l'un dans ïA1} et

l'autre dans F44y ou l'un dans F41)r et le second dans F42), sont également

tous sur une même droite, l'axe radical secondaire des deux
faisceaux.

III. — Involutions. — Nous considérerons maintenant un point
quelconque P du plan d'un faisceau F3 ou F

4 complété par le
faisceau conjugué F3 ou F4, et par ce point nous mènerons deux
tangentes à chaque cercle du faisceau. Soient ti et 12 les deux
tangentes à l'un quelconque des cercles. La puissance absolue de la
droite PS a sera la même par rapport à tous les cercles du
faisceau, F3 et la même par rapport à tous les cercles du faisceau
complémentaire F^.

Si nous posons : angle [tA a) a et angle t± a) a', nous
aurons

a tu — a'
Puissance de a ~ tg — ig

Avec les deux tangentes d'un autre quelconque des cercles du
faisceau nous aurons également

_ a - — a' ß tu —Puissance de a tg — tg tg ~ tg —î— constante.

Les bissectrices des angles compris entre a et tl ou a et le
prolongement de t2 donnent lieu à un produit de tangentes trigono-
métriques constant; ces bissectrices forment une involution dont
l'axe principal en PS a.

Théorème. — A tout point P du plan d'un faisceau F3 ou F4 de
centre radical principal S correspond une involution de rayons.
Les rayons conjugués sont les bissectrices des angles compris entre
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Faxe PS a et la premiere tangente menée de P à chaque cercle
du faisceau ; puis entre a et le prolongement de la deuxième
tangente menée de P au même cercle. Les rayons doubles sont toujours
réels dans le plan d'un faisceau F4 et dans l'angle intérieur du
plan d'un faisceau F3. Dans son angle extérieur ils sont
imaginaires. Les rayons doubles réels sont les bissectrices des angles
compris entre Faxe a et les tangentes des deux cercles du faisceau
passant par le point considéré.

3. — M. le prof. 0. Spiess (Baie). — Problèmes de fermeture
dans les courbes convexes. — Soit C une courbe fermée quelconque

; soit k une construction qui fasse correspondre chaque
point A de la courbe à un autre point Al ; admettons en outre que

1° A et Aj se déterminent l'un l'autre de façon réciproque et
univoque.

2° Si A décrit la courbe dans un certain sens, Al la décrit en
sens contraire.

La construction K « ferme » quand A1 A (points fixes) ; elle
ïc ferme » si on l'exécute deux fois, quand A2 A, c'est-à-dire
quand A et A1 se correspondent mutuellement (points mutuels).
Le problème de fermeture consiste à déterminer les points fixes et
les points mutuels. On reconnaît ce qui suit :

I. — Il y a toujours exactement deux points fixes ; ils séparent
chaque paire de points correspondants A et A,.

II. — Le nombre des points mutuels peut être fini ou infini.
III. — Si A est un point quelconque de C (ni point fixe, ni point

mutuel), les points A, Ax, A2, A3 obtenus par la répétition
de K, sont tous différents et tendent alternativement vers les
points limites

lim A9£ — a lim A0^ — cq
k= 00 k=so

Si a, =7^ a a et a, sont des points mutuels ; si a, a a est un
point fixe.

Dans la pratique ces points peuvent donc être déterminés par
une répétition finie de k. La série de points A, A_ A_e), A__3,

obtenue par la construction inverse K"1 conduit à la même
conclusion.

Lorsque C est convexe, on peut indiquer un grand nombre de
ces constructions k. Soit les n points P1? P P3... P dont un
nombre impair sont à l'extérieur de C; on mène AP, jusqu'à son
deuxième point de coupe A(1) avec C, — A(1)Pt, jusqu'à A(2), etc. ;

le point A^ A, possède avec A les relations exigées.
On obtient ainsi par exemple, le théorème : « Dans chaque

courbe convexe (sans angle) on peut inscrire deux polygones
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impairs dont les côtés ont des directions données (en particulier,
par exemple, une infinité de paires de triangles réguliers).

Les points peuvent être remplacés par des courbes convexes
TÂ: auxquelles on pourra mener des tangentes. De plus ces
constructions sont soumises à la transformation dualistique.

4. — M. le prof. C. Cailler (Genève). — Sur la Géométrie réglée
imaginaire. — Dans ma communication de Genève, j'ai entretenu
la section mathématique de la géométrie des corps solides. De
nouvelles recherches dont j'expose les résultats, avec tous les
détails nécessaires, dans un mémoire actuellement en cours de

publication dans les Archives de Genève, m'ont amené récemment
à développer, sur l'ensemble du sujet, un point de vue inédit. Je

désire en dire un mot aujourd'hui.
D'après cette nouvelle théorie, la géométrie des corps solides

se confond avec la stéréométrie ordinaire, quand on prolonge
celle-ci dans le domaine complexe. La première géométrie est
simplement l'aspect réel de la géométrie ponctuelle imaginaire.

Le corps solide est le pendant réel du point imaginaire.
Le pendant réel du plan imaginaire est la figure qu'on obtient

en faisant chavirer un corps solide fixe autour de toutes les
droites de l'espace ; j'appelle vrilloïde l'ensemble ainsi engendré.

Enfin si on fait tourner et glisser un corps solide le long d'un
axe fixe, on définit une vrillej c'est l'apparence réelle de la droite
imaginaire.

Les propriétés manifestées par le corps solide, le vrilloïde, et la
vrille sont identiques à celles du point, du plan et de la droite de
l'espace ordinaire, sauf en ceci que, dans les relations métriques,
des quantités complexes se substituent aux quantités réelles. La
place me manque pour justifier ici cette assertion. Je veux seulement

entrer dans quelques détails touchant la Géométrie des
vrilles, laquelle représente pour la nouvelle théorie, ce qu'est la
géométrie réglée par rapport à l'espace ordinaire.

L'espace réglé est de la quatrième dimension, l'espace vrillé de
la huitième. Pour transformer les unes dans les autres toutes les
vrilles de l'espace il faut disposer des ce 12 mouvements complexes
de l'espace imaginaire; les mouvements réels ne transforment une
vrille donnée qu'en cc(5 vrilles nouvelles seulement.

Toute droite possède six coordonnées plûckériennes l\ m, n, p,
q, r, liées entre elles par la relation

lp -j- mq -f- mr — 0

Toute vrille possède de même 12 coordonnées plûckériennes



94 CHRONIQ UE

V, l'\ m\ m", nj /i", p\ p'\ q\ qr% /•", qui satisfont trois relations
homogènes

VI" + m'm" 4- r'r" 0

Vp' — l"p" -f- m'q' — m"q" + n' r' — n" r" — 0

Vp" + Vf + m'cf + m"q' + n'r" + n"r' 0

lesquelles restent invariantes dans les x 12 mouvements complexes.
La forme fondamentale, en Géométrie réglée, est le complexe

linéaire de Plticker et Chasles, dont l'équation dépend linéairement

des coordonnées l, m, n, p, q, r.
De même dans l'espace vrillé, la forme fondamentale, qui fait

symétrie au complexe, est une heptasérie, d'équation

a"l' -j- a'I" + b"nV 4- b'm" -f- c"n' 4~ c'/l" 4" d"p'
d'p" -j- e"q' 4- e'q" 4- f"r' 4- i'r" — 0 •

L'interprétation géométrique de cette condition est analogue à

celle du complexe en Géométrie réglée. Elle est seulement plus
compliquée. Au lieu de la distance et de l'angle qui définissent
ensemble Vintercalle de deux droites quelconques, une nouvelle
notion s'y rencontre : celle des deux distances conjuguées qui
expriment de même l'intervalle entre deux vrilles.

J'ajoute que si on cherche à déterminer dans l'heptasérie les
vrilles qui renferment un corps donné à volonté, les axes de ces
vrilles décrivent un complexe linéaire F, lequel est ainsi associé
d'une part à l'heptasérie, de l'autre au corps donné.

Il existe seulement ce4 complexes F de cette espèce, la constitution

de cette famille de complexes, de second ordre, permet de
définir géométriquement toutes les vrilles qui forment l'heptasérie

linéaire fondamentale.

5. — M. le prof. F. Rudio (Zurich), donne un aperçu général de
l'état actuel de la publication des œuvres complètes d'Euler.

6. — M. le prof.-Dr M. Grossmann (Zurich). — Remarque
concernant la théorie générale de la relativité. — M. Albert Ein stein r
qui a établi avec MM. Lorentz et Minkowski la théorie de la
relativité, vient de mener à bien, d'une manière absolument satisfaisante,

la généralisation complète de cette théorie.
Il en résulte maintenant la covariance générale des équations

décrivant la marche des phénomènes physiques ainsi que celle
des équations différentielles qui déterminent le domaine de la
gravitation. Les coordonnées de l'espace et du temps perdent
ainsi le dernier reste de leur signification intuitive ; elles se
réduisent entièrement à des paramètres servant à la détermination
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du point dans l'espace à quatre dimensions dont la géométrie
différentielle représente les phénomènes physiques. Le résultat
devient encore plus éclatant lorsqu'on le compare aux idées que
Riemann développait en 1854 dans son discours inaugural. (Voir
l'exposé détaillé de la théorie dans : A. Einstein, Die Grundlage
der allgemeinen Relativitätstheorie ; chez Joh. Amb. Barth.)

7. — M. le prof.-D' H. Weyl (Zurich). — he problème de VAnalysis

situs. — L'Analysis situs étudie les propriétés dont jouissent
les variétés continues indépendamment de toute considération
de mesure. On y distingue actuellement deux manières de voir,
l'une se rattache à la Théorie des ensembles (voir les travaux de

Brouwer), l'autre à XAnalyse combinatoire (voir l'article Dehn et
Heegard dans l'Encyclopédie). Pour illustrer le sens de ces deux
méthodes et leurs relations mutuelles, l'orateur reprend le
problème spécial de l'Analysis situs qui joue un rôle décisif dans la
théorie de Riemann des fonctions algébriques : la détermination
du nombre de connexion de variétés fermées à deux dimensions.

Par la décomposition d'une telle variété en un nombre fini de
surfaces élémentaires surgit un polyèdre (Möbius); on décompose
encore, pour plus de simplicité, chaque polygone en triangles ;

après en avoir désigné chaque sommet par des symboles quelconques,

par exemple par des lettres, on peut disposer tous les triangles

dont se compose la surface en un tableau où chaque triangle
est caractérisé par la donnée de ses trois sommets. On obtient
ainsi le « schéma » combinatoire de la surface. Deux schémas
proviennent de la même surface par des triangulations différentes
s'ils sont « homéomorphes », c'est-à-dire si on peut les ramener
tous deux à un même troisième schéma en décomposant encore
les deux surfaces. L'homéomorphie est une relation purement
combinatoire entre les deux surfaces. Le principal invariant de
ces schémas au sens de l'homéomorphie est le nombre de
connexion — k — e — d + 3 [k nombre d'arêtes, e nombre de
sommets, d nombre de triangles); pour des surfaces sans anse,
ce nombre est i (Théorème d'Euler sur les polyèdres).

Mais pour établir rigoureusement que le nombre de connexion
ainsi obtenu est un invariant (au sens de l'Analysis situs) de la
variété à deux dimensions primitivement obtenue, il faut recourir
à des considérations d'un genre tout différent, basées sur les
principes de la Théorie des ensembles. Il faut d'abord fixer
exactement la notion de variété à deux dimensions ; ensuite, pour
obtenir une définition du nombre de connexion indépendante de
chaque triangulation, on peut suivre un chemin qui est, dans
l'Analysis situs, l'analogue de ce qu'est dans la théorie des fonctions

la démonstration utilisée par Weierstrass dans la théorie
des intégrales abéliennes : déduire la nature et les relations des
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chemins d'intégration de la manière dont les intégrales se
comportent.

C'est ce qui fut effectué en détail dans cette communication.

8. — M. le prof. L.-G. Du Pasquiek (Neuchâtel). — Sur
Varithmétique généralisée. — Soit une infinité de complexes ci n
coordonnées tels que [a0, ax, an), où a0, aon représentent des
nombres réels. On érige une arithmétique et une algèbre généralisées

portant sur ces éléments en définissant, sur ces complexes,
Yégalité et deux opérations qu'on appellera addition et multiplication,

par analogie avec l'arithmétique ordinaire. Ces trois définitions
initiales sont arbitraires, ce qui n'empêche pas les opérations qui
en résultent d'être soumises à certaines lois fondamentales. L'orateur

cite les dix lois fondamentales qui caractérisent l'arithmétique
et l'algèbre classiques et rappelle le théorème établissant

qu'une nouvelle extension du domaine des nombres, au delà des
nombres complexes ordinaires, n'est possible qu'au prix de
l'abandon d'une ou de plusieurs de ces lois fondamentales. Le
développement pris jusqu'ici par l'analyse mathématique montre
que les lois d'associativité et de distributivité sont les plus
importantes. En maintenant ces lois et laissant tomber seulement la
commutativité de la multiplication et l'exclusion des diviseurs de
zéro, on arrive aux systèmes des polytettarions. Posant entre les
coordonnées des tettarions certaines relations appropriées, on
obtient d'autres systèmes de nombres hypercomplexes, par
exemple les quaternions, comme cas particuliers de certaines
classes de polytettarions. Les tettarions comprennent, comme
sous-systèmes, tous les systèmes possibles de nombres hypercomplexes

à multiplication associative et distributive.
Parmi les connexions remarquables entre certaines lois

fondamentales régissant les opérations de l'algèbre généralisée, et les
propriétés arithmétiques des domaines où ces lois sont valables,
citons cette curieuse relation: soit un domaine de nombres hyper-
complexes entiers, comprenant des complexes irréductibles, ou
premiers, et a un complexe entier non irréductible de ce domaine.
On pourra mettre a sous forme d'un produit de facteurs irréductibles,

en imposant à ces derniers de se suivre dans un ordre tel
que leurs normes suivent un ordre fixé arbitrairement pour les
facteurs premiers de la norme N (oc) du complexe entier donné oc.

Cette décomposition de a en facteurs premiers et plurivoque ou
unique, suivant que la multiplication, dans le système envisagé,
est commutative ou ne l'est pas.

9. — M. G. Pôlya (Zurich). — Un pendant du théorème
d'approximation de Liouville dans la théorie des équations différentielles.
— Soit oc un nombre irrationnel et soit rn celui des nombres
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rationnels de dénominateur ne dépassant pas n qui est le plus
voisin de «; d'après le théorème de Liouville la suite convergente

pour toute valeur de a

ne peut pas converger avec une rapidité arbitraire si a satisfait
à une équation algébrique à coefficients rationnels.

De même qu'au nombre a correspond la suite [1], on peut faire
correspondre à toute fonction entière f{x) la série de Taylor qui
converge vers elle. Si f{x) satisfait à une équation différentielle
algébrique à coefficients rationnels, la série de Taylor de f[x) ne
peut pas converger avec une rapidité arbitraire. Comme la série
de Taylor, pour des fonctions entières, converge d'autant plus
vite que la valeur absolue de la fonction augmente plus lentement,
on peut énoncer aussi le théorème comme suit : Si une fonction
entière satisfait à une équation différentielle algébrique, sa valeur
absolue ne peut pas croître aussi lentement qu'on voudra.

Le conférencier présume ce théorème, il en pose la démonstration

comme problème, toutefois la démonstration est déjà établie
sur plusieurs points importants.

En s'appuyant sur des travaux de MM. Hurwitz et Perron, le
conférencier a obtenu certains résultats, par exemple :

La fonction entière de x

(la moitié d'une série Thêta) ne satisfait à aucune équation
différentielle algébrique si q est rationnel.

L'équation différentielle

A»1 J'n—1 J
x

1 y > »1—2 a y d y
ni—i—— -j- r T T" ••• T ßm 1 ~i— — V 0

dx,n dxm~l "l~ldx 3

est irréductible, en ce sens qu'aucune intégrale de cette équation
ne satisfait à une équation différentielle linéaire à coefficient
rationnel dont le degré soit inférieur à m.

10. — M. le Dr H Berliner (Berne). — Deux Geometries projectiles
naturelles. — Les deux géométries projectives résultant des

systèmes d'abcisses et d'ordonnées angulaires (cfr. Berliner, Actes
de la Société helvétique des Se. nat. 1915, II p. 109, ou L'Ens.
math., 1915, p. 354) conduisent à deux géométries naturelles. Si
nous définissons en effet la longueur d'un arc d'une courbe comme
la limite vers laquelle tend la longueur (au sens de ces géomé-

L'Enseignement ma thém., 19e année; 1917. 7
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tries métriques) d'un polygone inscrit dans l'arc de courber
lorsque ses côtés tendent vers 0, V abscisse, de même que Y ordonnée

angulaire d'un point de la courbe9 sera une fonction de la
longueur de l'arc. La connaissance de cette fonction suffit pour
déterminer la forme (au sens de ces géométries) de la courber
mais pas sa position dans le plan. En effet, si l'on pose

A(BCQP) zz (QP)2 : (QP)8 B(GAQP)

(QP)s : (QP)i, C(ABQP) (QP)j : (QP)a

on aura

(QP). (QPJ. P.P,), (P^ PJ. (P„ P), pour 1 1, 2, 3;

en outre (QP); — ^ où x et y désignent les abscisses de Q, Py
x z.

dans le système que l'on fait correspondre à QP. Ain si soit x (p (s)

une fonction continue donnée ; menons par un point P0 la droite
P0P1 l'abscisse soit <p (s0) dans le système de P0; ensuite par Pt la
droite Pt P2 dont l'abscisse soit y (sj dans le système de P,, si la
distance P0 P, sl — s0 (donc si çp (s0) + si — ,v0 est l'ordonnée
de Pt dans le système de P0P,); etc...., enfin par P„_, la droite
P P dont l'abscisse soit pis A dans le système de P on auraa—1 ri ' \ ri—1/ w ji—i >

_ K) + «I — sft — zi?<V-1> + — — -t
fW-*( ?(«„_!>—

n(<+^AA=o ^ /

Faisons tendre tons les Js\ vers 0 en même temps que leur
nombre tend vers oo de sorte que 2Js\ s — s0; on aura

(P P ,i- lira lî | 4 ^0 '< A=o s0\
— Ii m e

A.s—0

A.v

W - -
h ds

© (s)

(P
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or ex^ 1 + x ^ ex~x' pour U; < i (notamment
ex~x% — i + x — Ç[2 — (1 — afe«*"-"], où 0 < 6» < 1), donc

»-,!CCH)'=»
> g

- ° 1 -SÛ \ A 6- 0 • 0 v y

Les sommets d'un polygone ainsi construit, dont les côtés
dendent vers 0 remplissent une courbe passant par P0, l'abscisse
de chacun de ses points Pg est donnée par t — cp [s) ; (ainsi 5 — s0

donne la longueur du polygone et par là, comme on peut voir
facilement la longueur de l'arc de P0 à PJ, et tout arc quelconque
peut être construit grâce à 1). Si t cp (s) ne donne pas l'abscisse
mais l'ordonnée angulaire du point de la courbe, on trouve d'une
manière analogue 2)

S

/' ds

J cos2 œ(s)[tgç pr| — tgsj
(P0p,u-=r e s° i — P 2, 3).

Aussi bien dans la géométrie des abscisses que dans la géométrie
des ordonnées angulaires t cp [s) est une équation naturelle de
la courbe.

li. — Mme Grace-Chisholm Young (Lausanne). — L'année passée,
à l'occasion de la conférence de Mme Young sur les courbes sans
tangentes, M. Raoul Pictet a raconté que M. Cellérier lui avait
parlé vers i860 d'une courbe sans tangente que celui-ci avait
construite. Un mémoire de Cellérier existe à ce sujet, et a paru
après la mort de l'auteur dans le Bulletin de M. Darboux (1890).
Il reste incertain si la courbe de Cellérier est antérieure à celle de
YVeierstrass ou vice versa. En tout cas les deux semblent être
indépendantes. Après avoir parcouru le mémoire de Cellérier,
Mme h oung constate avec le plus grand intérêt que la courbe de
Cellérier est une courbe sans tangentes dans le sens le plus large.
Elle n'a pas de tangentes, ni ordinaires ni singulières.

La méthode de démonstration de Cellérier est tout à fait originale

et d'une exactitude irréprochable. Comme YVeierstrass il
n'envisage pas la question du point de vue géométrique, et la
question de tangentes singulières n'entre pas dans les recherches
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ni de l'un ni de l'autre. Mais la méthode de Weierstrass est
moins profonde que celle de Cellérier ; cette dernière suffît sans
recherches ultérieures à trancher la question proposée.

12. — M. W. H. Young et Mme Young (Lausanne). — La structure

des fonctions à plusieurs variables. — Le sujet de cette conférence

est une généralisation pour plusieurs variables du remarquable

théorème donné par M. Young à la séance de la British
Association, à Leicester en 1907, d'après lequel les limites
supérieures et inférieures d'indétermination cp [x) et ip (x) de f[x -f- A),
où A est positif et s'approche de zéro, sont les mêmes que celles
de f (x — A), sauf dans un ensemble dénombrable de points. On
exprime brièvement ce résultat en disant, qu'/7 y a symétrie à
droite et à gauche, sauf dans un ensemble dénombrable de points.

Dans le plan, et dans n dimensions, nous trouvons aussi en
général qu'une fonction quelconque possède une structure, pour
ainsi dire cristalline, en vertu du théorème suivant :

Si ffx, y) est une fonction quelconque de (x, y), il y a symétrie
complète autour du point (x, y) par rapport aux limites supérieures

++> SP + _> SP_-p SP et inférieures (V ++, V + V_ + > V
d'indétermination de f (x -+- h, y H- k) sauf pour des points tout ci

fait exceptionnels. Ces points gisent sur un ensemble dénombrable
cle courbes monotones, et forment en conséquence un ensemble simple

de mesure nulle.
Pour une fonction de n variables l'ensemble exceptionnel est

toujours de mesure nulle, et git sur un ensemble dénombrable de
variétés de (n — 1) dimensions.

Ce théorème gagne en intérêt lorsqu'on le précise davantage.
Si les (f's par exemple, ne sont pas tous égaux, on peut distinguer
les cas suivants :

I) Un des cp's est plus grand que chacun des autres (ensemble
dénombrable) ;

II) Deux des tpf s sont égaux et plus grands que chacun des autres
(dénombrable.) ;

III) Deux des cprs sont égaux et les deux autres sont égaux ;
a) il y a symétrie latérale

?_+ > ?-| =9 f)ou (?++ — ?+_' ;

b) il y a manque complet de symétrie latérale

+ + cp > + -— ¥-+) ;

IV) Trois des (prs sont égaux et plus petits que le dernier.
Les cas III# et IV correspondent au cas général de notre théo-
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rème. Le casIII<2 est particulièrement intéressant et caractéristique

pour notre système de coordonnées :

Les points oit il y a symétrie à droite et à gauche gisent sur un
ensemble dènombrable de lignes horizontales> et ceux ou il y a
symétrie au-dessus et au-dessous sur un ensemble dènombrable de

lignes verticales.
On voit clairement à présent les divers cas dans l'espace à n

dimensions, La méthode de démonstration dépend du fait quecha-
que fois qu'on a deux y's différant par une quantité plus grande que
c, où c est fixe, le point x n'est pas un point limite de points du même

genre dans le quadrant correspondant au plus petit des deux cp's.
Attaché au point x on aura donc un petit «drapeau » dans l'intérieur

duquel, au sens étroit, il n'y aura pas de points de l'ensemble.

Il s'agit de démontrer que les ensembles de points avec un,
deux ou trois «drapeaux» par point, ont certaines propriétés. En
particulier les ensembles à trois «drapeaux» sont dènombrables.

13. — M. le prof. D1 W.-IL Young, F. R. S. (Lausanne). — Les
intégrales multiples et les séries de Fourier. — Le conférencier
présente d'abord quelques remarques préliminaires sur sa
méthode de développer la théorie de l'intégration simple 1.

1. La méthode s'applique également quand l'intégration est ordinaire, ou
par rapport à une fonction à variation bornée, soit continue soit discontinue.

2. Elle s applique également quand l'intégration est multiple; ici on
remarquera que l'intégration peut être par rapport à une fonction g
à variation bornée, continue ou discontinue, et que l'intégration ordinaire
en est un cas spécial, la fonction par rapport à laquelle l'intégration se fait
étant par exemple xy, quand il s'agit d'intégration double ordinaire.

3. Dans cet exposé de la théorie il n'est pas nécessaire de recourir à une
perspective illimitée de suites monotones, refoulant de cette manière — comme
on pourrait prétendre — les vraies difficultés, sans les surmonter. Il s'agit
seulement de définir exactement les intégrales des fonctions semi-continues
de M. Baire, qui sont précisément les intégrales par excès et par défaut de
M. Darboux — et d'appliquer ensuite le théorème suivant :

L'intégrale d'une fonction f (x) est en même temps la borne supérieure des
intégrales des fonctions semi-continues supérieurement plus petites que f (x),
et la borne inférieure des intégrales des fonctions semi-continues inférieure-
inent plus grandes que f (x) 2,

4. La méthode n'exige pas une connaissance préalable de la théorie des
ensembles et en particulier de la théorie de la mesure ;

Le conférencier définit la mesure en second lieu, comme un genre spécial
d intégrale. L avantage du point de vue logique, même quand l'intégration
est ordinaire, est que le traitement est uniforme. En effet, pour traiter les
ensembles de points en général, sans rester seulement parmi les ensembles

1 Voir dans l'Eus, math, les comptes rendus des séances tenues à Genève (1915) et à
Frauenfeld ('1916).

2 Paris, Comptes rendus, t. 162, p. 909, séance du 13 juin 1916.
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élémentaires, dénombrables, ou fermés, il faut précisément procéder par la
méthode des suites monotones. La définition de la mesure en général n'est
pas justifiée sans l'emploi d'un raisonnement identique à celui que le
conférencier adopte dans sa théorie de l'intégration. Dans le traitement de cette
dernière théorie fondé sur la mesure, au contraire, on suppose toutes les
difficultés concernant la mesure surmontées, et on recommence par une
définition toute différente de l'intégrale. Par ce fait le manque de logique est
en quelque sorte voilé.

Mais quand l'intégration n'est pas ordinaire, l'avantage de la nouvelle
méthode saute aux yeux. Une définition préalable de la mesure d'un ensemble
de points par rapport à une fonction à variation bornée serait artificielle et
privée de toute signification géométrique.

D'un autre point de vue, on se demande pourquoi définir d'abord, et d'une
manière géométrique, les intégrales des fonctions à deux valeurs — c'est-à-
dire la mesure — pour en déduire les intégrales des fonctions générales .'

Les fonctions à deux valeurs ne sont pas plus élémentaires que les autres.
La complexité d'une fonction ne dépend pas des nombres de valeurs qu'elle
prend. Les fonctions les plus employées prennent en effet toutes les valeurs
entre leurs bornes supérieures et inférieures. C'est le nombre des limites
nécessaires pour définir et exprimer une fonction qui en détermine la place
dans l'armée des fonctions, et ceci ne dépend guère du nombre des valeurs
qu'elle prend.

Après ces remarques préliminaires le conférencier passe à la
considération de l'intégrale multiple

Il rappelle la définition de Stieltjes, étendue, comme elle peut
évidemment être, à plusieurs variables. Dans le plan, par exemple,
nous divisons le rectangle (0, 0; a, b) en plusieurs petits rectangles
(x, y\ x A, y -f~ k\m Par rapport à chacun de ceux-ci, nous
formons le terme /'(£, rj g(x, y), où

g (X h- h, r + />•) — r + k) — g(x + h j) -f- g U y]

Nous faisons la somme de ces termes; c'est la somme approximative

de l'intégrale ; puis nous passons à la limite de la manière
habituelle clans la définition de l'intégrale,

Ici fix, y) est continue. Si elle est semi-continue supérieurement,

elle est la limite d'une suite monotone non-croissante de

fonctions continues, dont les intégrales, ainsi définies, ont pour

f f[x r - dg{x y

ff{x, y) dg (x rj lim £/'(?, *c)Ag(.r, r)
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limite l'intégrale de /, par définition. Si nous préférons, nous
pouvons donner une autre définition, qui cependant revient au
même. On remplace /(£, rj\ dans la somme approximative par la
borne supérieure de/dans le petit rectangle. La limite obtenue
sera donc l'intégrale par excès de M. Darboux, et sera, selon le
conférencier, l'intégrale de la fonction semi-continue supérieurement

fx, y
Dans la formule il faut supposer les périmètres des rectangles

construits de manière à ne pas passer par aucun point de discontinuité

de la fonction g. Ceci est possible en vertu du théorème
que ces points de discontinuité gisent sur un ensemble dènombrable
de parallèles aux axes. Si Ton préfère ne pas éviter ces points, 011

peut modifier légèrement la formule approximative comme dans
le cas d'une variable.

On définit d'une manière analogue l'intégrale d'une fonction
semi-continue inférieurement. Enfin l'intégrale d'une fonction /
générale est la borne supérieure des intégrales des fonctions
semi-continues supérieurement plus petites que / et en même
temps la borne inférieure des intégrales des fonctions semi-
continues inférieurement plus grandes que f. Ces bornes coïncident

en effet pour chaque fonction / bornée, définie par n'importe
quel procédé mathématique, et pour chaque fonction non-bornée
ayant par rapport à g une intégrale qui est absolument convergente.

Par moyen de la table suivante le conférencier donne des
formules qui permettent d'exprimer les intégrales doubles d'une
manière plus familière, en employant des intégrales répétées.
Dans le domaine de l'intégration ordinaire les deux notions
d intégrale multiple et à'intégrale répétée sont identiques. Elles le
sont toutes les fois que la fonction g est le produit d'une fonction
de X par une fonction dey. Mais quand g-n'est pas de cette nature,
les théorèmes donnés ont une importance capitale.

Si

0,0

c f a-, °

fix, y) dg te, r) J fi
0,0

>. r) 9 i.r, r) d i.rv).

°ù ~ un des nombres dérivés de g-(,r, r), est
une fonction monotone.

/ U\ r) 9 (x, y) ds (.r, r)
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F —f f(

F =f f(x,

G=f 8 (*>y)dy

CHRONIQUE

/a,
b /*b p .a
F (x,y)dg(x,y) — JF

0, 0 y=0 ' Jx=0

/a
/»b

dx J

=fx, y

f(x,y)d[x,y

V /»a, b /»&
p d,Ç*~\ a

< J F [x,y)dG(x,r-JF-^-
I 0,0 y—0 L J Jx=0

/(t^
b p -iß, b

<t>(x,y)dglx, y)= I I

0,0 L J0, o

0, 0

•'*„ I'It ^ ;A''
x=0 L -»?/=0

d px, y py
dx J f(x, y) dg (x, y)=z J f(x,y) d

0, 0 0

I

dx i

/ Théorème de l'intégration par parties : —
t b p —j<x. b

"1
b

1 J g[x,y)df(x,y) /g — I fdS I

<^0,0 L Jo, 0 0 «- '//=0

I f*br V* b

f -J \fdg\+J
o L Jx=o o,o

Si g (x,r et tous
ses increments sont /
^ 0,

/
Théorème de la moyenne, type Ossian Bonnet.

a, é, /*a, b,

fgd'\xy. g(a< J fd(ocy
X, Y,.

où (X, Y...) est un certain point du « rectangle »

(0, 0 ; a, b,

Quant aux applications à la théorie des séries de Fourier, le
conférencier se borne à citer ses nouveaux résultats dans le cas
d'une variable et fait remarquer qu'il n'en a trouvé aucun qui ne
puisse être étendu à n variables. On peut citer les cas suivants :

I. La série de Fourier de f(x) converge au point x, si

ly I d(u(/•(.*:+ u) + /'(.*•— |

est bornée.
II. série alliée de la série de Fourier de f(x) converge au

point x, si

~ f id(" (f[x+- «) - i
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est bornée, et

f (f(x+ « — f(x — ") cot T " <*"

existe.
III. Si f (+ 0) et f (— 0) existent,

lim nan — 0 lim nbfl —(/'(+ 0) — /'( — 0)
U--X1 ti x

quand la limite estprise à la manière de Cesàro, index (1 -f- kj, 0 <^k.

14, — Q. Bloch (Berne). — Sur la géométrie dans le plan d'une
variable complexe. — Des problèmes électrotechniques ont conduit
l'auteur à la considération de fonctions rationnelles de la forme

y „ A + + Cv'2 + • ' • • + M»'W

" D + Er + F4 + + Nv'1

dans lesquelles v désigne un paramètre réel, A, B, C, etc., des
constantes quelconques, complexes ou réelles. Y est ainsi une
complexe variable dont la représentation géométrique dans le
plan de Gauss est une courbe unicursale.

L'auteur développe quelques-uns des résultats de ses recher-
XT A -j- Br -f- Cr2

ches, entre autres les suivants : 1 expression V — ———-' r D + Er -f- t v*

représente quand les six coefficients sont complexes, une quar-
tique bi-circulaire dans une position quelconque; quand les trois
coefficients du numérateur sont seuls réels, on obtient une de ces
quartiques avec un point double à l'origine. Si, dans l'un des
deux cas précédents, F 0, la quartique se change en une cubique
circulaire. Quand A, B, C sont complexes, D, E, F réels, l'équa-
quation précédente représente une conique générale; si C=0, la
conique passe par l'origine. On obtient facilement les équations
des limaçons de Pascal et les équations focales des coniques. La
discussion des équations conduit à des modes nouveaux de
génération de courbes connues et aussi à des courbes nouvelles.

Les différentes courbes unicursalës représentées sont différenciées

par le nombre plus ou moins grand des termes au numérateur

et au dénominateur de Y et par la nature (complexe ou réelle)
des coefficients. Les expressions Y avec quatre termes au numérateur

et au dénominateur donnent déjà 255 combinaisons
différentes. Chacune d'elles représente un groupe de courbes renfer-
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niant un plus ou moins grand nombre de cas particuliers. Ainsi
t> • TT A. -{- i{\ -}- G) v 4- Gv2
1 expression V== — — ou A et C sont complexes,

est l'équation de la strophoïde droite en position quelconque ;

celle-ci se présente comme un cas particulier d'une cubique circulaire.

Il peut aussi arriver que des expressions différentes donnent
la même courbe.

L'auteur renvoie pour plus de détails et, en particulier, pour le
traitement des problèmes fondamentaux de la géométrie analytique

(problèmes d'intersection, de tangentes, etc.), concernant
ces courbes, à un travail paru dans la Schweiz. Bauzeitung (LXVIII^
nos 21 et 22) et à une publication qui paraîtra prochainement sous
le titre Ortskurven der graphischen Wechselstromtechnik, chez
Rascher & Cie, à Zurich.

Nouvelles diverses. — Nominations.

Etats-Unis. — I,es mathématiciens américains se sont réunis
à New-York du 27 au 30 décembre 1916. Les deux premières journées

ont été réservées à la 23e réunion annuelle de la Société
mathématique américaine (American mathematical Society),
présidée par M. E. W. Brown. Plus de 130 membres, sur 732 que
compte la Société, ont pris part aux séances. M. L. E. Dickson
a été appelé à la présidence pour 1917.

Les deux journées suivantes ont été consacrées à la 2e réunion
annuelle de la Mathematical Association of America, qui s'occupe
plus particulièrement des questions de l'enseignement des
mathématiques. M. Fl. Cajori a été élu président pour 1917.

France. — Académie des Sciences. M. Emile Picard a été élu
secrétaire perpétuel, pour les sciences mathématiques et
physiques, en remplacement de Gaston Darboux. Né à Paris le
24 juillet 1856, M. Picard fait partie de l'Académie des Sciences
depuis le 11 novembre 1889 où il a succédé à Halphen.

Suisse. — M. A. Speiser a été nommé professeur de
mathématiques à l'Université de Zurich.

Nécrologie.

Nous avons le regret d'apprendre la mort du général Bassot,
membre de l'Académie des Sciences de Paris et du Bureau des

longitudes, décédé à l'âge de soixante-treize ans.
H. Du fumier. — La Revue de Métaphysique et de Morale (n° de

janvier 1917) annonce la mort de son jeune collaborateur, le
capitaine Henri Dufumier, tombé au champ d'honneur. «C'est une
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perte irréparable pour la philosophie française. Depuis la mort
déplorable de notre cher Couturat, nous avions reporté sur lui
nos plus légitimes espérances. Henri Dufumier était déjà un
maître de cette science difficile de la logistique qui suppose elle-
même la connaissance approfondie des mathématiques, puisque,
selon sa propre théorie, elle doit en sortir indnctivement. » Il
avait pris une part active au 1er Congrès de philosophie
mathématique, tenu à Paris du 6 au 8 avril 1914.

NOTES ET DOCUMENTS

Commission internationale de l'Enseignement mathématique.
Compte rendu des travaux des Sous-commissions nationales.

(25e article)

SUISSE

Mathématiques et Enseignement secondaire suisse

d'après le rapport de M. K. Branden berger h

Peu de questions sont aussi importantes dans les pays civilisés que celles
de l'enseignement secondaire. Sa tâche n'est pas facile à définir, mais étant
destiné dans chaque nation à former pour la plus grande part la génération

cultivée du lendemain, il ne peut que manquer son but s'il n'arrive à

développer, à côlé d'un amour ardent du vrai, un enthousiasme sincère pour
le beau et le bien.

La pleine possession de soi-même, qu'on voudrait rencontrer chez tout
adolescent, ne s'acquiert que lentement. Pour que l'école puisse y conduire,
il faut qu'elle inculque à l'enfant, en même temps qu'une vive affection pour
le milieu auquel il appartient, le sentiment non moins net, de ce qu'il est,
et doit être en tant que membre de l'humanité entière. Le jeune homme
doit donc être amené, par l'instruction qu'il reçoit, à gagner en individualité,
comme aussi à devenir chaque jour plus conscient de son universalité.

L'école cherche à atteindre le premier de ces buis par l'étude de la
langue, de la littérature, de l'histoire et de la géographie du pays auquel elle
appartient. Il s'agit ici de ce que l'on peut appeler l'éducation nationale. Elle
poursuit le second en mettant le plus possible la jeunesse en relation avec
ce qui n'est plus l'apanage exclusif de personne, avec les langues mortes, par
exemple, les sciences en général ou les mathématiques.

C'est en se plongeant dans ces grandes manifestations que l'esprit se met

1 Dr K. Brakdrkbkrgkr, Der mathematische Unterricht an den schweizerischen Gymnasien
u. Realschulen, 1 vol. in-8°, 167 p., fr. 3.50; Georg- pie? Bâle et Genève (fascicule 4

des Rapports de la sous-commission suisse, publiés sous la direction de H. Fkhrî.
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