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ditifs a ses éléves avant que ceux-ci se fassent une idée claire du
but a atteindre.

B. En classe, 'enfant apprend moins a observer et a chercher
qu’a répondre a des questions prévues.

C. Faire débiter & un éléve une démonstration dont il ne sent
pas la rigueur, ¢’est lui demander de convaincre les autres avant
qu’il soit convaincu lui-méme.

D. On se hite beaucoup trop de mettre 1’écolier en mesure de
montrer qu’il sait quelque chose.

E. On lui enleve sa liberté d’esprit en le traitant comme un
prévenu qui, 4 chaque instant, peut étre pris en flagrant délit
d’ignorance.

F. Par les frontiéres trop nombreuses qu’elle trace tout de suite
entre les matiéres de I'enseignement, I’Ecole supprime les rela-
tions qu’il y a entre les phénoménes et compromet ’éducation
intellectuelle de ses éleves.
~ G. La somme des connaissances qu’un écolier doit acquérir
dans un temps donné ne dépend ni de ses gotits, ni de ses apti-
tudes.

CHRONIQUE

Gaston Darboux.

La science mathématique vient de faire une perte cruelle en la
personne de I'un des plus éminents géometres de notre époque,
M. Gaston Darboux, secrétaire perpétuel de I’Académie des
Sciences pour les sciences mathématiques, doyen honoraire de
la Faculté des Sciences de Paris, fondateur et rédacteur du Bul-
letin des Sciences mathématiques et astronomiques, décédé a Paris
le 23 février 1917. |

Né a Nimes le 13 aott 1842, Jean-Gaston Darboux fut recu pre-
mier, en 1861, a la fois a I'Ecole Normale supérieure et a I’'Ecole
Polytechnique. Il opta pour la premiere; il y fut admis a 'agré-
gation en 1864 et docteur és sciences en 1866 sur la présentation
de sa these sur les surfaces orthogonales.

D’apres la Notice que M. Ern. Lebon consacre & Darboux dans
sa belle collection des Savants du Jour! et a laquelle nous ren-
voyons nos lecteurs, Darboux débuta dans '’enseignement comme
professeur suppléant de mathématiques spéciales, a Paris, au
Lycée Saint-Louis (1864-1865), puis au Lycée Louis-le-Grand
(professeur de 1868 a 1872). En 1872 il devient maitre de confé-

1 Gaston Darboux. Biographie, Bibliographie andlytique des écrits, par Ern. LeBon. —
Gauthier—Villars, Paris, 1910.
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rences a ’Ecole Normale supérieure. 11 supplée Joseph Bertrand
dans sa chaire de Physique mathématique au College de IFrance
et Chasles pour son cours de Géométrie supérieure a la Faculté
des Sciences, puis, en 1881, il succéda a ce dernier comme pro-
fesseur titulaire. Depuis cette méme année il remplit aussi les
fonctions de maitre de conférences a I’Ecole Normale d’enseigne-
ment secondaire pour les jeunes filles, a Sévres. Il fut doyen de
la Faculté des Sciences de 1889 a 1903. Admis a I’Académie des
Sciences en 1884, en remplacement de Puiseux, il devint secré-
taire perpétuel en 1900 comme successeur de Joseph Bertrand.

Ce que fut Darboux comme professeur et comme savant, les
savants les plus compétents 'ont dit, en 1912, a 'occasion de son
jubilé scientifique!. M. P. AppeLL a rappelé «l'influence décisive
sur le développement des mathématiques en France » exercée par
Darboux etl’a signalé comme «le véritable initiateur de 'enseigne-
ment de la Mécanique rationnelle et de la Mécanique analytique,
si élevé et sisolide, qui se donne aujourd’hui dans toutes les uni-
versités francaises ». En parlant de Darboux comme successeur
de Chasles, M. Appell s’est exprimé en ces termes: « Vous déve-
loppez alors ’enseignement dans une voie nouvelle, o Bonnet
I’avait déja engagée, la voie de la géométrie générale, considérée
comme application de ’analyse dont les fondateurs furent Euler,
Monge et Gauss; c’est dans cette chaire, ot vous professez depuis
trente-trois ans, que vous avez fondé cette brillante école de géo-
métrie, dont les disciples sont maintenant répandus dans tous les
pays, et que vous avez développé les méthodes et les résultats qui
font de vous un créateur et qui préserveront votre nom de ’oubli. »

A c6té de ses remarquables travaux en Géométrie supérieure,
dont nous nous bornerons a rappeler ici ses magistrales Lecons
sur la théorie générale des surfaces et les applications géomeétriques
du Calcul infinitésimal et ses Lecons sur les systemes orthogonaux
et les coordonnées curvilignes, Darboux laisse des recherches fon-
damentales en Analyse mathématique, en Algebre, en Mécanique
analytique et en Physique mathématique.

Par ses fonctions de membre du Conseil supérieur de I'Instruc-
tion publique (depuis 1888), Darboux a exercé une grande in-
fluence sur le développement de I'enseignement scientifique en
France. C’est en qualité de vice-président de ce Conseil, repré-
sentant le ministre de l'Instruction publique, qu’il présida, le
2 avril 1914, la séance générale d’ouverture de la Conférence
internationale organisée par la Commission internationale de
I’enseignement mathématique . H. F.

1 Les discours et les adresses ont été reproduits en appendice dans le volume publié par
le Comité du Jubilé sous le titre Gaston Darboux, Eloges académiques et discours, Librairic
Hermann & fils, Paris, 1912,

2 Voir le discours d’ouverture dans I'Enseign. mathém. du 15 mai 1914%.
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Société mathématique suisse.
Schuls, 8 aout 1916.

4 La Société mathématique suisse a tenu sa septieme 1"éuni/0’n
: ordinaire a Schuls (Basse-Engadine), le 8 aout 1916, sous .1a prési-
dence de M.le prof. Marcel Grossmann (Zurich), a 'occasion de la
réunion annuelle de la Société helvétique des Sciences naturelles.
E Quatorze communications ont été présentées a la Section mathé-
matique; en voici les résumés :

1. — M. le prof. K. Merz (Coire). — Note historigue sur la sur-
face de Steiner. — StriNer n’a rien publié sur la surface qui porte
son nom ; la méthode qu’il a employée pour ’engendrer m’a été
communiquée par M. le prof. Grriser. ScuroTer simplifie cette
méthode en remplacant la gerbe de quadriques, utilisée par
Steiner, par un réseau de coniques. On doit a Kummer la premiere

v étude analytique. Voici un tableau! résumant Phistorique de la
‘ surface :
4
i Steiner (Rome 1843) 4 1863
’% Schroter. 1863 Kummer 1863 — Weierstrass
. Cremouna. 1864 Berner. . 186%|Cayley . . 186%
®# Reye. .. 1867/Reye. . . 1867 Clebsch . 1867
;;j Sturm . . 1871 Laguerre. 1872 Bertini. . 1872
Gerbaldi. 1881 - Beltrami . 1879
g'ﬁ Stahl. . . 1885 Rohn. . . 1890
Reye . . . 1896 /Lacour. . 1896 Berzolari. 1892
Timerding 1898 ' |

Ies travaux synthétiques sont mentionnés dans la premiére
e colonne; les travaux analytiques basés sur une représentation
plane, dans la troisiéme ; ceux qui emploient une transformation
5 quadratique ont été intercalés dans la deuxiéme colonne ; enfin,
i les quatriéme et cinquié¢me colonnes renferment les travaux qui
| conduisent a la théorie de certaines formes biquadratiques en
rapport avec cette surface.

Le développement historique montre comment le probleme,

.?i;&‘
WO

i

H ! Voir les indications bibliographiques complétes dans : K. Mrrz. Parallelflichen u. Cen-
L tralfliche eines besonderen Ellipsoides u. die Steinersche Fliiche. Beispiel einer quadra-
“ tischen Transformation. — Aux indications données dans ce dernier travail, il faut ajouter
tz« les suivantes : Lacurrre, OEuvres lI, pages 281, et BiLrrAaMi, Opere, 111, p. 168. — Voir
v

aussi: Verhandlungen der schw. naturforsch. Gesellschaft, 1914, 11, p. 102.
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apercu a la suite d’une vision géométrique géniale, se transforme
peu a peu en un probléme purement algébrique. La connaissance
géométrique de la surface apparait comme I'intuition qui guide a
travers le dédale des relations arithmétiques et conduit a des
résultats nouveaux et féconds.

2. — M. le prof. L. Crerier (Berne-Bienne). — Puissance d’une
droite par rapport a un cercle.
— Purssance. — Théoreme : Etant donné tous les couples de

tangentes a un cercle que lUon peut mener par les divers points
d’unedroite quelconque du plan de ce cercle,le produit des tangentes
des demi-angles de la premiere tangente et du prolongement de la
seconde tangente de chaque couple avec la droite donnée est cons-
tant.

Cette constante s’appellera la puissance dela droite par rapport
au cercle et nous aurons :

’ ’ .
tg%.tgz—%:tgg.tgﬂ—gi == ea. :’?—_i——_—f)—:const.
o« = angle de la premieére tangente avec la droite
o = » » deuxiéme » » »
r —rayon
p = distance du centre a la droite.
II. — Farsceaux. — Nous appellerons faisceaux de cercle I, ou

I', 'ensemble des cercles admettant un méme premier centre de
similitude extérieur ou intérieur par rapport a tous les cercles.
Nous aurons:

a) Iltant donne deux faisceaux F(l) et F(2) de méme centre radical
principal S, les points de coupe des tngenles exlérieures communes
de deux cercles quelconques des faisceaux, pris Uun dans F()

Pautre dans F” sont tous sur une méme droite appelée I'axe radical
principal des faisceaux. Les points de coupe des tangentes inte-
rieures communes des mémes cercles sont tous sur une autre dr ozte
appelée I'axe radical secondaire des deux faisceaux.

Soient C, un cercle de F{" et C; un cercle de F{”. Leurs tan-
gentes exterleures communes se coupent en A. La drmte SA est
de mémes puissances relalives par rapport a tous les cercles
de F{" et par rapport a tous ceux de F. Elle est encore de mémes

puissances relatives par rapport a C, et C.. Les puissances rela-
tives par rapport aux cercles de "
par rapport aux cercles de F'”, puisqu’elles sont déterminées par
C, et C..

[.a droite SA est de mémes puissances relatives par rapport a

. 1 ‘(
deux cercles quelconques pris, I'un dans F’et l'autre dans F”,

sont ainsi les mémes que celles

~
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Elle passe par les premiers centres de similitude cor’refspondants,‘
autrement dit les points de coupe des tangentes exteérieures com-
munes aux deux cercles sus-indiqués sont tous sur SA: .

I.e méme raisonnement subsiste avec les tangentes intérieures
et donne une nouvelle droite SD.

SA ou a, devient I'axe radical principal des deux faisceaux S2D ou
a, Vaxe radical secondaire. Sinous désignons par F&" et F les
faisceaux compris dans les angles opposés des précédents, a,
est aussi 'axe radical principal pour F{” et F{" et I'axe radical
secondaire pour F{” et F”. Il en est de méme pour a,.

b) Etant donné deux fuisceaux F et Ff), les points de coupe
des tangentes extérieures communes a deux cercles pris, un dans
F et lautre dans F?, sont tous sur une méme droite, Uaxe radical
principal des deux faisceaux. Les points de coupe des tangentes
extérieures communes & deuz autres cercles pris, Uun dans F3’ et

Pautre dans FY ou Pun dans F$ et le second dans F® ) sont égale-
ment tous sur une méme droite, 'axe radical secondaire des deux
faisceauzx.

III. — InvoLutions. — Nous considérerons maintenant un point
" quelconque P du plan d’un faisceau F, ou F, complété par le
faisceau conjugué F, ou F,, et par ce point nous ménerons deux
tangentes a chaque cercle du faisceau. Soient ¢, et 7, les deux tan-
gentes a I'un quelconque des cercles. La puissance absolue de la
droite PS — a sera la méme par rapport a tous les cercles du
faisceau, I¥, et la méme par rapport a tous les cercles du faisceau

complémentaire F’
Si nous posons : angle ({, «) = a et angle (¢, a) =o', nous
aurons
’
. o " == o
Puissance de a — tg 57 - 18— 5

Avec les deux tangentes d’'un autre quelconque des cercles du
faisceau nous aurons également

) o 7 — o [ ‘
Puissance de a — g 5 - tg g =18 518 —— — ... = conslante.

Les bissectrices des angles compris entre @ et ¢, ou a et le pro-
longement de ¢, donnent lieu a un produit de tangentes trigono-
métriques constant; ces bissectrices forment une involution dont
l’axe principal en PS = a.

Tutorkme. — A tout point P du plan d’un faisceau F, ou F, de
centre radical principal S correspond une inyvolution de rayons.
Les rayons conjugués sont les bissectrices des angles compris entre
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lave PS = a et la premiere tangente menée de P a chaque cercle
du faisceaw ; puis entre a et le prolongement de la deuxieme tan-
gente menee de P aw méme cercle. Les rayons doubles sont toujours
reels dans le plan d’un faisceau ¥, et dans lU'angle intérieur du
plan d’'un faiscean F,. Dans son angle extérieur ils sont imagi-
naires. Les rayons doubles réels sont les bissectrices des angles
compris entre Uaxe a el les tangentes des deux cercles du faisceau
passant par le point considere.

3. — M. le prof. O. Sriess (Bale). — Problemes de fermeture
dans les courbes convexes. — Soit C une courbe fermée quelcon-
que; soit A une construction qui fasse correspondre chaque
point A de la courbe a un autre point A, ; admettons en outre que

1° A et A, se déterminent 'un 'autre de facon réciproque et
univoque.

2° Si A décrit la courbe dans un certain sens, A, la décrit en
sens contraire.

La construction K «ferme» quand A, = A (points fixes); elle
« ferme » si on l'exécute deux fois, quand A, —= A, c’est-a-dire
quand A et A, se correspondent mutuellement /points mutuels).
Lle probleme de fermeture consiste & déterminer les points fixes et
les points mutuels. On reconnait ce qui suit :

I. — Il y a toujours exactement deux points fixes; ils séparent
chaque paire de points correspondants A et A,.

Il. — LLe nombre des points mutuels pewt étre fini ou infini.

III. — Si A est un point quelconque de C (ni point fixe, ni point
mutuel}, les points A, A, A,, A,....., obtenus par la répétition
de K, sont tous différents et tendent alternativement vers les
points limites

lim A,, — «, hioe By, =& .
k—=w 2k k= 2k+1 !
Sia, == a, «eta sont des points mutuels ; si o, —= «, « est un

point fixe.
Dans la pratique ces points peuvent donc étre déterminés par
vne répétition finie de 4. La série de points A, A _ | A Ao,

obtenue par la construction inverse K™ conduit 4 la méme con-
clusion.

Lorsque C est conyvexe, on peut indiquer un grand nombre de
ces constructions k. Soit les n points P, P,, P,... P dont un
nombre /mpair sont a 'exiérieur de C; on méne AP, jusqu’a son
deuxieme point de coupe A, avec C, — AP, jusquia Ay, ete. s

—9)

le point A™ = A, posséde avec A les relations exigées.
On obtient ainsi par exemple, le théoreme: « Dans chaque
courbe convexe (sans angle) on peut inscrire deux polygones
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impairs dont les cotés ont des directions données (en particulier,
par exemple, une infinité de paires de triangles réguliers).
Les points P* peuvent étre remplacés par des courbes convexes

T* auxquelles on pourra mener des tangentes. De plus ces cons-
tructions sont soumises a la transformation dualistique.

4. — M. le prof. C. CaiLLer (Geneéve). — Sur la Géométrie réglée

_imaginaire. — Dans ma communication de Geneve, j'ai entretenu

la section mathématique de la géométrie des corps solides. De
nouvelles recherches dont j'expose les résultats, avec tous les
détails nécessaires, dans un mémoire actuellement en cours de
publication dans les Archives de Geneve, m’ont amené récemment
a développer, sur I'’ensemble du sujet, un point de vue inédit. Je
désire en dire un mot aujourd’hui.

D’aprés cette nouvelle théorie, la géométrie des corps solides
se confond avec la stéréométrie ordinaire, quand on prolonge
celle-ci dans le domaine complexe. LLa premiere géométrie est
simplement 'aspect réel de la géométrie ponctuelle imaginaire.

L.e corps solide estle pendant réel du point imaginaire.

[Le pendant rée/ du plan imaginaire est la figure qu’on obtient
en faisant chavirer un corps solide fixe autour de toutes les
droites de l’espace; jappelle grilloide 'ensemble ainsi engendré.

Enfin si on fait tourner et glisser un corps solide le long d’un
axe fixe, on définit une ¢rille; c’est 'apparence réelle de la droite
imaginaire.

L.es propriétés manifestées par le corps solide, le vrilloide, et la
prille sont identiques a celles du point, du plan et de la droite de
I’espace ordinaire, sauf en ceci que, dans les relations métriques,
des quantités complexes se substituent aux quantités réelles. La
place me manque pour justifier ici cette assertion. Je veux seule-
ment entrer dans quelques détails touchant la Geéométrie des
grilles, laquelle représente pour la nouvelle théorie, ce qu’est la
géométrie réglée par rapport a 'espace ordinaire.

[’espace réglé est de la quatrieme dimension, 'espace vrillé de
la huitieme. Pour transformer les unes dans les autres toutes les
vrilles de 'espace il faut disposer des « !> mouvements complexes
de I'espace imaginaire; les mouvements réels ne transforment une
vrille donnée qu’en o' vrilles nouvelles seulement.

Toute droite possede six coordonnées plickériennes I, m, n, p,
g, r, liées entre elles par la relation

lp + mqg + mr =0

Toute vrille possede de méme 12 coordonnées pliickériennes
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rooqn / " ’ " ' " ’ o > . . .
il, I, m', m', v’y 0, p'y ps gty g 0t ", qui satisfont trois relations
omogenes
Ul 4 m'm" 4 " = 0
llpl - l!/pll + ”l/q/ - ”l”q” + n/"’ — ’zHrII — O
llpll + lllp/ + mlq’l _+_ I)l”q’ + ,l/r” + ’l”r, : O

lesquelles restent invariantes dans les o« ' mouvements complexes.
La forme fondamentale, en Géométrie réglée, est le complexe
linéaire de Pliicker et Chasles, dont ’équation dépend linéaire-
ment des coordonnées /, m, n, p, g, r.
De méme dans ’espace vrillé, la forme fondamentale, qui fait
symétrie au complexe, est une heptasérie, d’équation

alll' + a/lll + b"ln/ _}_ [)’nl” + C"n, + C’]l” + dllpl
_l_ d/pn "'I" e”(]’ _l"' e,q” + fNr/ + /'I)_H — 0 .

[’interprétation géométrique de cette condition est analogue a
celle du complexe en Géométrie réglée. Elle est senlement plus
compliquée. Au lieu de la distance et de l'angle qui définissent
ensemble Uintervalle de deux droites quelconques, une nouvelle
notion s’y rencontre : celle des deux distances conjuguées qui
expriment de méme l'intervalle entre deux vrilles.

J'ajoute que si on cherche a déterminer dans I’heptasérie les
vrilles qui renferment un corps donné a volonté, les axes de ces
vrilles décrivent un complexe linéaire I', leuel est ainsi associé
d’une part a I’heptasérie, de l'autre au corps donné.

Il existe seulement «* complexes I" de cette espéce, la consti-
tution de cette famille de complexes, de second ordre, permet de
définir géométriquement toutes les vrilles qui forment ’hepta-
série linéaire fondamentale.

5. — M. le prof. F. Rupto (Zurich), donne un apercu général de
I’état actuel de la publication des ceuyres completes d’Euler.

6. — M. le prof.-D* M. Grossman~ (Zurich). — Remarque con-
cernant la théorie générale de la relativité. — M. Albert Einstein,
qui a établi avec MM. Lorentz et Minkowski la théorie de la rela-
tivité, vient de mener a bien, d’'une maniere absolument satisfai-
sante, la généralisation compléte de cette théorie.

Il en résulte maintenant la covariance générale des équations
décrivant la marche des phénomenes physiques ainsi que celle
des équations différentielles qui déterminent le domaine de la
gravitation. Les coordonnées de l'espace et du temps perdent
ainsi le dernier reste de leur signification intuitive; elles se
réduisent entierement a des parametres servant a la détermination
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du point dans l'espace 4 quatre dimensions dont la géométrie
différentielle représente les phénomenes physiques. Le résultat
devient encore plus éclatant lorsqu’on le compare aux idées que
Riemann développait en 1854 dans son discours inaugural. (Voir
I'exposé détaillé de la théorie dans: A. Eixstein, Die Grundlage
der allgemeinen Relativititstheorie ; chez Joh. Amb. Barth.) -

7. — M. le prof.-D" H. WevywL (Zurich). — Le probleme de U'Ana-
lysis situs. — [’Analysis situs étudie les propriétés dont jouissent
les variétés continues indépendamment de toute considération
de mesure. On y distingue actuellement deux manieres de voir,
I'une se rattache & la Théorie des ensembles (voir les travaux de
Brouwer), I'autre a 'Analyse combinatoire (voir I'article Dehn et
Heegard dans 'Encyclopédie). Pour illustrer le sens de ces deux
méthodes et leurs relations mutuelles, I'orateur reprend le pro-
bleme spécial de I’Analysis situs qui joue un role décisif dans la
théorie de Riemann des fonctions algébriques: la détermination
du nombre de connexion de variétés fermées a deux dimensions.

Par la décomposition d'une telle variété en un nombre fini de
surfaces elementaires surgit un polyedre (Mobius); on décompose
encore, pour plus de simplicité, chaque polygone en triangles ;
apres en avoir désigné chaque sommet par des symboles quelcon-
ques, par exemple par des lettres, on peut disposer tous les trian-
gles dont se compose la surface en un tableau ou chaque triangle
est caractérisé par la donnée de ses trois sommets. On obtient
ainsi le « schéma» combinatoire de la surface. Deux schémas pro-
viennent de la méme surface par des triangulations différentes
s’ils sont « homéomorphes », c’est-a-dire si on peut les ramener
tous deux a un méme troisieme schéma en décomposant encore
les deux surfaces. L’homéomorphie est une relation purement
combinatoire entre les deux surfaces. l.e principal invariant de
ces schémas au sens de 'homéomorphie est le nombre de con-
nexion = ik — e — d 4+ 3 (k = nombre d’arétes, ¢ — nombre de
sommets, d = nombre de triangles); pour des surfaces sans anse,
ce nombre est 1 (Théoréme d’Euler sur les polyedres).

Mais pour établir rigoureusement que le nombre de connexion
ainsi obtenu est un invariant (au sens de I’Analysis situs) de la
variété a deux dimensions primitivement obtenue, il faut recourir
a des considérations d’un genre tout différent, basées sur les
principes de la Théorie des ensembles. Il faut d’abord fixer exac-
tement la notion de variété a deux dimensions; ensuite, pour
obtenir une définition du nombre de connexion indépendante de
chaque triangulation, on peut suivre un chemin qui est, dans
I'Analysis situs, I'analogue de ce qu’est dans la théorie des fonec-
tions la démonstration utilisée par Weierstrass dans la théorie
des intégrales abéliennes: déduire la nature et les relations des
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chemins d’intégration de la maniere dont les intégrales se com-
portent.

C’est ce qui fut effectué en détail dans cette communication.

— M. le prof. L.-G. Du Pasquier {Neuchatel). .— Sur Carith-
métique généralisée. — Soit une infinité de complexes a n coor-
données tels que (a,, a,,..., an), ou a,, a,,..., 0, représentent des
nombres réels. On érige une arithmétique et une algébre généra-
lisées portant sur ces éléments en définissant, sur ces complexes,
I’égalité et deux opérations qu'on appellera addition et multiplica-
tion,par analogie avec 'arithmétique ordinaire. Ces trois définitions
initiales sont arbitraires, ce qui n’empéche pas les opérations qui
en résultent d’étre soumises a certaines lois fondamentales. L’ora-
teur cite les dix lois fondamentales qui caractérisent ’arithméti-
que et l'algébre classiques et rappelle le théoreme établissant
qu'une nouvelle extension du domaine des nombres, au dela des
nombres complexes ordinaires, n’est possible qu’au prix de
I'abandon d’'une ou de plusieurs de ces lois fondamentales. Le
développement pris jusqu’ici par ’analyse mathématique montre
que les lois d’associativité et de distributivité sont les plus impor-
tantes. En maintenant ces lois et laissant tomber seulement la
commutativité de la multiplication et I’exclusion des diviseurs de
zéro, on arrive aux systemes des polytettarions. Posant entre les
coordonnées des tettarions certaines relations appropriées, on
obtient d’autres systémes de nombres hypercomplexes, par
exemple les quaternions, comme cas particuliers de certaines
classes de polytettarions. Les tettarions comprennent, comme
sous-systemes, tous les systemes possibles de nombres hypercom-
plexes a multiplication associative et distributive.

Parmi les connexions remarquables entre certaines lois fonda-
mentales régissant les opérations de l’algébre généralisée, et les
propriétés arithmétiques des domaines ou_ ces lois sont valables,
citons cette curieuse relation: soit un domaine de nombres hyper-
complexes entiers, comprenant des complexes irréductibles, ou
premiers, et e un complexe entier non irréductible de ce domaine.
On pourra mettre a« sous forme d’un produit de facteurs irréduc-
tibles, en imposant a ces derniers de se suivre dans un ordre tel
que leurs normes suivent un ordre fixé arbitrairement pour les
facteurs premiers de la norme N (a) du complexe entier donné ea.
Cette décomposition de « en facteurs premiers et plurivogue ou
unique, suivant que la ‘multiplication, dans le systeme envisagé,
est commutative ou ne l'est pas.

9. — M. G. P6rya (Zurich). — Un pendant du théoreme d’appro-
ximation de Liouville dans la théorie des équations différentielles.
Soit « un nombre irrationnel et soit 7, celui des nombres
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rationnels de dénominateur ne dépassant pas n qui est le plus
voisin de «; d’aprés le théoréme de Liouville la suite conver-
gente pour toute valeur de «

7 1'2 ,

" s PN Popsssan [1]
ne peut pas converger avec une rapidité arbitraire si a satisfait
a une équation algébrique a coeflicients rationnels.

De méme qu’au nombre « correspond la suite [1], on peut faire
correspondre & toute fonction entiere f(a) la série de Taylor qui
converge vers elle. Si f{z) satisfait & une équation différentielle
algébrique a coefficients rationnels, la série de Taylor de f{x) ne
peut pas converger avec une rapidité arbitraire. Comme la série
de Taylor, pour des fonctions entieres, converge d’autant plus
vite que la valeur absolue de la fonction augmente plus lentement,
on peut énoncer aussi le théoreme comme suit: Si une fonction
entiere satisfait a une équation différentielle algébrique, sa valeur
absolue ne peut pas croitre aussi lentement qu'on voudra. |

Le conférencier présume ce théoreme, il en pose la démonstra-
tion comme probléme, toutefois la démonstration est déja établie
sur plusieurs points importants.

En s’appuyant sur des travaux de MM. Hurwitz et Perron, le¢
conférencier a obtenu certains résultats, par exemple :

La fonction entiere de x

ES n2
N q 2"
n=—>0

(la moitié d’'une série Theta) ne satisfait 4 aucune équation diffé-
rentielle algébrique si ¢ est rationnel.
[’équation différentielle

d" 3 _ dm——l 5 d}'
e I - + .. +a)’l_1ﬂ~3'20

& — et
d x;n d 7cm-—l

‘m—1

est irréductible, en ce sens qu’aucune intégrale de cette équation
ne satisfait & une équation différentielle linéaire a coeflicien'
rationnel dont le degré soit inférieur a .

10. — M. le D* H BerrLiner (Berne). — Deux Géométries projec-
tives naturelles. — Lies deux géométries projectives résultant des
systemes d’abcisses et d’ordonnées angulaires (cfr. Berliner, Actes
de la Société helvétique des Sc. nat. 1915, Il p. 109, ou L’Ens.
-math., 1915, p. 354) conduisent & deux géométries naturelles. Si
nous définissons en effet lalongueur d’un arc d’une courbe comme
la limite vers laquelle tend la longueur (au sens de ces géomé-

L’Enseignement mathém., 19¢ année; 1917. 7
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tries métriques) d’un polygone inscrit dans I'arc de courbe,
lorsque ses cdtés tendent vers 0, 'abscisse, de méme que 'ordon-
née angulaire d’un point de la courbe, sera une fonction de la lon-
gueur de l'arc. l.a connaissance de cette fonction suftit pour
déterminer la forme (au sens de ces géométries) de la courbe,
mais pas sa position dans le plan. En effet, si 'on pose

A(BCQP) = (QP), : (QP);, B(CAQP)

= (QP), : (QP),, C(ABQP) = (QP), : (QP},,

on aura

(QP), = (QP,}, P,P,), ..... (P._, P, (P, P), pouri=1,2,3;

Y — 3

v 12

en outre (QP), = ou x et y désignent les abscisses de Q, P,

xX — ZL-
dans le systéme que 'on fait correspondre a QP. Ainsi soitz=¢ (s)
une fonction continue donnée; menons par un point P, la droite
P,P, Vabscisse soit ¢ (s,) dans le systéme de P,; ensuite par P, la
droite P, P, dont I'abscisse soit ¢ (s,) dans le systéme de P,, si la
distance P, P, = s, — s, (donc si ¢ (s,) + s, — s, est 'ordonnée
de P, dans le systéeme de P P,); etc...., enfin par P,_, la droite
P _, P dontlabscisse soit ¢(s, ) danslesystémedeP _ ,onaura

n—1"7r

(PP,); = (PyP,), ¢ oo (P,_ P ),
- ? (50) + Fy — By Sy CAD(SIL——]) -+ Sp T By T By
o(so) —=z O ($,1) — 3
=n—1 1 AS)\
= 1L+ olsn) — =)
A=0

Faisons tendre tous les Asy vers 0 en méme temps que leur
nombre tend vers «, de sorte que 2As; — s — s,; on aura

S

_ds

»— v (s)—z,
. s As 50 ¢ () — = ts‘ AL ‘
(POPS(,‘: lim I1 (1 A —A>:11m e = e (1}
‘ A =0 So SO(-S) — %; As=0
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or e 2> 1+a2> e* ™ pour @ < V2 — 1 (notamment
9
e o M .. . \
T = o — 52— (L —a2e? T, on 0<C8 <1, done

;(;:‘c(s)——:i s As
S0 I ! ~e

N As K _X.S‘ 2 S AS .

- - .9 =0
“zis)—z, “\ois)— =z, et lim = eLS)— 5 .
S 7 IA .\‘0 L . A S 0 S0 ‘

Les sommets d’un polygone ainsi construit, dont les cotés
dendent vers 0 remplissent une courbe passant par P, 'abscisse
de chacun de ses points P est donnée par 7 = ¢ (s]; lainsis — s,
donne la longueur du polygone et par la, comme on peut voir
facilement la longueur de I'arc de P, a P ), et tout arc quelconque
peut étre construit grace a 1). Si z — ¢ (s) ne donne pas l'abscisse
mais I'ordonnée angulaire du point de la courbe, on trouve d'une
maniere analogue 2|

S

‘/‘ ‘ ds
: - cos? z(s)[tgss) — tg 3]
(Pypsti=¢e™° =1, ¥ Bl.

-3 |

Aussi bien dans la géométrie des abscisses que dans la géométrie
des ordonnées angulaires 1 — ¢ (s} est une équation naturelle de
la courbe. '

11.— Mme Grace-Chisholm Youxc (Lausanne!. — [.’année passée,
a l'occasion de la conférence de M™® Young sur les courbes sans
tangentes, M. Raoul Pictet a raconté que M. Cellérier lui avait
parlé vers 1860 d'une courbe sans tangente que celui-ci avait
construite. Un mémoire de Cellérier existe & ce sujet, et a paru
apres la mort de 'auteur dans le Bulletin de M. Darboux (1890).
[l reste incertain sila courbe de Cellérier est antérieure a celle de
Weierstrass ou vice versa. En tout cas les deux semblent étre
indépendantes. Apres avoir parcouru le mémoire de Cellérier,
M™¢ Young constate avec le plus grand intérét que la courbe de
Cellérier est une courbe sans tangentes dans le sens le plus large.
Elle n'a pas de tangentes, ni ordinaires ni singuliéres.

LLa méthode de démonstration de Cellérier est tout a fait origi-
nale et d'une exactitude irréprochable. Comme Weierstrass il
nenvisage pas la question du point de vue géométrique, et la
question de tangentes singulieres n’entre pas dans les recherches
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ni de I'un ni de lautre. Mais la méthode de Weierstrass est
moins profonde que celle de Cellérier; cette derniére suflit sans
recherches ultérieures a trancher la question proposée.

— M. W. H. Younc et M™ Younc (Lausanne). — La struc-
ture des fonctions a plusieurs variables. — l.e sujet de cette confé-
rence est une généralisation pour plusieurs variables du remar-
quable théoreme donné par M. Young a la séance de la British
Association, a Leicester en 1907, d’aprés lequel les limites supé-
rieures et inférieures d’indétermination ¢ () et ¢ (2) de f(x + A),
ou & est positif et s’approche de zéro, sont les mémes que celles
de f(x — h), sauf dans un ensemble dénombrable de points. On
exprime brievement ce résultat en disant, qu'/l y a symétrie a
droite et a gauche, sauf dans un ensemble dénombrable de points.

~Dans le plan, et dans n dimensions, nous trouvons aussi en
général qu'une fonction quelconque possede une structure, pour
ainsi dire cristalline, en vertu du théoréme suivant:

St f(x, y) est une fonction quelconque de (x,y), il y a symétrie
complete autour du point (x,y) par rapport aux limites supérieures
(‘P++» 9)_{__7 (P_——}_? g)__—_) et l'n/"él'z'eures <1P++7 l}l+_, V’_+> 1/1___)
d’indétermination de t (x == h, y &= k! sauf pour des points tout a
fait exceptionnels. Ces points gisent sur un ensemble dénombrable
de courbes monotones, et forment en conséquence un ensemble sim-
ple de mesure nulle.

Pour une fonction de n variables lensemble exceptionnel est
tmgours de mesure nulle, et git sur un ensemble dénombr able de

pariétes de (n — 1) dzmenszons

Ce théoreme gagne en intérét lorsqu’on le précise davantage.
Si les ¢'s par exemple, ne sont pas tous égaux, on peut distinguer
les cas suivants:

1) Un des ¢'s est plus grand que chacun des autres (ensemble
dénombrable);

II) Deux des ¢'s sont égaux et plus grands que chacun des autres
(dénombrable) ;

1) Deux des ¢'s sont égaux et les deux autres sont égaux;

a) il y a symétrie latérale

(¢ e == Fefe r BL cp_~+)0u( +4+— %4+ - e = o__ )
b) il y @ manque complet de symétrie latérale
Ppt T o P =Py )

IV) Trois des ¢'s sont égaux et plus petits que le dernier.
Les cas III4 et IV correspondent au cas général de notre théo-
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réeme. Le casIlla est particulierement intéressant et caractéristi-
que.pour notre systeme de coordonnées :

Les points ou il y a symétrie a droite et & gauche gisent sur un
ensemble dénombrable de lignes horizontales, et ceux ou il y a
symétrie au-dessus et au-dessous sur un ensemble dénombrable de
lignes verticales. |

On voit clairement a présent les divers cas dans l'espace a n
dimensions. La méthode de démonstration dépend du fait que cha-
que fois qu'on a denx ¢’s différant par une quantité plus grande que
c¢,oucest fixe,le pointx n’est pas un pointlimite de points du méme
genre dans le quadrant correspondant au plus petit des deux ¢’s.
Attaché au point x on aura donc un petit «drapeau» dans 'inté-
rieur duquel, au sens étroit, il n’y aura pas de points de 'ensem-
ble. Il s’agit de démontrer que les ensembles de points avec un,
deux ou trois «drapeaux» par point, ont certaines propriétés. En
particulier les ensembles & trois « drapeaux» sont dénombrables.

13. — M. le prof. D* W.-H. You~ns, F. R. S. (Lausanne). — Les
integrales multiples et les séries de Fourier. — l.e conférencier
présente d’abord quelques remarques préliminaires sur sa mé-
thode de développer la théorie de I'intégration simple .

1. La méthode s’applique également quand lintégration est ordinaire, ou
par rapport & une fonction a variation bornée, soit continue soil discontinue.

2. Elle s’applique également quand [lintégration est multiple s icl on
remarquera que l'intégration peut étre par rapport a une fonction g (x,y,...)
4 variation bornée, continue ou discontinue, et que lintégration ordinaire
en est un cas spécial, la fonction par rapport a laquelle I'intégration se fait
¢tant par exemple xy, quand il s’agit d’intégration double ordinaire.

3. Dans cet exposé de la théorie il n’est pas nécessaire de recourir & une
perspective illimitée de suites monotones, refoulant de cette maniére — comme
on pourrait prétendre — les vraies difficultés, sans les surmonter, Il s’agit
seulement de définir exactement les intégrales des fonctions semi-continues
de M. Baire, qui sont précisément les intégrales par excés et par défaut de
M. Darboux — et d’appliquer ensuite le théoréme suivant :

Lintégrale d’une fonction f (x) est en méme temps la borne supérieure des
intégrales des fonctions semi-continues supérieurement plus petites que f (x),
et la borne inférieure des intégrales des fonctions semi-continues inférieure-
ment plus grandes que f (x)%,

4. La méthode n’exige pas une connaissance préalable de la théorie des
ensembles et en particulier de la théorie de la mesure ;

Le conférencier définit la mesure en second lieu, comme un genre spécial
d’intégrale. L'avantage du point de vue logique, méme quand I'intégration
est ordinaire, est que le traitement est uniforme, En effet, pour traiter les
ensembles de points en général, sans rester seulement parmi les ensembles

! Voir dans I'Ens. math. les comptes rendus des séances tenues a Genéve (1915) et a
Frauenfeld (1916).
2 Paris, Comptes rendus, t. 162, p. 909, séance du 13 juin 1916,
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élémentaires, dénombrables, ou fermés, il faut précisément procéder par la
méthode des suites monotones. La définition de la mesure en général n’est
pas justifiée sans 'emploi d'un raisonnement identique & celui que le confé-
rencier adopte dans sa théorie de I'intégration. Dans le traitement de cette
derniére théorie fondé surla mesure, au contraire, on suppose toutes les
difficultés concernant la mesure surmontées, et on recommence par une
définition toute différente de I'intégrale. Par ce fait le manque de logique est
en quelque sorte voilé.

Mais quand lintégration n’est pas ordinaire, I’avantage de la nouvelle
méthode saute aux yeux. Une définition préalable de la mesure d’un ensemble
de points par rapport & une fonction a variation bornée serait artificielle et
privée de toute signification géométrique.

D’un autre point de voe, on se demande pourquoi définir d’abord, et d’une
maniére géométrique, les intégrales des fonctions & deux valeurs — c’est-a-
dire la mesure — pour en déduire les intégrales des fonctions générales
Les fonctions a4 deux valeurs ne sont pas plus élémentaires que les autres.
La complexité d'une fonction ne dépend pas des nombres de valeurs qu'elle
prend. Les fonctions les plus employées prennent en effet toutes les valeurs
entre leurs bornes supérieures et inférieures. C'est le nombre des limites
nécessaires pour définir et exprimer une fonction qui en détermine la place
dans I'armée des fonctions, et ceci ne dépend guére du nombre des valeurs
qu’elle prend.

Apreés ces remarques préliminaires le conférencier passe a la
considération de l'intégrale multiple

Sfle, y, =, ..0dglxe, vy, 5. ...)

Il rappelle la définition de Stieltjes, étendue, comme elle peut
évidemment étre, a plusieurs variables. Dans le plan, par exemple,
nous divisons le rectangle (0, 0; @, b) en plusieurs petits rectangles
(@, y; x4+ h, y + k). Par rapport a chacun de ceux-ci, nous for-

mons le terme /&, 5 gz, y), ou

x4+ h,oy+k
Ag(x, ¥ = l'g_l

X,y

=gl -+ by +h—glx, v+ —gle4+ L,y + gle, )

Nous faisons la somme de ces termes; c’est la somme approxi-
mative de I'intégrale ; puis nous passons a la limite de la maniere
habituelle dans la définition de 'intégrale,

Slx, y)dglx, ) = lim X7(5, 1)dgla, »)
lei flx, y) est continue. Si elle est semi-continue supérieure-
ment, elle est la limite d’'une suite monotone non-croissante de
fonctions continues, dont les intégrales, ainsi définies, ont pour
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limite 1'intégrale de f, par définition. Si nous preférons, nous
pouvons donner une autre définition, qui cependant revient au
méme. On remplace f§, 7 dans la somme approximative par la
borne supérieure de #dans le petit rectangle. La limite obtenue
sera donc l'intégrale par excés de M. Darboux, et sera, selon le
conférencier, 'intégrale de la fonction semi-continue supérieure-
ment flw, y!.

Dans la formule il faut supposer les périmetres des rectangles
construits de maniére a ne pas passer par aucun point de discon-
tinuité de la fonction g. Ceci est possible en vertu du théoreme
que ces points de discontinuite gisent sur un ensemble dénombrable
de paralleles aux axes. Sil'on préfere ne pas éviter ces points, on
peut modifier légerement la formule applommatlve comme dans
le cas d'une variable.

On définit d'une maniere analogue l'intégrale d’une fonction
semi-continue inférieurement. Enfin 'intégrale d’une fonction ;
générale est la borne supérieure des intégrales des fonctions
semi-continues supérieurement plus petites que f, et en méme
temps la borne inférieure des intégrales des fonctions semi-
continues inférieurement plus grandes que /. Ces bornes coinci-
dent en effet pour chaque fonction fbornée, définie par n’importe
quel procédé mathématique, et pour chaque fonction non-bornée
ayvant par rapport a g une intégrale qui est absolument conver-
gente.

Par moyen de la table suivante le conférencier donne des for-
mules qui permettent d’exprimer les intégrales doubles d’une
maniere plus familiere, en employant des intégrales répétées.
Dans le domaine de lmtematlon ordinaire les deux notions
d'integrale multiple et d' zzzfeglale repétée sont identiques. Elles le
sont toutes les fois que la fonction gestle produit d'une fonection
de & par une fonction de y. Mais quand g n’est pas de cette nature.
les théoremes donnés ont une importance capitale.

Si

a, b a, b
g = [.;4.1’, yid{xy), b[. filx, y)dglx, v\ = t/ fle. yvicie, v d(ay).

N 0,0 0,0
S a, b a, b
& = /)?“7‘1’9')‘{5"7‘3?')' f(.x,g'ldg(x,ﬁ') — & [lx.viglx, vy ds (a, 1.
. e ¢, 0 0,0 ‘
/»a, b a b
o .
& . fle,yldg(x,v) = fd 3 2
est une fonction mo- 18 9
notone I]OII'déCPOiS" ou dz, un deS Hombl‘es déri\'és de g"‘fl". v}, est

sante. une fonction monotone,
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a, b b a
Jr IWlby)dg(x,y)=:,/‘ [F ng
0,0 y=0 x=0
P“ffxy
[
—_ X — 8
0 dx
l‘—ff(x) \ aa, b b 1G1¢
Flx,y)dGx,y = FT d)
_—J . ) 0,0 y=0 & Y dp—o
a, b a, b
¢W4MW%ﬂ=[@J-
(1) Y 0,0 0,0
flx.y)d () . ,
0 0 “Tdd
- L/. [”d—; glx, ») dx
x=0 y::()
d x, Y Ao
gd} f%))d"xo}:/ffa d—*’
0,0
Théoréeme de I'intégration par parlies: —
\ a, b @ b a b
f glx,y)df(x, y) = [fg] - [ [fdg]
0,0 0,0 0 y=9
b « a, b
? — f [/’ng + [ fdg.
0 x=0 0,0
{ Théoréeme de la moyenne, type Ossian Bonnet.
<% b,.... a, b,.....
Sig(x,y.....) et tous By « Y
= )., fedixy.....) = g(a, b,.....) fd(xy......)
lebo increments sont ¢ 0,0,...0 X, Yoo, ,

1 (O, 0 ..... s a, b,..... X

Quant aux applications a la théorie des séries de Fourier, le
conférencier se borne a citer ses nouveaux résultats dans le cas
d’une variable et fait remarquer qu’il n’en a trouvé aucun qui ne
puisse étre étendu a n variables. On peut citer les cas suivants:

I. La série de Fourier de f(x) converge au point x, si

%f | d(ulf(x+ ) 4+ fle—u))) |

est bornée.
Il. La série alliée de la série de Fourier de f(x) converge au
. point X, si

%jﬁdmwx+m—fwfwﬂl
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est bornéee, et

) e
tn S e =) ot 3 du

<

existe.
[I. §¢f(+ 0) et £(— 0) existent,

1 . .
lim na, = 0 lim nb, = ;(f(—l— 0) — f(— 0})

nN=—° n—x

quand la limite est prise a la maniére de Cesaro, index (1 4+ Kk}, 0<Fk.

14. — O. Brocu (Berne). — Sur la géométrie dans le plan d’une
pariable complexe. — Des problémes électrotechniques ont conduit
Vauteur a la considération de fonctions rationnelles de la forme

v A—{—Bv—l—CvZ—}—....—{—Msfi’f
D 4 Ev 4 Fe2goo. 4+ No*

dans lesquelles ¢ désigne un parametre réel, A, B, C, ete., des
constantes quelconques, complexes ou réelles. V est ainsi une
complexe variable dont la représentation géométrique dans le
plan de Gauss est une courbe unicursale.

[’auteur développe quelques-uns des résultats de ses recher-
V— A + By 4 Co*

D 4 Ev 4 Fy?
représente quand les six coeflicients sont complexes, une quar-
tique bi-circulaire dans une position quelconque; quand les trois
coefficients du numérateur sont seuls réels, on obtient une de ces
quartiques avec un point double a 'origine. Si, dans 'un des
deux cas précédents, F — 0, la quartique se change en une cubique
circulaire. Quand A, B, C sont complexes, D, E, I réels, ’équa-
quation précédente représente une conique générale; si C =0, la
conique passe par 'origine. On obtient facilement les équations
des limacons de Pascal et les équations focales des coniques. La
discussion des équations conduit & des modes nouveaux de géné-
ration de courbes connues et aussi a des courbes nouvelles,

Les différentes courbes unicursalés représentées sont différen-
ciées par le nombre plus ou moins grand des termes au numéra-
teur et au dénominateur de V et par la nature (complexe ou réelle)
des coeflicients. Les expressions V avec quatre termes au numéra-
teur et au dénominateur donnent déja 255 combinaisons diffé-
rentes. Chacune d'elles représente un groupe de courbes renfer-

ches, entre autres les suivants : l’expression
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mant un plus ou moins grand nombre de cas particuliers. Ainsi

A+ i(A 4 Clo 4+ Co?
1+ v

est I’équation de la strophoide droite en position quelconque ;

celle-ci se présente comme un cas particulier d’une cubique circu-

laire. Il peat aussi arriver que des expressions différentes donnent

la méme courbe.

[.’auteur renvoie pour plus de détails et, en particulier, pour le
traitement des problémes fondamentaux de la géométrie analy-
tique (problemes d’intersection, de tangentes, etec.), concernant
ces courbes, a un travail paru dans la Schweiz. Bauzeitung (LXVIII,
n° 21 et 22) et a une publication qui paraitra prochainement sous
le titre Ortskurven der graphischen Wechselstromtechnik, chez
Rascher & Ci¢, a Zurich.

Iexpression V= , ou A et C sont complexes,

Nouvelles diverses. — Nominations.

Etats-Unis. — [.es mathématiciens américains se sont réunis
a New-York du 27 au 30 décembre 1916. Les deux premieres jour-
nées ont été réservées a la 23° réunion annuelle de la Société
mathématique américaine (American mathematical Society), pré-
sidée par M. E. W. Brown. Plus de 130 membres, sur 732 que
compte la Société, ont pris part aux séances. M. [.. E. Dickson
a été appelé a la présidence pour 1917.

l.es deux journées suivantes ont été consacrées a la 2° réunion
annuelle de la Mathematical Association of America, qui s’occupe
plus particuliéerement des questions de ’enseignement des mathé-
matiques. M. FI. Casort a été élu président pour 1917.

France. — Académie des Sciences. M. Emile Picarp a été élu
secrétaire perpétuel, pour les sciences mathématiques et phy-
siques, en remplacement de Gaston Darboux. Né a Paris le
24 juillet 1856, M. Picard fait partie de ’Académie des Sciences
depuis le 11 novembre 1889 o il a succédé a Halphen.

Suisse. — M. A. Seuiser a é1é nommé professeur de mathé-
matiques a I'Université de Zurich.

Nécrologie.

Nous avons le regret d’apprendre la mort du général Bassor,
membre de I’Académie des Sciences de Paris et du Bureau des
longitudes, décédé a I’age de soixante-treize ans.

H. Durumier. — La Revue de Métaphysique et de Morale (n° de
janvier 1917) annonce la mort de son jeune collaborateur, le capi-
taine Henri Durumier, tombé au champ d’honneur. « C'est une
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perte irréparable pour la philosophie francaise. Depuis la mort
déplorable de notre cher Couturat, nous avions reporté sur lui
nos plus légitimes espérances. Henri Dufumier était déja un
maitre de cette science difficile de la logistique qui suppose elle-
méme la connaissance approfondie des mathématiques, puisque,
selon sa propre théorie, elle doit en sortir inductivement. » 11
avait pris une part active au 1°* Congres de philosophie mathé-
matique, tenu a Paris du 6 au 8 avril 1914.

NOTES ET DOCUMENTS

Commission internationale de I'Enseignement mathématique.

Compie rendu des travaux des Sous-commissions nationales.

(25¢ article)

SUISSE

Mathématiques et Enseignement secondaire suisse

d'zlprés le rapport de M. K. BraxpexBerGER .

Peu de questions sont aussi importantes dans les pays civilisés que celles
de l'enseignement secondaire. Sa tache n’est pas facile & définir, mais étant
destiné dans chaque nation a former pour la plus grande part la généra-
tion cultivée dulendemain, il ne peut que manquer son but s’il n’arrive a dé-
velopper, & ¢6té d'un amour ardent du vrai, un enthousiasme sincere pour
le beauet le bhien.

La pleine possession de soi-méme, qu'on voudrait rencontrer chez tout
adolescent, ne s'acquiert que lentement. Pour que l'école puisse y conduire,
il faut qu’elle inculque a ’enfant, en méme temps qu'une vive affection pour
le milieu auquel il appartient, le sentiment non moins net, de ce qu’il est,
et doit étre en tant que membre de I'humanité entiére. Le jeune homme
doit donc étre amené, par I'instruction qu’il recoit, a gagner en individualité,
comme aussi & devenir chaque jour plus conscient de son universalité.

I école cherche a atteindre le premier de ces buls par I"étude de la lan-
gue, de la littérature, de I'histoire et de la géographie du pays auquel elle
appartient. Il s’agit ici de ce que 'on peut appeler 1'éducation nationale. Elle
poursuit le second en mettant le plus possible la jeunesse en relation avec
ce qui n'est plus 'apanage exclusif de personne. avec les langues mortes, par
exemple, les sciences en général ou Jes mathématiques.

C’est en se plongeant dans ces grandes manifestations que l'esprit se met

t Dr K. BRANDENBERGER, Der mathematische Unterricht an den schweizerischen Gymna-
sien w. Realschulen, 1 vol. in-8°, 167 p., fr. 3.50 ; Georg & Cie, Bale et Gencve (fascicule %
des Rapports de la sous-commission suisse, publiés sous la direction de H. Frnur).
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