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UNE QUESTION DE CAYLEY

RELATIVE AU PROBLÈME DES TRIADES DE STEINER

PAR

Severin Bays (Fribourg).

1. — Le problème des triples 011 triades de Steiner est bien
connu :

Pour quel nombre d'éléments N peut-on trouver un système de

triples (combinaisons 3 à 3) contenant une fois et une seule fois
chaque couple de ces éléments P Pour un N donné, combien y a-t-il
de systèmes différents, c est-à-dire de systèmes ne pouvant
provenir Vun de Vautre par une permutation quelconque des N
éléments P

On trouve immédiatement que les formes nécessaires pour N
sont + 1 et 6«+ 3. Reiss, Moore, Fitting ont établi1 que ces
deux formes sont suffisantes, c'est-à-dire qu'il existe des systèmes
de triples pour chaque N de la forme 6n 1 ou 6n -)- 3. Netto,
Heffter, White, et d'autres ont donné2 des constructions
particulières, et les groupes de substitutions de nombre de ces
systèmes ; mais le problème général de la détermination du nombre
de systèmes différents pour chaque N 6/i + l ou 6n 3 est
encore à l'heure actuelle loin d'être résolu.

A part le cas trivial N 3, où le système est formé d'un seul
triple 123, les deux cas immédiats sont N — 7 et N 9. Le nombre
des triples du système pour contenir une fois exactement chaque

N(N-l)couple doit être ~ ; un élément quelconque pour être ac-

1 Rkiss. Journal f. Mathem., 56 (1859) p 3*26. — Moore. Mathem. Ann., 43 (1893), p. 271.
Fitting. Nieuw Archief. voor wiskunde Mitgegwen door, het Wiskundig Genootschap te

Amsterdam (2), 9 (1911), p. 359.
2 Netto. Lehrbuch der Combinatorik, 1901, p. 202. — Heffter. Mathem. Ann., 49 (1897),

p. 101. — White. Transactions of the American Mathem. Society, vol. 14 (1), 1913, p. 7;
vol. 16 (1), 1915, p. 13. Proceedings of the National Academy of Sciences, vol. I (1-8), 1915. —
L.-D. Cummings. Transactions of the American Math. Society, vol. 15 (3), 1914, p. 311.
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couplé à chacun des N — 1 autres éléments, doit entrer dans
N — t
—2— triples, et les trois éléments d'un même triple ne doivent

plus se retrouver ensemble. Pour les sept éléments 1, 2, 3, 4, 5, 6, 7,
on voit ainsi que les seuls systèmes possibles commençant par le
triple 123, sont les six suivants :

123 145 167 246 257 34/ 356

123 145 167 247 256 346 357

123 146 157 247 256 345 367

123 146 157 245 267 347 356

123 147 156 245 267 346 357

123 147 156 246 257 345 367

De la même manière on construit les seuls six systèmes possibles

commençant par le triple 124 ; ils viennent d'ailleurs des
précédents en permutant les éléments 3 et 4 :

124 135 167 236 257 437 456

124 135 167 237 256 436 457

124 136 157 237 256 435 467

124 136 157 235 267 437 456

124 137 156 235 267 436 457

124 137 156 236 257 435 467

Les systèmes de triples de sept éléments ne peuvent commencer
que par les triples 123, 124, 125, 126, 127 ; ce qui donne uniquement

30 systèmes possibles, provenant d'ailleurs tous les uns des
autres par des permutations d'éléments, par conséquent un seul
système avec un groupe de substitutions qui le transforme en lui-

7
même d'ordre 168.

2. — Dans ses Mathematical Papers I (page 481, 1850), Cayley,
à qui Jacob Steiner a dû poser le problème avant d'en donner
l'énoncé général deux ans plus tard dans le Journal of Math.
(1853, p. 181), fait d'abord la remarque qu'il est impossible de
répartir les 35 triples de sept éléments en cinq systèmes de
Steiner. En effet, dans les douze systèmes plus haut, on en trouve
aisément deux différents par tous leurs triples, mais dans chaque
cas il est déjà impossible d'en trouver un troisième commençant
par 125 et n'ayant aucun triple commun avec ces deux premiers 1.

Puis Cayley revient à la même question à la fin de son article et
donne pour 15 éléments une démonstration simple et intéressante,

1 Netto, Combinatorik. p. 228.
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surtout par l'idée avec laquelle il conclut; je me permets de

rapporter cette démonstration avec ses propres termes:
« Supposons que les 455 triades de 15 lettres puissent être

disposées en 13 systèmes de 35 triades chacun, contenant chacun
chaque dyade possible; il paraît naturel de se demander si ces 13

systèmes ne peuvent pas s'obtenir de l'un quelconque d'entre eux
par une permutation cyclique de 13 de ces lettres. Je pense que
cela est impossible. Soient a, b, c,..., /, m, les 13 lettres soumises
à la permutation cyclique. Considérons à part les triades qui
contiennent l'une ou l'autre des deux dernières lettres n et o qui
restent inchangées; aucune de ces triades ne contient la lettre,
quelle qu'elle soit, qui forme une triade avec la dyade no. En y
barrant ces lettres n et o, il reste ainsi dans chaque système deux
séries de 6 dyades chacune et composées des mêmes 12 lettres.
Et chacune de ces deux séries de dyades doit, par là transformation

cyclique en question, reproduire le système complet des 78

dyades de 13 lettres. Si on arrange les dyades de 13 lettres de la
manière suivante :

ab

ac

ad

ae

af
nuD

bc cd

bd ce

be cf
bf eg

bg ch

bh ci

de ef
df eg

dg eh

dh ei

di ej

dj

fg gh

fh gl

fi si
f gk

ft gl

fl gm

hi

hi
hk

hi
h m

ha

ij ik
ik jl
il jm
im ja
ia jb
ib je

kl Im

km la
ka lb

kb le

kc Id

kd le

ma

mb

me

md

me

mf,

il résulte que les 6 dyades de chaque série doivent être situées
une dyade dans chaque ligne. Supposons les deux séries de
dyades formées des 12 lettres a, b, c, / ; on ne trouve point
dans l'arrangement écrit d'autre série de 6 dyades de ces 12 lettres,
ayant une dyade dans chaque ligne, que la seule suivante: al, bk,
cj, di, eh, fg; et comme il en est de même pour toute antre
combinaison de 12 lettres tirées des 13 lettres a, b, c,... /, m, la
dérivation des 13 systèmes de 35 triades au moyen d'une permutation
cyclique de 13 lettres, est impossible. »

« Et il ne paraît pas y avoir aucune règle pour faire dériver les
13 systèmes de l'un d'eux; il n'y a même pas de raisons pour croire
que les 13 systèmes existent réellement, car on a déjà démontré
que de tels systèmes n'existent pas pour le cas de 7 éléments. »

3. — Cependant déjà pour 9 éléments, la question de Cayley,
impossible pour 7 éléments, a une solution affirmative et même
deux solutions différentes. Avant de donner ces solutions, la
propriété suivante nous fournit d'une manière simple et nouvelle tout
ce qu'il est nécessaire de rappeler sur le système de Steiner de
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9 éléments1 et permet surtout d'obtenir immédiatement des
solutions à la question de Cayley2.

Théorème. — Si le triple abc n'entre pas dans un système de
Steiner de 9 éléments, le triple a ß y des trois éléments associés
dans le système aux couples bc, ac, ab :

be cl, caß, ab y

n'y entre pas non plus. En effet, dans le cas contraire le système
comprend déjà les 4 triples bca, caß, aby, aßy, et n'en garde plus
que 8 disponibles. Les 3 éléments restants a', ß' ,y' doivent entrer
chacun dans 4 triples ; ou bien ils forment le triple a'ß'y',et alors
ils ne peuvent plus entrer ensemble et il faudrait encore 3x3 — 9

triples disponibles en plus du triple a'ß'y' ; ou bien ils forment
les 3 couples ß'y', y'a', a'ß\ et alors chacun doit encore entrer
2 fois séparément, et il faudrait encore 3x2 — 6 triples disponibles,

ce qui n'est pas non plus. Le triple aßy n'est donc pas un
triple du système ; par la même raison le triple a'ß'y' des 3
éléments associés aux couples ßy, ya, aß, ne le sera pas non plus. On
voit ainsi que le système de Steiner est complètement déterminé
par l'arrangement aßy pris dans les 6 éléments restant après
a, b, cy et la permutation a'ß'yr des 3 derniers éléments et qu'il ne
peut avoir que la forme suivante :

be.CL ca.[i ah. y

ßy.a' ya.ß' aß.y'

ßY-« y'et! .b a'ß'.e
aCLCLf LOCjfLv cyy'

La place des a, b, c dans la troisième ligne est en effet déterminée

par l'arrangement aßy et la permutation a' ß' y' ; a, ß, y ne

Netto, Co/nbinatorik, p. 219 et 230.
2 Je n'ai pu trouver aucune allusion à cette question de Cayley dans les travaux parus

jusqu'ici sur le problème des triades de Steiner. Netto est le seul, dans sa Combinatorik,
p. 228, à rappeler cette question ; il ne parle d'ailleurs que du cas de 7 éléments pour montrer

que dans ce cas la question est insoluble. Je croyais être le premier à avoir obtenu une
solution pour 9 éléments, lorsque j'ai trouvé dans les Récréations mathématiques de Lucas»
t. II, 1883, p. 193, un problème de M. Walecki qui établit précisément une solution
pareille. M. Walecki représente un système de Steiner de 9 éléments par le schéma :

i P ab
c d Q

« f S

où les triples sont formés par les six lignes et colonnes, et les 6 diagonales complétées en
écrivant une seconde fois le schéma à côté du premier ; et en permutant cycliquement
(abedefg), il montre qu'il obtient ainsi les 84 triples des 9 éléments répartis en 7 tableaux,
tels que l'on rencontre dans chaque tableau chacune des 9 lettres une fois et une seule fois
avec les 8 autres. M. Walecki se borne d'ailleurs à établir cette répartition et ne fait aucune
allusion à la question de Cayley.
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peuvent entrer dans la troisième ligne; la première et la deuxième
ligne montrent que a n'est plus à lier qu'avec a et a', ß avec b et
ßr, y avec c et y'. Il nous faut donc encore les triples aaa\ bßß\
cyy', qui exigent que la troisième ligne laisse disponibles les couples

aa', bßf, cy\ et qu'elle soit donc ß'y1 a, y'a'b, arßrc.
Le nombre des systèmes de 9 éléments dans lesquels n'entre

pas le triple abc est ainsi, puisque a ß y peut être tous les
arrangements de 6 éléments 3 à 3 et chaque fois a' ß' y' toutes les
permutations de 3 éléments :

il m 6.5.4.6 ~ 720 systèmes

Les 720 systèmes contiennent les triples abd, abe, abi\ le triple
abc appartient donc aussi à 120 systèmes pareils et le nombre
total des systèmes de 9 éléments est 720 + 120 840 systèmes.
D'autre part, par la manière même de les construire, tous ces
systèmes proviennent les uns des autres par des permutations
d'éléments ; ils ne représentent donc qu'un seul système de
Steiner de 9 éléments avec un groupe de substitutions qui le

9 i

transforme en lui-même d'ordre 432.

Avec cela le système S peut s'écrire relativement au triple abc,
d'une manière symbolique mais très courte, et qui le détermine
complètement :

a p y ; a' ß7 y7

et sous cette forme ce n'est plus qu'un jeu d'écrire maintenant
6 systèmes pareils 11e contenant pas le triple abc et différents
entre eux par tous les triples. Ainsi par exemple les 6 systèmes :

a ß y a ß7 y'
ß y a y7 a7 ß7

y a ß f y7 a7

a ß7 y7 ß y a

ß' Y a' a ß 1

Y cd ß7 y a ß

ou cette variante

a ß y a ßr y'
ß y a y' a' ß'

y a ß ß7 y' a'
a' ßr y' y a ß

ß' y7 a7 ß y a

7' V j a P T

Les six systèmes absorbent ainsi 72 triples, contenant chaque
couple exactement 6 fois ; les 12 triples restants doivent encore
contenir une fois chaque couple, et forment aussi d'eux-mêmes
un système de Steiner. On a ainsi autant de solutions à la question

de Cayley : Répartir les 84 triples de 9 éléments en 7 systèmes
de 12 triples, chaque système contenant une fois chaque couple.
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4. — Reprenons les éléments 1, 2. 3, 4, 5, 6, 7, 8, 9. Une

première solution à la question de Cayley est :

123 147 158 169 248 259 267 349 357 368 456 789

124 136 157 189 239 256 278 347 358 468 459 679

125 137 149 168 238 246 279 345 369 478 567 589

126 139 145 178 235 247 289 348 367 469 568 579

127 138 146 159 234 258 269 379 356 457 489 678

128 134 156 179 236 249 257 359 378 458 467 689

129 135 148 167 237 245 268 346 389 479 569 578

Par commodité désignons chaque système par son premier
triple. Les 3 couples d'un même triple du système 123 sont séparés
dans les 6 autres systèmes, et les 3 éléments qui leur sont associés

dans chaque système constituent un triple. Ecrivons au-
dessous de chaque triple du système 123 les (3 triples qui ainsi lui
correspondent, mais en les plaçant chacun dans la ligne du
système de Steiner auquel il appartient. On obtient le tableau suivant :

3 123 1Â 7 178 169 2i8 259 267 349 357 368 456 7 89

4 468 2561239-347 \

1

J347 459-189
1

j

278
i

157 189-239 136
1

5 478 369 246 168 589-345 168-125 279 137 125-345

6 469-579 235 348 367 178
I

469-289 j 145
;

QOucrs00 126

'7 258 379-269 234 379-159 146 138 678 146-269 457

8 689 467 378-257 j 359-156 CO
v
1 GC 134 257-156 128 249

9 578-569j CO OO 245-578 167 346 148 129 237 245-346

Une substitution quelconque du groupe symétrique des 9
éléments transforme le système total I en système V équivalent, le
système 123 en un système 12:v équivalent, et ce tableau, dont la
construction naturellement subsiste telle quelle, en le tableau
équivalent correspondant au système 12x clans le système Y. Une
substitution qui transforme à la fois le système I en lui-même et
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le système 123 en lui-même, doit transformer le tableau en lui-
même, une ligne horizontale en une ligne horizontale, une colonne
verticale en une colonne verticale. Ces dernières substitutions
forment évidemment un groupe ; c'est ce groupe que nous voulons
obtenir.

Les colonnes 147, 259, 368, qui doivent permuter entre elles,
n'ont pas la même constitution :

Dans les colonnes : 447 259 368

25 3 fois 34 \ 29 3 fois

les couples 39 - 37 i
| 15

entrent : 69 >
2 fois 16 [

>
2 fois

45
j

> 2 fois

89 ; 18 75

r Q 1

et 9 autres couples ' 1i et 9 autres couples
46

1 fois chacun. 1 1 fois chacun.

et 6 autres couples
1 fois chacun.

Ainsi l'élément 2 peut seulement devenir 2, 5, ou 9. Pour 2 — 2

on a les cas :

2 — 2 5 — 5 9 — 9 2 2 5 9 9 5

1 peut devenir 1, 4, 7 1 peut devenir 3, 6, 8

Dans chaque cas les couples associés dans le système 123

à 2) 13 48 67 perm, entre eux 13 48 67 perm, entre eux.

à 5) 18 37 46 » » » 18 37 46 une ligne permu-
à 9) 16 34 78 » » » 16 34 78 i te avec l'autre.

On obtient immédiatement les 6 premières puissances de la
substitution :

Ä (59)(164378) '

Les cas 2 5 et 2 ^=9 ne donnent rien ; le sous-groupe cherché
est donc le groupe {s j1 d'ordre 6. En prenant ensuite avec le tableau
du système 123 le même tableau correspondant au système 124,
on trouve la substitution :

a (1673824)

qui transforme le système I en lui-même en changeant le
système 123 dans le système 124, et dont les 5 autres puissances

Notation de Netto, Gruppen u. Substitutionentheorie, 1904, p. 34.
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différentes de l'identité changent le système 123 en les 5 autres
systèmes 125,..., 129. Le groupe total qui transforme la solution
I en elle-même est donc le groupe d'ordre 42.

5. — Une seconde solution à la question de Cayley est la
suivante :

123 147 158 169 248 259 267 349 357 368 456 789

124 139 157 168 236 258 279 345 378 467 489 569

125 136 149 178 237 246 289 348 359 457 568 679

126 137 148 159 239 245 278 346 358 479 567 689 (II)
127 135 146 189 238 249 256 347 369 458 579 678

128 134 156 179 235 247 269 367 389 459 468 578

129 138 145 167 234 257 268 356 379 469 478 589

En effet le tableau correspondant au système 123 (je donne les
systèmes I et II représentant les deux solutions avec le même
système 123) dénote à première vue un groupe d'ordre plus élevé :

m 147 169 248 25.9 357 368 4 56 189

4 489 236 258 157 467 168 279 I 139 345

5 679 568 348 359 178 149 125 237 246

6 567 239 358
i

159 346 148 479 278 126

7 458 256 347 369 678 249 127 189 135

8 578 389 247 367 134 269 459 128 156

9 469 589 257 167 138 268 145 379 234

| 158 i 267 *
I 349 1

| 267 349 | 349 158 | 158 267 | appart. au système 123

Mais ici le système 123 est le seul dont le tableau ait cette
forme. Le tableau pour les six autres systèmes prend une forme
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différente, et il n'y a ainsi aucune substitution qui transforme la
solution II en elle-même en changeant le système 123 en un autre.
Dans ce tableau du système 123, les colonnes 158, 267, 349, doivent
permuter entre elles ; il ne reste qu'à prendre successivement
1 — 1, 5, 8, 2, 6, 7, 3, 4, 9. Ainsi pour 1 1 on a les deux
possibilités :

1=1 5=5 8=8 1=1 5=8 8=5

Les couples associés à ces éléments dans le système 123 :

23 47 69 permutent entre eux. 23 47 69 permutent entre eux.
29 37 46 » » » 29 37 46 une ligne permute avec
24 36 79

%

« » » 24 36 79 | l'autre.

et par un essai sur le tableau on contrôle si la substitution obtenue
est à prendre ou à rejeter. On trouve 54 substitutions; c'est-à-dire
la moitié des substitutions qui transforment le système 123 en lui-
même en permutant les triples 158, 267, 349, entre eux, transforment

le tableau en lui-même. 34 de ces substitutions sont les
puissances de substitutions de la forme :

6- (58) (246379)

et les 20 autres sont de la forme ;

a (158) (267) 349) fi (123) (456) (798), etc.

Les substitutions a et ß sont permutables et donnent un groupe G
d'ordre 9. La substitution s est permutable avec ce groupe G
et la plus petite puissance de s égale à une substitution de G est
s0 1. Le groupe qui transforme le système II en lui-même est
donc le groupe j a, ß, s j d'ordre 54.

On arrive plus vite au résultat avec le tableau du système 124 ;

il donne immédiatement un sous-groupe d'ordre 9 de la forme de
G, et le groupe cherché est ainsi d'ordre 6 X 9 54.

9 9
Les deux solutions données représentent ainsi —^ 4-—= 15360

4 2 5 4

répartitions possibles des 84 triples de 9 éléments en 7 systèmes
de Steiner. Or, le travail n'est pas démesurément long, si on écrit
les 840 systèmes de 9 éléments, on trouve que pour l'un des
systèmes 123, par exemple pour le système :

123 147 158 169 248 259 267 349 357 368 456 789

il y a 32 systèmes 124 qui en diffèrent par tous les triples, et que
chacun de ces systèmes 124 accouplé au système 123 donne, avec
les systèmes 125,..., 129, n'ayant aucun triple commun avec eux,

L'Enseignement mathém., 19e année; 1917. 5
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exactement 4 solutions cherchées ; ce qui fait 32 X 4 X 120 15360
solutions. Les systèmes I et II donnés sont donc les seules solutions

différentes à la question de Cayley pour 9 éléments.

6. — Supposons que les v v — 1) [v — 2) /6 triples de v éléments
1, 2,... v soient répartis en v — 2 systèmes de Steiner Av. Il y a

un procédé donné par Reiss et généralisé depuis pour construire
un système de triples A2v i au moyen d'un système de triples Àv.
On prend comme première partie du système A2v_j_i le système
donné Av ; on répartit les (r + 1) v/2 couples des v -j- 1 nouveaux
éléments en v colonnes de (r -f- 1) /2 couples, mais de telle sorte
que chaque colonne contienne les r -f- 1 éléments, et on écrit
respectivement devant les couples de chaque colonne les anciens
éléments 1, 2, 3,... v. On se rend compte immédiatement que
l'ensemble des :

yfv — 1) (v + 1) v _ (2v + 1) 2v

6 2 6

triples ainsi obtenus contient en effet chaque couple des 2v -J- i
éléments en question. Reiss fait la répartition des (v-\- 1 v/2 couples

des nouveaux éléments delà manière suivante; pour fixer les
idées nous prenons le cas des 19 éléments 1, 2,... 9 ; 0, 1', 2',..., 9' ;

il est facile de comprendre cette disposition des 45 couples des
éléments 0, 1', 2',..., 9', et de l'appliquer au cas général:

0 Y 0 2' 0 3' 0 Y 0 5' 0 6' 0 1' 0 8' 0 97

2'8' l'9' vr l'3' 1/4' l'5' l'6' l'7' l'8'
3'7' 4/8/ 2'9' 2/3/ 2/4/ 2/5/ 2/6/ 2/7/

4'6' 4/7/ 5/7/ 5'8' 6'8' 3'9' 3'4' 3'3' 3'6'
5'9' 5V 6'9' 6rr 7/9/ 7/8/ 8'9' 4'9' 4/5/

Nous écrivons une première fois devant les couples de chaque
colonne celui des éléments 1, 2,..., v correspondant au rang de
la colonne; puis nous permutons cycliquement les éléments
1, 2, v, jusqu'à ce que chacun ait été placé devant chaque
colonne ; les v ensembles de [v -f- 1) vj2 triples ainsi obtenus n'auront

nulle part 2 triples communs. Si nous complétons v — 2 de
ces ensembles par les Av donnés au début, nous aurons ainsi v — 2

systèmes de Steiner A2V + i différents par tous les triples. En
formant ensuite le tableau précédent avec les éléments 0, 1, 2,... v 9,
et plaçant devant les colonnes les éléments 1', 2', 3',.. f% avec
les v — 2 systèmes A/' pareils aux systèmes Av nous aurons de
même v — 2 systèmes A2V _j_ t différents par tous les triples. Il est
facile de voir maintenant qu'avec les v — 2 premiers systèmes
,A2v + i trouvés, il est possible d'en associer exactement 2 des der-
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niers obtenus (à moins que v — 2 — 1, c'est-à-dire v 3 et
-f- 1 7, et c'est la seule exception1) sans avoir encore un seul

triple commun, et réciproquement. Ainsi pour 19 éléments, en
écrivant seulement, pour la seconde partie de chaque système, le

premier triple de chaque colonne :

1 01' 2 02' 3 03' 4 04' 5 05' 6 06' 7 07' 8 08' 9 09'

2 01' 3 02' 4 03' 5 04' 6 05' 7 06' 8 07' 9 08' 1 09'

3 Ol7 4 02' 5 03' 6 04' 7 05' 8 06' 9 07' 1 08' 2 09'

401' 5 02' 6 03' 7 04' 8 05' 9 06' 1 07' 2 08' 3 09'

5 0P 6 02' 7 03' 000 9 05' 1 06' 2 07' 000CO 4 09'

6 01' 7 02' 8 03' 9 04' 105' 2 06' 3 07' 4 08' 5 09'

7 OP 8 02' 9 03' 1 04' 2 05' 3 06' 4 07' 5 08' 6 09'

2'0L OCO CO0 5'04 6'05 7'06 8'07 9'08 l'09
3'01 4'02 5'03 6'04 7'05 8'06 9'07 P08 2'09

Les deux derniers systèmes terminent exactement la permutation

cyclique de manière qu'il y a là tous les triples possibles
avec l'élément 0, un élément simple et un élément prime : dans les
7 premiers systèmes les autres triples de chaque colonne contiennent

2 éléments primes, dans les deux derniers les mêmes triples
contiennent 2 éléments simples. Nous obtenons ainsi 9 — v

systèmes de Steiner de 2v + 1 éléments différents par tous les
triples ; il est d'ailleurs impossible par le même procédé, même en
modifiant le tableau A, d'en obtenir davantage. Si les v — 2

systèmes Av existent pour v éléments, pour 2v -f- 1 éléments, il existe
donc en tout cas v systèmes de Steiner n'ayant aucun triple
commun, c'est-à-dire un nombre supérieur à la moitié du nombre
(2r +1) — 2 2v — 1. Probablement la construction correspondante

de Reiss ou une autre donnerait, au. moyen toujours des
v — 2 systèmes Av, un résultat pareil pour 2v — 5 éléments ; pour
13 éléments j'ai obtenu 7 systèmes sur il, pour 15 éléments 8
systèmes sur 13 et pour 31 éléments 16 systèmes sur 29 différents
par tous les triples. Presque certainement il existe donc pour
chaque N 6n -f 1 ou 6n + 3, en tout cas un nombre de
systèmes différents par tous les triples supérieur à la demie du
nombre N — 2, excepté pour 1 éléments, et cela me parait une
raison de croire que 7 éléments est le seul cas pour lequel la question

de Cayley manque de solution.

Fribourg (Suisse), septembre 1916.

1 Pour y 3 la répartition en v — 2 systèmes As existe, puisqu'elle se réduit au seul triple
123, mais précisément parce qu'elle se réduit a un système A3, avec les dispositions :

Ö V 0 2' 0 3' 01 02 03
2/3' VV V2> VAÔ 23 13 12

on ne peut former que deux systèmes A7 n'ayant aucun triple commun, et non trois.
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