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dition et de la soustraction, tous les éléments de 'ensemble
en question. Donc, gJ% n’est pas un domaine holoide et ne
saurait étre envisagé comme composé exclusivement de
nombres entiers (v. article 17).

V

51. — Bien que le corps de nombres %K% ne contienne
aucun domaine holoide maximal, on peut néanmoins tenter
d’y construire une arithmétique généralisée. Comme fonde-
ment de cette arithnomie, on essaiera la

Définition XI: un complexe rationnel

m,

a = m;e + — & -+ mye,
est réputé entier, si m,, m,, m, représentent des nombres

entiers ordinaires, pouvant prendre toutes les valeurs de
— o a + o, g étant un nombre entier non nul, arbitraire-
ment choisi, mais fixe.

L’ensemble
[H] = [’”1(’1 -— ”—lf e, -+ my, €3J
o
est bien un domaine holoide, et il renfermera exclusivement
des complexes entiers, en vertu de la définition XI; tous
les autres complexes du corps ;KE , ¢'est-a-dire ceux ne fai-
sant pas partie de [H]. seront réputés non entiers.

Les «nombres entiers » dont nous allons faire la théorie
constituent un domaine holoide non maximal, de sorte qu’il
faut s’attendre a priori a ce que cette arithnomie ne soit pas
réguliére, mais présente des singularités étonnantes, com-
parée a l'arithmétique classique.

52. — Pour abréger l'écriture, nous représenterons nos
complexes entiers en écrivant uniquement les coordonnées.
Nous figurerons ces complexes, sans écrire les unités rela-
tives e, ni les signes +, en mettant simplement les coor-
données, séparées par des vigules, entre parenthéses; et ce
seront ces parenthéses qui indiqueront symboliquement la
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liaison censée exister entre les coordonnées, liaison qui
fait que les 3 nombres constituent un seul et méme tout.

Uy

Ainsl, a = a,e, + e, + a,e; s'écrira simplement

O

a, ’ . .
a=\a,, =X, (13>, ou g7 0 est un nombre entier fixe. Le
ted

complexe a sera donc entier, si les trois nombres «,, a, et
a, le sont; et @ sera non entier, si 'un au moins de ces trois
nombres @, est fractionnaire.

Tout nombre réel » pourra étre envisagé comme un de ces
complexes de la forme r—=(r, 0, r); en particulier, le nombre
L=, 0, 1.

53. — Définition de la divisibilité. Un complexe entier

. f & & & .
g = <(z,, = (13> est dit « divisible par le complexe entier
tel

~

— b. ‘ 2 . : .
b — </)1 2y 03> », s'il existe un complexe entier c = <(’1 s 2 03>
el el

satisfaisant a I’équation ¢« —= b . ¢. Nous dirons aussi que,
dans ce cas, « b est un diviseur de @ » et que ««a contient b».
Si b est de norme nulle, I'équation « = & . ¢ n’a de solution
en complexes entiers que si « est aussi de norme nulle. En
particulier, b étant donné, 1'égalité 0 — b . ¢ est vérifiée par
une infinité de complexes entiers ¢ =B’ . &, ou / est un
complexe entier quelconque et B’ le conjugué de 6. De la
vient le nom de « diviseur de zéro ».

54. — Le complexe entier e est dit une wunité, s’il entre
comme diviseur dans tout complexe entier (v. article 10). Il
existe dans le domaine [H] dont nous nous occupons une
infinité d'unités, a savoir les complexes

2
s:(_—’r_—_’l,i—&—,il>

p
k étant un nombre entier quelconque. Remarquons que
(1, é, ’l> — (’l, ;—lf—, 1>k pour toute valeur entiere, positive,
nulle ou négative, de . En considérant comme unités fonda-
mentales ¢, = (—1. 0, 1); ¢y = (1,0, —1); s, = <1, L 1) ,

g
on peut mettre n’'importe quelle unité ¢ sous forme d’un pro-
duit de ces 3 unités fondamentales: e =¢". <™. ", ou n, m

. g, . €
1 2 38
et & sont des entiers appropriés.
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55. — Deux complexes entiers sont dits associés, s'ils ne

different 'un de I'autre que par un facleur unité e (v. article
10). A toutcompleYe entier @ sont ains associés une infinité
de complexes ac, ol ¢ représente une unité quelconque. On
sait que dans toutes les recherches relatives a la divisibilité,
des complexes associés sont équivalents et peuvent se rem-
placer 'un l'autre, comme c’est déja le cas dans la théorie
des nombres ordinaires. Dans le groupe formé par l'en-
semble des complexes associés au méme complexe entier @,
donc associés entre eux, il suffira d’en choisir un, convena-
blement défini et qui remplacera tous les autres. On appelle
ce représentant : un complexe primaire ; dans les théoremes
de divisibilité et de décomposition en facteurs, il suflfit d’en-
visager les complexes primaires.

Dans le domaine des nombres hypercomplexes dont nous
nous occupons ici, on peut d'abord supposer non négatives
les trois coordonnées d’'un complexe primaire «, puisqu’au
lieun de 2, on peut au besoin considérer
a étant supposé de norme non nulle, envisageons son associé

k 79 k ay + ha, a
a. ¢ —=la,,—=,a,) (1, -,4)= (a , ——2 a,)=|a,, , a
1 ) ) 1 , 3
3 o 4 o o i 3
5 8 5

On voit que le nombre entier & peut étre choisi de maniere

' , . , .
que a, < a, et qu’alors, @, est déterminé de facon univoque.
Ceci conduit a la définition suivante: un complexe entier

X, OU g, OU &}

~
~

%2 |y

a T e , . . “ .
a — <a1 , =, a3> non diviseur de zéro est dit primaire, si ses
) o

coordonnées satisfont aux inégalités simultanées 0 < a, ;

0=, < a3 0 < a,.

<.I’1 ]

de norme non nulle, «, ne peut avoir que 'une des valeurs
0,1, 2,3, ..., 2, —1. Parmni tous les compiexes enliers asso-
ciés entre eux se trouve toujours un, mais un seul, qui est

>€

9

Donce, si & = : 13> est un complexe entier primaire

. el

primaire.

56. — Quant aux diviseurs de zéro a premiére coordonnée
a . .
nulle, tous de la forme <O, =, -(c3>, ils constituent un groupe
o]

particulier, un sous-systéme a deux coordonnées contenu
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entierement dans le systéme a trois coordonnées que nous
envisageons. Leur étude devrait se faire a part, et comme ce
n’est pas le but de ce travail, nous les excluons des recherches
subséquentes.

Quant aux diviseurs de zéro dont la troisieme coordonnée
est nulle sans que la premiere le soit, tous de la forme

<,?j.1 ; ‘2027, O> , 1ls constituent également un sous-systeme parti-
o

culier a deux unités relatives, demandantune étude spéciale.
On peut y maintenir, pour le complexe primaire, la défini-
tion donnée ci-dessus (art. 55), avec cette seule différence
que a, — 0. Nous les excluons aussi des recherches ulté-
rieures dans ce travail.

57. — En analogie avec la théorie classique des nombres,

;o . N «a. .
nous définirons : un complexe entier a = ((zl, 7’ (/3> qui

o

n'est pas une unité ni un diviseur de zéro, e\,st dit rréduc-
tible, ou premier, si dans toutes les décompositions possibles
a =0 .cde a en deux facteurs, I'un de ces derniers est tou-
jours une unité. Ces complexes entiers irréductibles joue-
rontici le role des nombres premiers de I'arithmétique ordi-
naire.

Dans le domaine que nous étudions, il existe trois catégories
de complexes irréductibles, a savoir:

1° Les complexes de la forme a = (1, 0, p) = ¢, + pe,,
ou p est un nombre premier naturel. Leur norme Niu) = p
est un nombre premier. Les complexes enliers, non pri-

. S a ., [
maires, de la forme (1, = p> leur sont associés et n’en dif-
=]
ferent donc pas essenticllement.
2° Les complexes de la forme 8 = (p, 0. 1) = pe, 4 e¢,.
ou p représente un nombre premier naturel. Leur norme
N(B) — p? est le carré d’'un nombre premier.

rJ
; a, ) .
3° Les complexes de laforme y = </;”, =, 'I), ou p estun
o

nombre premier ordinaire, 'exposant n un nombre naturel
quelconque et @, un nombre entier positif inférieur a p» et
non divisible par p,

0 < a, < pn et ay 2= 0 (mod p)
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Leur norme N(y) = p** est une puissance paire quelconque

d’un nombre premier naturel p.
Si I'on voulait décomposer y en lacteurs, on devrait avoir:

: . k..o mo_,
== ([)k’ , -1) ) (F”Z’ %" 1) - (P/H—m, pl ’t p_* ’ 1)

d’ou résulterait: & 4+ m = n, et

Uol%‘

ay = p"x + piy = p"(x + ypt
en supposant & > m. Si m > 0, la coordonnée «, serait divi-
sible par p, contrairement a I'hypotheése. Cette contradiction
ne peut étre levée qu’en prenant m = 0; mais alors, 'un des
deux facteurs est toujours une unité et, pér conséquent, y un
complexe irréductible.

Remarquons qu’il existe un seul complexe premier pri-
maire o de norme p, a savoir (1, 0, p); il représente tous les

¥ X . . .,
complexes entiers (1, = car ils luil sont tous associés:
3 ot 9 ’

D " -

par contre, il existe p complexes premiers primaires (3 de
meéme norme p?, essentiellement différents entre eux, c’est-
a-dire non associés, a savoir: ‘

\. 9 -
,‘1);<p,;,’1>;...;<p,[) 1,’1>
5 1

ils représentent tous les complexes <p, — 1> de meéme
el

(p. 0, 1); <P»

g | =

norme pe.
Les nombres premiers naturels tels que p ne sont pas
irréductibles dans ce domaine, puisque

p=ip, 0, p)=1(1,0,p)(p,0,1).

98. — Pour décomposer en facteurs premiers un complexe
entier donné quelconque, @, on a:

a a

(L:<(Ll,<—2, a9>:<u1,—2, 1).([,0,(1?) .
o 2 o L
5 S

Il suffit donc de considérer deux catégories de complexes
entiers : ceux de la forme (1, 0, m) = e, + me, et ceux de la

2

Al (l MY ’
forme <(/1, =, 1) dont la derniére coordonnée est 1.
o]
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Désignant par p,. p,, ..., p, les facteurs premiers de m, de
sorte que m = py . p, . py ... p . on voit que

(L0 n = (1, 0, ppath. 0, por (Lo 00 pyr o (L, 00 po

Il reste a considérer les complexes entiers de la forme

a, .
(ax. -, ‘l>. Sil'on poseay =1, .1, . ... 1

el

.+ ous pourrons

écrire la décomposition suivante :

a. x a \ Ay
<al'“2=1>:(”1'—*1>'<’°-7"‘v l> .‘.(I:J., _‘_,’l>
o ) o = o &

o \ o o b

ou les 1, sont des nombres premiers ou des puissances de
nombres premiers. Les entiers xr,, x,. ... ..r, s'obtiennent
sans difliculté, de proche en proche. |

La décomposition en complexes premiers dun complexe
entier quelconque donné a est donc toujours possible.

59. — Celite décomposition d'un complexe entier donné en
facteurs irréductibles n’est pas nécessairenze/zt univogue Par

.

o’

exemple, le complexe entier « = 625e, —}— = e7 + e, peul

D

se décomposer, et de plusieurs manieres, soit en un pro-
duit de deux, soit en un produit de trois facteurs premiers

79 9
boe—{— €—+—€3:<25(31+—€q—+—0> <25 ;e‘_,—{—eg>

TN TN
ro r
(WAS QN
»—:.b H(b
+ o+

el ey g | W
‘(: "u

\_/ \_/

TN P
r\) N

:‘b
g | ~1 To | o
oo 4
+ 4
:’0 )
N N~

1
o
o
_I~
)
O
e
TN
ho
Ot
H"b
_}_
§°
+
"b
\,/

. 1 . 6
= 08 + 7). <ae1 T =y T+ eg> : <20e1 + —e + eg>
tod o
. - 2 1
= (de; 4+ e, <O€1 =€, + €3> ’ <20p1 + —e + €3>
o ta}
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Toutes ces dé(rompositions ne contiennent que des facteurs
irréductibles et sont essentiellement différentes entre elles.

En général, p désignant un nombre premier naturel. la

, v ® . a
décomposition du complexe entier p’e, + —(—71282 + e, est plu-
o

rivoque, dés que « > 1, puisqu’on a

/ 1 — 1
<P?’ (%P, '1> :(1), 0,1). (p. f—f;, 1>::<p, o 1) . (1), a —— | 1)
tal 5 o .
_ L — !
B ) == b))
z P 8 §

A plus forte raison, la décomposition de

n
sk m

P’+ e, + f ey + &
5

en facteurs irréductibles est-elle plurivoque, quand m > 1.

60. — On sait qu'une constatation analogue faite dans un
aulre domaine (dans un systeme de nombres complexes a
deux coordonnées indépendantes, appartenant a un corps
dérivé d'une racine de 'unité) a amené le mathématicien
E. E. Kummer a créer ses nombres idéaux. Voyant que la
décomposition d’un complexe entier en facteurs premiers
était plurivoque, il imagina, pour faire disparaitre cette ano-
malie, de considérer ces facteurs premiers eux-mémes non
pluscommeirréductibles, mais comme décomposables encore
en d’autres éléments; or, comme ces derniers, les éléments
vraiment irréductibles, ne se trouvent en réalité pas dans le
systeme qu’il envisageait, Kummer les a créés de toutes
pieces, par la pensée, en posant des définitions appropriées.
A ces entités logiques créées par pure convention et pour
des besoins de simplification, Kummer appliqua le nom de
nombres ; et pour les distinguer des nombres ou complexes
réels dont était composé effectivement le systeme qu’il étu-
diait, Kummer les appela «nombres idéaux » (le mot de
« nombres imaginaires » ayant déja une signification fort
différente). De cette facon, Kummer a considérablement élargi
le domaine de nombres qu'il étudiait, en lui adjoignant une
infinité d’éléments nouveaux dits « nombres idéaux », parmi

L’Enseignement mathém., 18¢ année; 1916. 17
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lesquels 'se trouvent les nombres vraiment irréductibles,
c¢'est-a-dire indécomposables. Kummer a, naturellement, posé
d’une facon tres judicieuse les conventions auxquelles étaient
censés obéir ses « nombres idéaux », de sorte qu'il réussit a
démontrer que, dans ce domaine agrandi, on peut ériger
une arithnomie réguliere, semblable en tous points a celle
construite par Gauss dans le systeme des nombres a 4 bi.

Des rapprochements suggestifs ont été faits entre les
nombres idéaux de cette arithnomie et certains radicaux ou
éléments chimiques dont l'existence a été postulée par la
théorie bien avant d’étre confirmée par l'expérience; tout
comme ces radicaux de la chimie, les facteurs idéaux de
Kummer n’apparaissent jamais a |'état isolé, mais figurent
«a 1'état de combinaison» dans les complexes entiers (v.
« Journal f. d. reine u. angew. Mathematik » fondé par Crelle,
vol. 35, p. 360).

61. — Les théorémes de décomposition valables dans le
domaine des quaternions entiers et des tettarions entiers
(v. article 23) pourraient peut-étre faire apparaitre sous un
jour nouveau cette pluralité de possibilités dans la décom-
position en facteurs premiers. Soit un tettarion entier ¢ dont
la norme N(c) comprenne quatre facteurs premiers dont
deux égaux entre eux, et posons :

Bie} = B oBoebr-Ps

Ayant arrété cet ordre de succession des facteurs Py~ on
peut décomposer le tettarion donné ¢ supposé primitif (c’est-
a-dire tel que le plus grand commun diviseur de ses coor-
données soit 1) en un produit de quatre tettarions premiers
primaires :
ou

N(m) = p; ; N (7)) = p, ; N(m) = p, ; Ni(z) = p, ,

et cette décomposition est unique. Si 'on fixe un autre ordre
de succession, qu’on pose par exemple

N(¢) = py.py-Pa-P1 >
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on aura une autre décomposition du tettarion donné ¢ en un
produit de quatre tetlarions premiers primaires :

et cette décomposition sera de nouveau unique, c'est-a-dire
déterminée sans ambiguité.
Les tettarions premiers p, seront différents, en général,

des tettarions premiers = ; ainsi p, 3 m, quoique N{p,)

\

— N(r,) = po; de méme =, == p,, quoique N(r,)=Ni(p,) =p,;
etc.

A chaque décomposition de N(c¢) en facteurs premiers, ou
nlutot a chaque ordre de succession que l'on fixe, arbitraire-
ment du reste, pour ces facteurs premiers p, (il y a douze

permutations possibles dans cet exemple particulier) corres-
pond une décomposition unique et bien déterminée de c en
tettarions premiers primaires, mais ces diverses décomposi-
tions de ¢ (au nombre de douze dans I'exemple particulier)
ne contiennent pas les mémes facteurs premiers. Si le pro-
duit final est néanmoins toujours le méme, c'est-a-dire si

~

.l.ﬁg.ﬂ%.‘ﬁ' — 10

~
4 U102

O

.\O_l — 01.0'2.0'3.0'4 e g w— O

o
D

¢’est parce qu'un produit dépend non seulement de ses fac-
teurs, mais aussi de leur ordre de succession.

Ce théoreme reste vrai pour les tritetlarions (nous l'avons
démontré dans un autre mémoire); en d’autres termes: ce
théoréme reste vrai si ¢ est un complexe aneuf coordonnées
(v. article 29) représentable par

Or, le systéme de complexes & trois coordonnées que nous
venons d'éludier est un cas particulier des tritettarions
(v. article 44). Donc, le théoréeme de décomposition en fac-
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teurs premiers ¢énoncé ci-dessus doit rester applicable,
semble-t-il, quelles que soient les coordonnées ¢, . pourvu
que N(cj = 0. Or, en prenant en particulier

¢

Cog == Uy , (15 =, , ¢

11 1 1: —— ((:‘,‘ 4 (‘13 ——: ('31 —_— 023 = ('3,2 j— (‘.2 - 0

33 21

1 .
appartenant au domaine que nous étudions depuis l'article 51,
en laisant g =1; on doit donc toujours avoir plusieurs

possibilités de décomposition:

. 5 v . ; a,
on obtient précisément le complexe entier a = <(/1 .= (13>

-

C = (0 = 7, .y . Ty 4% "]

_ —_— ~ ~
I e R e R B S S AR

~ —_—
o8
O

3 = -

O

Mais maintenant, la multiplication est cominutative ; le
produit =,.7,.7,.7, quiest égal a cne dépend plus de l'ordre de
succession des facteurs, ni le produit g,.0,.0,.¢,. nilesautres
produits analogues. Ilenrésulte duméme coup queladécom-
position de ¢ en facteurs premiers n'est plus univoque. puis-

qu'en général, les p. sont différents des =, . différents aussi

des o. . ete.

62. — De plus, ces réflexions semblent indiquer que la
multiplicité de décomposition tient a la commutativité de la
multiplication et provient d'elle, tandis que l'unicité de
décomposition tient a la non-commutativité de la multipli-
cation. Ces considérations nous ont amené a rechercher si.
dans tous les systemes de nombres hypercomplexes. la dé-
composition d'nn complexe entier donné en facteurs pre-
miers est plurivoque ou unique, selon que la multiplication,
dans le systeme en question. est commutative, ou ne l'est pas.

Quelques faits paraissent militer en faveur de cette these :
c'est d’abord un théoreme fondamental qui repose sur I'im-
portante notion de systéme simple introduite par MM. £. Car-
tan et Th. Molien; ce théoreme dit que tous les svstemes
« simples » de nombres hypercomplexes a multiplication
associative, ou l'é¢galité et 'addition de deux complexes sont
définis par 'égalité et I'addition de leurs coordonnées cor-
respondantes, constituent des sous-svstemes, donc des cas
particuliers, de certains systemes de tettarions. C'est ensuite
le fait qu'un systeme de polvtettarions a u? coordonnées
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entre lesquelles existent n relations n’est autre chose, en
réalité, qu'un systéme de nombres hypercomplexes a (u* — n)
unités relatives. Il semble méme que les polytettarions ou
u-tettarions (u = 2, 3, 4, b, ...) contiennent, comme cas par-
ticuliers, tous les systémes possibles de nombres hypercom-
plexes a multiplication associative, c¢’est-a-dire ou la relation
(@.b).c=a.(b.c) est toujours satisfaite; il semble, dis-je,
qu'il suffise d'établir des liaisons appropriées entre les coor-
données d’un systéeme de p-tettarions pour obtenir, a ’écri-
ture prés, tel systéme qu’on voudra de nombres hypercom-
plexes & multiplication associative. Par exemple, les nombres
complexes de Gauss sont un cas particulier des duotettarions;
les quaternions sont un sous-systéme particulier des tetra-
tettarions, et ainsi de suite. Des propositions ci-dessus res-
sort en tout cas I'importance trés grande des tettarions dans
lathéorie générale des systémes de nombres hypercomplexes.

63. — Revenons au domaine [H] formé par 'ensemble des

W . .1'9 , ‘1‘2 , \
complexe's entrers x = x,e; 4+ 2, + rze, =Xy, =, X3}, ou
ol el

les X, sont des nombres entiers variant de — o0 a + w, et g

unnombre entierfixe (v.51). Que devient, dans ce domaine[H],

la théorie du plus grand commun diviseur ? Voicice que 'on

peut démontrer sans grande difficulté : deux complexes
. : a b

entiers donnés, ¢ — <(11, -2, (53> et b = (()1, -, b3>, pos-
o

o
sedent «en général» un plus grand commun diviseur, unique

et bien déterminé si 'on ne considére que les entiers pri-
maires (v. 85); de plus, il existe un procédé analogue a I'al-
gorithme d'Euclide permettant de déterminer ce plus grand
commun diviseur par un nombre fini d’opérations ration-
nelles.

Mais ce théoreme « général » présente ici (comme dans le
cas des quaternions entiers lipschitziens, v. articles 9 et 12),
des exceptions déconcertantes. Elles sont méme si nom-
breuses qu'on peut se demander si le théoréme énoncé ci-
dessus n’est pas plutét un théoréme exceptionnel (nous
le qualifions de « général », parce que son analogue est
vrai, sans exception, dans l'arithmétique classique). D’abord,
dans certains cas, l'algorithme d'Euclide ne conduit pas au
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but: a mi-chemin, il cesse d’étre applicable; cela arrive,
par exemple, lorsque «, et a;, coordonnées extrémes de «,
sont des multiples de N(b) et qu’en méme temps a, n’est pas
divisible par N(). Ensuite et surtout, un plus grand com-
mun diviseur au sens habituel de ce terme n’existe pas tou-
jours. En fait de démonstration, donnons un exemple numé-
rique facilement généralisable.
Les complexes entiers

20 15
g = (2531 + e+ 83> et b= <25e1 + —e + e3>
o Il

ont méme norme: N(a) = N(0) = 625, sans cependant éire
associés. Les égalités

2 2
a:<5ei—{——(;e2+eg>

<CC1 =
/

f
=i ¢ —{—e:).<5€1 + —62+83> ;

o
el

[

3
e, + €3> . (5@1 + —e + 83>

te]

s [

O = (5e, + By - <5e] -+ ij e, + 63>
o

\

1
<5e1 =gy «93>.<5e1 + —e + 63)

o

[\

I

montrent que ces complexes a et b possédent quatre com-
muns diviseurs, tous quatre entiers et non associés, donc
essentiellement différents entre eux, a savoir:

: 2
d, = 5e, + ¢, ; dy = Se; + —e, + ¢,
o
_ 1 3
dy = 5e; + —e, + e, ; dy = Se; + - e, + ¢ .
o o

Si a et b possédaient un plus grand commun diviseur d,

) ) . a = f.d . .
on devrait avoir: d’une part ou [ et i seraient cer-

b —= h.d

tains complexes entiers, d’autre part

d — d0'80 — d1-81 — d2,82 — 83_61

3
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les 0, représentant certains complexes entiers, puisque le
plus grand commun diviseur d, devant contenir comme fac-
teurs tous les autres communs diviseurs, devrait étre divi-
sible par d,, d,, dy et dy. Comme N(a) = N(d).N(f) = 625,
il n’y a que les 5 possibilités suivantes: N(d) = 1, ou =15,
ou — 25, ou = 125, ou = 625. Mais N(d) = 625 est exclu,
car il s’ensuivrait que @ el b seraient associés, ce qul n'est
pas le cas. Les égalités

Nid) = N(d,).N(3,) = N(d,].N(3,) = N (d,).N3,) = N{(d,).N(3,)

excluent les hypothéses N(d) =1 et N(d)=15, puisque
N(d,) = N(d,) = N(d,) = N(d,) = 25; si N(d)=25. il s’en-
suivrait que, les J, étant des unités, d,, d,, d, et d, seraient
associés, ce qui n’est pas le cas. Il ne reste ainsi plus a exa-
miner que la derniére hypothese, savoir : N(d) =125; il
s'ensuivrait N(f) =5; donc f, étant un complexe entier,

; , ; . s x , oy
serait nécessairement de la forme /= (1, =, 5). De ’égalité

a !
L d).
4 _ ] |
o5 20 N —=(1.% s\ (4.2 4 dod 1—=5.d
g g 1 Eg 3 3

ce qul est impossible en nombres entiers. Donc enfin, I'hy-
pothese d'un plus grand commun diviseur d de « et b con-
duit nécessairement & une contradiction. Et voila deux com-
plexes entiers « et 6 ayant quatre diviseurs communs bien
différents entre eux, mais ne possédant, néanmoins, aucun
plus grand commun diviseur, au sens qu'a ce terme dans
'arithmétique ordinaire.

[

. . , . ’
a —=f.d, on tirerait, en écrivant d — <(Z1,

Cm|

Des lors, il n'est plus vrai qu'un complexe premier qui
divise un produit de deux facteurs divise nécessairement
'un de ces facteurs. Par exemple, les égalités ci-dessus

‘ : ‘ 4 : -,
prouvent que le complexe entier 5e, + —e, -} e; qui est irré-
o
ductible dans ce domaine et qui ne divise ni d,, ni d,, divise

cependant le produit d,.d; = a. Enfin, quoique les com-

plexes entiers d, — He, + % 0 + ey et dy=>5e, + —e, + ¢,
b o
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tous deux irréductibles dans ce domaine, soient premiers
entre eux (c'est-a-dire admettent comme plus grand commun
diviseur 1), leurs cinquiémes puissances,

6 250 . _ 9375
e, + e, et d; = 3125,, 4 By — By 4
g ' g

d: = 3125¢, +

ne le sont point et admettent le diviseur commun 3 125¢, 4 e¢,.
Ainsi se trouve confirmée la présomption émise a la fin
de l'article 51, a4 savoir que 'arithnomie du corps de nombres
EK basée sur la définition XI ne serait probablement pas
«réguliére », parce que la dite définilion du complexe entier
engendre un domaine holoide [H] non maximal.
64. — Toutes les déductions précédentes restent valables,

. 1 .
si I'on remplace — par un nombre rationnel y non nul, du reste
P - 7
tol

arbitraire. Faisons remarquer que plus le nombre entier g
contient de diviseurs, plus le domaine holoide [H] corres-
pondant enveloppera de complexes rationnels. On peut donc
agrandir indéfiniment le contenu du domaine [H], ou, pour
employer uneimage empruntée a la physique, y «ccomprimer»
des complexes rationnels de plus en plus nombreux. Sil'on
choisit, au contraire, pour y un nombre entier m, on pourra
diminuer indéfiniment 'ensemble des complexes rationnels
faisant partie de [H], en prenant pour m un nombre de plus
en plus grand; on a donc la possibilité (pour employer la
méme image que tout a I'heure) de «faire le vide» de plus
en plus complétement dans l'ensemble [H]. Mais, qu’on
augmente ou qu’on diminue le contenu de cet ensemble,
I'arithnomie dont nous avons esquissé ci-dessus la partie
élémentaire ne changera pas essentiellement, le domaine
holoide non maximal [H] restera toujours non maximal.

Pour faire disparaitre les singularités dont nous avons
signalé quelques-unes, il faul avoir recours a des procédés
plus profonds.

65. — En principe, deux voies bien différentes s’offrent
au mathématicien. La premiére consiste a maintenir les
mémes définitions : de la divisibilité, du commun diviseur,
du nombre premier, etc., mais a élargir l'ensemble [H] que
I'on étudie. On peut y arriver de deux fagons: 1° en définis-
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sant différemment le nombre hypercomplexe rationnel
«entier » dans le corps de tous les complexes rationnels;
cette maniére de faire est due a M. 4. Hurwitz qui l'appliqua
pour la premiére fois au systéme des quaternions; 2° en.
créant, par des définitions judicieuses, des entités logiques
soumises a des lois appropriées, entités que l'on appellera,
par extension, des « nombres» et que l'on adjoindra a [H];
cette maniére de procéder est due & Kummer (v. article 60).

La deuxiéme voie consiste a suivre une marche en quelque
sorte inverse de la précédente: on maintient tel quel le do-
maine [H] que l'on étudie, on ne l'élargit poinil, mais on
change les définitions de la divisibilité, du commun diviseur,
du « nombre premier », etc. Le changement le plus radical
provient de ce que, dans les nouvelles définitions, I'on n’en-
visage guére un nombre ou un complexe isolément, mais
plutot des ensembles composés d’une infinité de complexes,
et que l'on opére avec ces ensembles de complexes au lieu
d'opérer avec des complexes isolés. Cette voie fut ouverte
par J.-W. Richard Dedekind. — R. Dedekind désigne par
des lettres gothiques minuscules : a, b, ¢, d, e... ces ensembles
particuliers auxquels il donna le nom d'idéaux, nom criti-
quable peut-étre, mais qui a acquis droit de cité dans la
théorie moderne des nombres. L'idée géniale du célébre
mathématicien revient a ceci: prendre comme sujet direct
d’étude, au lieu de l'entier considéré a, 'ensemble de ses
multiples g.a; cet ensemble forme «l'idéal principal de
Pentier @». A ces idéaux principaux, Dedekind a joint des
1déaux secondaires; ce sont de nouvelles familles de nombres
déduites des précédentes par voie d’addition. La définition
générale d’'un 1déal peut s’énoncer ainsi:

Définition XI/: Un idéal a est un ensemble formé d’une
infinité de nombres entiers ordinaires ou de nombres hyper-
complexes entiers, dits les éléments de I''déal a, ensemble
jouissant des deux propriétés suivantes: 1° les éléments de
I'idéal se reproduisent par addition et soustraction; 2° si
est un élément quelconque de l'idéal a, le produit g.x, ot g
représente un complexe entier quelconque, est aussi con-
tenu dans cet idéal a.
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En vertu de cette définition, un idéal a contenant les deux
éléments a et b différents entre eux, contient nécessairement
ausst a4+ b, a—0, g.a, g.b, ou g est un complexe entier
quelconque pouvant lui-méme faire partie, ou non, de I'idéal
en question. On démontre alors que tout idéal posséde une
base finie (v. articles 16 et 17).

On définit ce qu’il faut entendre par le produit et par le quo-
tient de deux idéaux a et b, ce qu’est un idéal « premier »,
un idéal «composé ». un diviseur d’idéal, le plus grand
commun diviseur de deux idéaux, et ainsi de suite.

Ceci montre que l'arithnomie du domaine [H] que lon
veut étudier devient un calcul avec des idéaux, au lieu
d’étre un calcul avec des nombres ordinaires ou avec des
complexes entiers. Mais ces idéaux au sens de Dedekind (et
contrairement aux «nombres idéaux » de Kummer) ne sont
plus des abstractions; ce sont des ensembles tout aussi
réels, tout aussi effectifs, que les nombres hvpercomplexes
eux-mémes dont ils sont constitués. Tel est le principe de
la méthode de Dedelkind, permettant d’étudier le domaine
holoide |H] sans modifier ce domaine.

La méthode employée par L. E. Kummer est tout autre.
Elle modifie tres profondément le domaine holoide [H] a
étudier, puisqu’elle lui adjoint une infinité de « nombres
idéanx» qui, au fond. ne s’y trouvent pas du tout. Ces nombres
idéaux rappellent un peu les points imaginaires et les droites
imaginaires des géometres quand ils disent, par exemple,
que deux circonférences dont 'une estentiérementintérieure
a l'autre se coupent, néanmoins, en deux (voire méme en
quatre) points imaginaires et que ces mémes circonférences
ont quatre tangentes communes, mais maginaires. Les
nombres idéaux de la méthode de Kummer, comme les figures
imaginaires de la géomélrie, touchent a ce qu’on pourrait
appeler la « métamathématique » (par analogie a «méta-
physique ») et restent impénétrables a beaucoup d’esprits. La
méthode de Kummer est du reste d'une application moins
facile que la théorie des idéaux, car on ne voit pas toujours
du premier coup d'wil quelles sont les définitions qu'il faut
poser pour créer de facon appropriée les «nombres idéaux ».
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Les deux voies, si différentes en principe, celle de £. L.
Kummer et celle de R. Dedekind, peuvent conduire au méme
résultat : faire tomber les singularités que présente l'arith-
nomie de certains domaines holoides.

66. — Résumons en disant: la définition lipschitzienne du
nombre hypercomplexe entier a 'avantage d’étre toujours
applicable et toujours univoque (v. définition V); mais elle
est en quelque sorte superficielle, en ce sens qu’'en l'adop-
tant, on ne tient compte que de la nature des coordonnées,
sans aucun égard aux réegles qui définissent le systeme envi-
sagé de nombres hypercomplexes. Malgré I'avantage d’étre
toujours applicable et univoque, elle doit étre rejetée comme
pouvant conduire & des arithnomies non régulieres.

La maniere hurwitzienne de définir le nombre hypercom-
plexe entier est plus profonde (v. définition IX, art. 24), en
ce sens qu’en l'adoptant, on tient compte non seulement de
la nature des coordonnées, mais des propriétés intrinséques
du systéme envisagé de nombres hypercomplexes, puisqu’on
doit rechercher un domaine holoide maximal et qu’il n’est
pas possible de le déterminer sans se servir des regles qui
définissent le systéeme en question. Aussi la définition fur-
wilzienne conduit-elle a des arithnomies régulieres la ou la
définition lipschitzienne reste en défaut.

Par contre, la définition hurwitzienne a I'inconvénient de
ne pas étre toujours univoque, et surtout celui de ne pas
pouvoir s’appliquer a tous les cas, puisqu’il existe des corps
de nombres sans domaine holoide maximal. Pour étudier
ces systemes de nombres, on se sert avec avantage de la
méthode des idéaux. Elle consiste a modifier les définitions
de facon a ne plus avoir, dans la théorie de la divisibilité,
a calculer avec des nombres entiers isolés, mais avec des
idéaux. Celte méthode permet d’écarter les obstacles qui
pendant longtemps ont obstrué l'entrée d'une immense
région : 'arithnomie des nombres complexes généraux.

Neuchatel, octohre 1915.
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