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dition et de la soustraction, tous les éléments de l'ensemble

en question. Donc, jjJ n'est pas un domaine holoïde et ne

saurait être envisagé comme composé exclusivement de

nombres entiers (v. article 17).

Y

51. — Bien que le corps de nombres |k| ne contienne

aucun domaine holoïde maximal, on peut néanmoins tenter
d'y construire une arithmétique généralisée. Comme fondement

de cette arithnomie, on essaiera la

Définition XI : un complexe rationnel

m2
Cl 1)1^ Gj —j— G^ "I- '"3 ^3

est réputé entier, si mi, m3 représentent des nombres
entiers ordinaires, pouvant prendre toutes les valeurs de

— go à -f- co étant un nombre entier non nul, arbitrairement

choisi, mais fixe.
L'ensemble

[H] jLej + '^eg +

est bien un domaine holoïde, et il renfermera exclusivement
des complexes entiers, en vertu de la définition XI; tous
les autres complexes du corps j&j, c'est-à-dire ceux ne
faisant pas partie de [H], seront réputés non entiers.

Les « nombres entiers » dont nous allons faire la théorie
constituent un domaine holoïde non maximal, de sorte qu'il
faut s'attendre a priori à ce que cette arithnomie ne soit pas
régulière, mais présente des singularités étonnantes,
comparée à l'arithmétique classique.

52. — Pour abréger l'écriture, nous représenterons nos
complexes entiers en écrivant uniquement les coordonnées.
Nous figurerons ces complexes, sans écrire les unités
relatives e^ ni les signes -f en mettant simplement les
coordonnées, séparées par des vigules, entre parenthèses; et ce
seront ces parenthèses qui indiqueront symboliquement la
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liaison censée exister entre les coordonnées, liaison qui
fait que les 3 nombres constituent un seul et même tout.

Ainsi, a — a[ei + (~e.2 -(- a?> e3 s'écrira simplement
S

où g 0 est un nombre entier fixe. Le

complexe a sera donc entier, si les trois nombres a2 et
a3 le sont ; et a sera non entier, si l'un au moins de ces trois
nombres a^ est fractionnaire.

Tout nombre réel r pourra être envisagé comme un de ces
complexes de la forme /• (/•, 0, r) ; en particulier, le nombre
1 (1,0,1).

53. — Définition de la divisibilité. Un complexe entier

a (^ai est dit « divisible par le complexe entier

h — ^bi ^, b^j » s'il existe un complexe entier c (eA c3^

satisfaisant à l'équation a — b c. Nous dirons aussi que,
dans ce cas, « b est un diviseur de a » et que « a contient 6».
Si b est de norme nulle, l'équation a b c n'a de solution
en complexes entiers que si a est aussi de norme nulle. En
particulier, b étant donné, l'égalité 0 b c est vérifiée par
une infinité de complexes entiers c B' A, où h est un
complexe entier quelconque et B' le conjugué de b. De là

vient le nom de « diviseur de zéro ».

54.— Le complexe entier s est dit une unité, s'il entre
comme diviseur dans tout complexe entier (v. article 10). Il
existe dans le domaine [H] dont nous nous occupons une
infinité d'unités, à savoir les complexes

« "+~ t, dz - * db

k étant un nombre entier quelconque. Remarquons que

^1,^, 1^ pour toute valeur entière, positive,
nulle ou négative, de k. En considérant comme unités
fondamentales s| (—1, 0, 1) ; (i, 0, —1) ; s3 1, ~, ^ 7

on peut mettre n'importe quelle unité s sous forme d'un produit

de ces 3 unités fondamentales : s e" zf z\ où n, m
et k sont des entiers appropriés.
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55. — Deux complexes entiers sont dits associés, s'ils ne

diffèrent l'un de l'autre que par un facteur unité s (v. article
10). A tout complexe entier« sont ainsi associés une infinité
de complexes «e, où e représente line unité quelconque. On

sait que dans toutes les recherches relatives à la divisibilité,
des complexes associés sont équivalents et peuvent se

remplacer l'un l'autre, comme c'est déjà le cas dans la théorie
des nombres ordinaires. Dans le groupe formé par
l'ensemble des complexes associés au même complexe entier- a,
donc associés entre eux, il suffira d'en choisir un, convenablement

défini et cpii remplacera tous les autres. On appelle
ce représentant : un complexe primaire ; clans les théorèmes
de divisibilité et de décomposition en facteurs, il suffit
d'envisager les complexes primaires.

Dans le domaine des nombres hypercomplexes dont nous
nous occupons ici, on peut d'abord supposer non négatives
les trois coordonnées d'un complexe primaire «, puisqifau
lieu de x, on peut au besoin considérer —;r, ou £rr, ou s^x;
a étant supposé de norme non nulle, envisageons son associé

« Q> A«,) •('•H® (öi'°3)= (v 7•

On voit que le nombre entier A peut être choisi de manière
que d% < at et qu'alors, c/2 est déterminé de façon univoque.
Ceci conduit à la définition suivante : un complexe entier
a Çat ~, a^j non diviseur de zéro est dit primaire, si ses

coordonnées satisfont aux inégalités simultanées 0 < a^ ;

0 ^ «2 < ax ; 0 < a3.

Donc, si x— (x-i, '^2, ,r3^ est un complexe entier primaire
de norme non nulle, .t\2 ne peut avoir que Tune des valeurs
0, 1, 2, 3, x{ —4. Parmi tous les complexes entiers associés

entre eux se trouve toujours un, mais un seul, qui est
primaire.

56. — Quant aux diviseurs de zéro à première coordonnée

nulle, tous de la forme ^0 ^, ci^J, ils constituent un groupe
particulier, un sous-système à deux coordonnées contenu
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entièrement dans le système à trois coordonnées que nous
envisageons. Leur étude devrait se faire à part, et comme ce
n'est pas le but de ce travail, nous les excluons des recherches
subséquentes.

Quant aux diviseurs de zéro dont la troisième coordonnée
est nulle sans que la première le soit, tous de la forme
(y^

1 •> 0^ ils constituent également un sous-système
particulier à deux unités relatives, clemandant une étude spéciale.
On peut y maintenir, pour le complexe primaire, la définition

donnée ci-dessus (art. 55), avec cette seule différence
que a3 0. Nous les excluons aussi des recherches
ultérieures dans ce travail.

57. — En analogie avec la théorie classique des nombres,

nous définirons : un complexe entier ö ^ y, a^j qui
n'est pas une unité ni un diviseur de zéro, est dit irréductible,

ou premier, si dans toutes les décompositions possibles
a b c de a en deux facteurs, l'un de ces derniers est
toujours une unité. Ces complexes entiers irréductibles joueront

ici le rôle des nombres premiers de l'arithmétique
ordinaire.

Dans le domaine que nous étudions, il existe trois catégories
de complexes irréductibles, à savoir :

L° Les complexes de la forme a (1, 0, /;) e.K + pe3,
où p est un nombre premier naturel. Leur norme N(a) ~ p
est un nombre premier. Les complexes entiers, non
primaires, de la forme ^ ~ p^j leur sont associés et n'en

diffèrent donc pas essentiellement.
2° Les complexes de la forme ß (p, 0, 1) pex + e3.

où p représente un nombre premier naturel. Leur norme
N(/3) /J2 est le carré d'un nombre premier.

3° Les complexes de la forme y (pn, 1 j où p est un

nombre premier ordinaire, l'exposant a un nombre naturel
quelconque et a% un nombre entier positif inférieur à p11 et
non divisible par p

0 a2 pn et a2 0 (mod p)
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Leur norme N (y) p3'1est une puissance paire quelconque
d'un nombre premier naturel p.

Si l'on voulait décomposer y en facteurs, on devrait avoir :

t (/.f.»).(,«.f..)=(/*". bcti,,)
d'où résulterait : k + m n, et

a2 — pmx -f- pk y — pm («*-' + 1

en supposant k ^ m. Si m > 0, la coordonnée r/2 serait
divisible par /?, contrairement à l'hypothèse. Cette contradiction
ne peut être levée qu'en prenant m 0; mais alors, l'un des
deux facteurs est toujours une unité et, par conséquent, y un
complexe irréductible.

Remarquons qu'il existe un seul complexe premier
primaire a de norme p, à savoir (i, 0, p) ; il représente tous les

complexes entiers ^t, ^car ils lui sont tous associés ;

par contre, il existe p complexes premiers primaires ß de
même norme p2, essentiellement différents entre eux, c'est-
à-dire non associés* à savoir :

(p.0,1); (p, l, lj'; (p, lj; ; (p, P-~ l)
ils représentent tous les complexes Çp, 1^ de même

norme p2.
Les nombres premiers naturels tels que p ne sont pas

irréductibles dans ce domaine, puisque

p [p 0, p) (i, 0 p),{p 0 i] „

58. — Pour décomposer en facteurs premiers un complexe
entier donné quelconque, as on a :

^ -C ^ (*t< "C lV (i, 0, Q r

Il suffit donc de considérer deux catégories de complexes
entiers : ceux de la forme (1,0, m) ex + et ceux de la

forme ^ 1^ dont la dernière coordonnée est 1.
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Désignant par pi. p2 p les facteurs premiers de m de

sorte que m pi p., p.A p on voit que

1
- 0 nt\ —: 1 0 px 1 0 '

*1 0 /%i • • • •
1 0 p

Il reste à considérer les complexes entiers de la forme

(ep, Si Ton pose cp /\ r.2 ru, nous pourrons
écrire la décomposition suivante :

(*O-0 ("? 'M- H-ov o
où les /•) sont des nombres premiers ou des puissances de

nombres premiers. Les entiers x], x2 x,} s'obtiennent
sans difficulté, de proche en proche.

La décomposition en complexes premiers d'un complexe
entier quelconque donné a est donc toujours possible.

59. — Cette décomposition d'un complexe entier donné en
facteurs irréductibles n'est pas nécessairement univoque. Par

275
exemple, le complexe entier <7 625c, + e.2 c3 peut

se décomposer, et de plusieurs manières, soit en un produit

de deux, soit en un produit de trois facteurs premiers:

625e1 + 2~e2 + e3 ('25 e1 -f -e2 + e3 ('25e1 -f - e2 -f

3 \ C 8
2oe1 + - c2 + e3 [2oe1 + - e2 -f- e3

2oe1 + - ^ + «a I 25ei + -^2

i5fj -f- e?)2 ^25 ex -f- ^e2 -f e3

^1 + + e3 ^ (25e1 + ~-e2

15ex + e3 5 ex -fr - e2 + e3 ^ (^25 ^ -f- ~ e2 -f e3

<5ei + + Z P2 + e3 ' 25L + + e3
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Toutes ces décompositions ne contiennent que des facteurs
irréductibles et sont essentiellement différentes entre elles.

En général, p désignant un nombre premier naturel, la

décomposition du complexe entier p*ex + + e3 est plu-

rivoque, dès que a > 1, puisqu'on a

plus forte raison, la décomposition de

Pn+k ei -T ^2 -T %
0

en facteurs irréductibles est-elle plurivoque, quand m > 1.

60. — On sait qu'une constatation analogue faite dans un
autre domaine (dans un système de nombres complexes à

deux coordonnées indépendantes, appartenant à un corps
dérivé d'une racine de l'unité) a amené le mathématicien
E. E. Kummer à créer ses nombres idéaux. Voyant que la

décomposition d'un complexe entier en facteurs premiers
était plurivoque, il imagina, pour faire disparaître cette
anomalie, de considérer ces facteurs premiers eux-mêmes non
plus comme irréductibles, mais comme décomposables encore
en d'autres éléments ; or, comme ces derniers, les éléments
vraiment irréductibles, 11e se trouvent en réalité pas dans le
système qu'il envisageait, Kummer les a créés de toutes
pièces, par la pensée, en posant des définitions appropriées.
A ces entités logiques créées par pure convention et pour
des besoins de simplification. Kummer appliqua le nom de
nombres; et pour les distinguer des nombres ou complexes
réels dont était composé effectivement le système qu'il
étudiait, Kummer les appela « nombres idéaux » (le mot de
<( nombres imaginaires » ayant déjà une signification fort
différente). De cette façon, Kummer a considérablement élargi
le domaine de nombres qu'il étudiait, en lui adjoignant une
infinité d'éléments nouveaux dits « nombres idéaux», parmi

L'Enseignement mathém., 18e année ; 191G 17
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lesquels se trouvent les nombres vraiment irréductibles,
c'est-à-dire indécomposables. Kummer a, naturellement, posé
d'une façon très judicieuse les conventions auxquelles étaient
censés obéir ses « nombres idéaux», de sorte qu'il réussit à

démontrer que, dans ce domaine agrandi, on peut ériger
une arithnomie régulière, semblable en tous points à celle
construite par Gauss dans le système des nombres a + bi.

Des rapprochements suggestifs ont été faits entre les
nombres idéaux de cette arithnomie et certains radicaux ou
éléments chimiques dont l'existence a été postulée par la
théorie bien avant d'être confirmée par l'expérience; tout
comme ces radicaux de la chimie, les facteurs idéaux de

Kummer n'apparaissent jamais à l'état isolé, mais figurent
(c à l'état de combinaison » dans les complexes entiers (v.
« Journal f. d. reine u. angew. Mathematik» fondé par Grelley
vol. 35, p. 360).

61. — Les théorèmes de décomposition valables dans le
domaine des quaternions entiers et des tettarions entiers
(v. article 23) pourraient peut-être faire apparaître sous un
jour nouveau cette pluralité de possibilités dans la
décomposition en facteurs premiers. Soit un tettarion entière dont
la norme N(c) comprenne quatre facteurs premiers dont
deux égaux entre eux, et posons :

N(c) p1.p2-Pi-Pz

Ayant arrêté cet ordre de succession des facteurs p, on

peut décomposer le tettarion donné c supposé primitif (c'est-
à-dire tel que le plus grand commun diviseur de ses
coordonnées soit 1) en un produit de quatre tettarions premiers
primaires :

c — 7Zf ,r.2 .„3 >»4

OÙ

N [-J Pl;N (-,) p,; N (~3| ; N (r4) ps

et cette décomposition est unique. Si l'on fixe un autre ordre
de succession, qu'on pose par exemple

N(C) P2-
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on aura une autre décomposition du tettarion donné c en un

produit de quatre tetlarions premiers primaires :

et cette décomposition sera de nouveau unique, c'est-à-dire
déterminée sans arnbigiïité.

Les tettarions premiers p^ seront différents, en général,
des tettarions premiers tt^ ; ainsi ^ ^ ïïo, quoique N^)
— N (tt2) ; de même 7^ ^6 p.v, quoique N (tt^ N {pA) pi ;

etc.
A chaque décomposition de N (c) en facteurs premiers, ou

plutôt à chaque ordre de succession que l'on fixe, arbitrairement

du reste, pour ces facteurs premiers (il y a douze

permutations possibles dans cet exemple particulier) correspond

une décomposition unique et bien déterminée de c en
tettarions premiers primaires, mais ces diverses décompositions

de c (au nombre de douze dans l'exemple particulier)
ne contiennent pas les mêmes facteurs premiers. Si le produit

final est néanmoins toujours le même, c'est-à-dire si

c'est parce qu'un produit dépend non seulement de ses
facteurs, mais aussi de leur ordre de succession.

Ce théorème reste vrai pour les tritettarions (nous l'avons
démontré dans un autre mémoire) ; en d'autres termes : ce
théorème reste vrai si c est un complexe à neuf coordonnées
(v. article 29) représentable par

* Pi • h Ps •

OU
n (pi) P2 ; N (p3) Pi ' N (p.9 Ps >

N (pJ Pt <

c

Or, le système de complexes à trois coordonnées que nous
venons d'étudier est un cas particulier des tritettarions
(v. article 44), Donc, le théorème de décomposition en lac-
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leurs premiers énoncé ci-dessus doit rester applicable,
semble-t-il, quelles que soient les coordonnées cik< pourvu
que X(c) ^ 0. Or, en prenant en particulier

on obtient précisément le complexe entier a (^ai y. a^j

appartenant au domaine que nous étudions depuis barticle 51,
en faisant g 1 ; on doit donc toujours avoir plusieurs
possibilités de décomposition :

Mais maintenant, la multiplication est commutative ; le

produit 7Tj.77-2• 773.774 c{ui est égal a c ne dépend plus de Tordre de

succession des facteurs, ni le produit pt ni les autres
produits analogues. Il en résulte du même coup que la

décomposition de c en facteurs premiers n'est plus univoque, puis-
qu'en général, les o, sont différents des différents aussi

'A a

des o*. etc.
A

62. — De plus, ces réflexions semblent indiquer que la

multiplicité de décomposition tient à la commutativité de la

multiplication et provient d'elle, tandis que l'unicité de

décomposition tient à la non-commutativité de la multiplication.

Ces considérations nous ont amené à rechercher si.
dans tous les systèmes de nombres hypercomplexes, la

décomposition d'un complexe entier donné en facteurs
premiers est plurivoque ou unique, selon que la multiplication,
dans le système en question, est commutative, ou ne l'est pas.

Quelques faits paraissent militer en faveur de cette thèse :

c'est d'abord un théorème fondamental qui repose sur
l'importante notion de système simple introduite par MM. E. Car-
tan et Th. Molien ; ce théorème dit que tous les systèmes
« simples » de nombres hypercomplexes à multiplication
associative, où l'égalité et l'addition de deux complexes sont
définis par l'égalité et l'addition de leurs coordonnées
correspondantes, constituent des sous-systèmes, donc des cas

particuliers, de certains systèmes de tettarions. C'est ensuite
le fait qu'un système de polv tettarions I u2 coordonnées
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entre lesquelles existent n relations n'est autre chose, en

réalité, qu'un système de nombres hypercomplexes à (g2—n)
unités relatives. Il semble même que les polytettarions ou

^-tettarions (g 2, 3, 4, 5, contiennent, comme cas

particuliers, tous les systèmes possibles de nombres hypercomplexes

à multiplication associative, c'est-à-dire où la relation
(a. b) .e a. (b. c) est toujours satisfaite; il semble, dis-je,
qu'il suffise d'établir des liaisons appropriées entre les
coordonnées d'un système de ^-tettarions pour obtenir, à l'écriture

près, tel système qu'on voudra de nombres hypercomplexes

à multiplication associative. Par exemple, les nombres
complexes de Gauss sont un cas particulier des duotettarions ;

les quaternions sont un sous-système particulier des tetra-
tet ta rions, et ainsi de suite. Des propositions ci-dessus ressort

en tout cas l'importance très grande des tettarions dans
la théorie générale des systèmes de nombres hypercomplexes.

63. — Revenons au domaine [H] formé par l'ensemble des

complexes entiers x xiei + ~ e2 -f- x3e3 ~ x3^j où

les Xy sont des nombres entiers variant de —co à + co et g"

un nombre entier fixe (v. 51). Que devient, dans ce domaine [H],
la théorie du plus grand commun diviseur Voici ce que l'on
peut démontrer sans grande difficulté : deux complexes

entiers donnés, a a3^ et 6
-o-, b,

possèdent a en général » un plus grand commun diviseur, unique
et bien déterminé si l'on ne considère que les entiers
primaires (v. 55) ; de plus, il existe un procédé analogue à

l'algorithme d'Euclide permettant de déterminer ce plus grand
commun diviseur par un nombre fini d'opérations rationnelles.

Mais ce théorème « général » présente ici (comme dans le
cas des quaternions entiers lipschitziens, v. articles 9 et 12),
des exceptions déconcertantes. Elles sont même si
nombreuses qu'on peut se demander si le théorème énoncé ci-
dessus n'est pas plutôt un théorème exceptionnel (nous
le qualifions de « général », parce que son analogue est
vrai, sans exception, dans l'arithmétique classique). D'abord,
dans certains cas, l'algorithme d'Euclide ne conduit pas au
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but : à mi-chemin, il cesse d'être applicable; cela arrive,
par exemple, lorsque ai et r/3, coordonnées extrêmes de a,
sont des multiples de N(b) et qu'en même temps a2 n'est pas
divisible par N(0). Ensuite et surtout, un plus grand commun

diviseur au sens habituel de ce terme n'existe pas
toujours. En fait de démonstration, donnons un exemple numérique

facilement généralisable.
Les complexes entiers

25ex -f- e2 -f- e3 j et b —
(<25e1 -f- —e2 -f-

associés. Les égalités
ont même norme : N(a) N (b) 625, sans cependant être

es égalités

a — ^5^ + — e2 -}-

ci I
rr

e2 "h d~ e2 eî

4
— i t'j 4- e,) ^5ej -f- - e2 -j- e.

— (5^ -f- e3l « ^5^ -f- — e2 -f- e3^

— ^5cj - e2 -f- e3^ -j- — e2 -j- e3j
montrent que ces complexes a et b possèdent quatre
communs diviseurs, tous quatre entiers et non associés, donc
essentiellement différents entre eux, à savoir:

2
dç zz. —|- e3 ; d2 -]— — e2 -f-

§

dt — 5et -f -- e2 + e3 ; d3 5e1 + » e2 + e3
ö o

Si a et b possédaient un p>lus grand commun diviseur d,
i • • n v a f.d s

on devrait avoir : d une part ou / et h seraient cer-*
b — h.d '

tains complexes entiers, d'autre part

d — dQ. i— d^— d2,82 — 63. d3
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les ^ représentant certains complexes entiers, puisque le

plus grand commun diviseur^, devant contenir comme
facteurs tous les autres communs diviseurs, devrait être
divisible par cl0, clA, et cl3. Comme N(ö) N(d).N(/) 625,

il n'y a que les 5 possibilités suivantes : N(cl) 1, ou 5,

ou =25, ou 125, ou 625. Mais N(d) 625 est exclu,
car il s'ensuivrait que a et b seraient associés, ce qui n'est

pas le cas. Les égalités

N [d) N(</0).N(50) N(^UN(5d =; N(^2).N(o2) N(rf3).N(83)

excluent les hypothèses N{d) 1 et N(cL 5, puisque
N (cl0) N [cl^j N (d^) N (d3) 25 ; si N(rf) 25, il
s'ensuivrait que, les étant des unités, d0, clA, cU et cl3 seraient

associés, ce qui n'est pas le cas. Il ne reste ainsi plus à

examiner que la dernière hypothèse, savoir : N(c/) 125; il
s'ensuivrait N(/) 5; donc f étant un complexe entier,

serait nécessairement de la forme f— (1, 5). De l'égalité
' K A

a f. cl, on tirerait, en écrivant cl l clt, - clA :

(«•7- <)' d'où

ce qui est impossible en nombres entiers. Donc enfin, Phy-
pothèse d'un plus grand commun diviseur cl de a et b conduit

nécessairement à une contradiction. Et voilà deux
complexes entiers a et b ayant quatre diviseurs communs bien
différents entre eux, mais ne possédant, néanmoins, aucun
plus grand commun diviseur, au sens qu'a ce terme dans
l'arithmétique ordinaire.

Dès lors, il n'est plus vrai qu'un complexe premier qui
divise un produit de deux facteurs divise nécessairement
l'un de ces facteurs. Par exemple, les égalités ci-dessus

4
prouvent que le complexe entier 5ei -fi -fi e3 fiui est irré¬

el

ductible dans ce domaine et qui ne divise ni cl^, ni rf3, divise
cependant le produit d±.dz a. Enfin, quoique les com-

2 °
plexes entiers e/2 5e, + -;e2 + et d3 - 5e, -f- ^e2 + e3,
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tous deux irréductibles dans ce domaine, soient premiers
entre eux (c'est-à-dire admettent comme plus grand commun
diviseur 1), leurs cinquièmes puissances,

- 0/10. 6 250 7.
9 375

d — 3 1^06? -j— Cm —(— c0 6l d° — 3 12o'j, -J— 60 -J— 02 + &
' £ * ä 2 1 et ''

r> o

ne le sont point et admettent le diviseur commun 3 125ej -f- es.
Ainsi se trouve confirmée la présomption émise à la fin

de l'article 51, à savoir que l'arithnomie du corps de nombres
j K j basée sur la définition XI ne serait probablement pas
« régulière », parce que la dite définition du complexe entier
engendre un domaine holoïde [H] non maximal.

64. — Toutes les déductions précédentes restent valables,
si l'on remplace ^ par un nombre rationnel^ non nul, du reste
arbitraire. Faisons remarquer que plus le nombre entier g
contient de diviseurs, plus le domaine holoïde [H]
correspondant enveloppera de complexes rationnels. On peut donc
agrandir indéfiniment le contenu du domaine [H], ou, pour
employer une image empruntée à la physique, y «comprimer))
des complexes rationnels de plus en plus nombreux. Si l'on
choisit, au contraire, pour y un nombre entier jn, on pourra
diminuer indéfiniment l'ensemble des complexes rationnels
faisant partie de [H], en prenant pour m un nombre de plus
en plus grand; on a donc la possibilité (pour employer la
même image que tout à l'heure) de «faire le vide)) de plus
en plus complètement dans l'ensemble [H]. Mais, qu'on
augmente ou qu'on diminue le contenu de cet ensemble,
l'arithnomie dont nous avons esquissé ci-dessus la partie
élémentaire ne changera pas essentiellement, le domaine
holoïde non maximal [H] restera toujours non maximal.

Pour faire disparaître les singularités dont nous avons
signalé quelques-unes, il faut avoir recours à des procédés
plus profonds.

65. — En principe, deux voies bien différentes s'offrent
au mathématicien. La première consiste à maintenir lés
mêmes définitions : de la divisibilité, du commun diviseur,
du nombre premier, etc., mais à élargir Vensemble [H] que
l'on étudie. On peut y arriver de deux façons: 1° en définis-
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sant différemment le nombre hypercomplexe rationnel
«entier» dans le corps de tous les complexes rationnels;
cette manière de faire est due à M. A. Hurwitz qui 1 appliqua

pour la première fois au système des quaternions; 2° en

créant, par des définitions judicieuses, des entités logiques
soumises à des lois appropriées, entités que l'on appellera,

par extension, des «nombres» et que l'on adjoindra à [H];
cette manière de procéder est due à Kummer (v. article 60).

La deuxième voie consiste à suivre une marche en quelque
sorte inverse de la précédente: on maintient tel quel le
domaine [H] que l'on étudie, on ne l'élargit point, mais on
change les définitions de la divisibilité, du commun diviseur,
du «nombre premier», etc. Le changement le plus radical
provient de ce que, dans les nouvelles définitions, l'on
n'envisage guère un nombre ou un complexe isolément, mais

plutôt des ensembles composés d'une infinité de complexes,
et que l'on opère avec ces ensembles de complexes au lieu
d'opérer avec des complexes isolés. Cette voie fut ouverte
par J.-W. Richard Redekind. — R. Dedekind désigne par
des lettres gothiques minuscules : a, b, c, 6, e... ces ensembles
particuliers auxquels il donna le nom d"idéaux, nom
critiquable peut-être, mais qui a acquis droit de cité dans la

théorie moderne des nombres. L'idée géniale du célèbre
mathématicien revient à ceci : prendre comme sujet direct
d'étude, au lieu de l'entier considéré a, l'ensemble de ses

multiples g.a\ cet ensemble forme a l'idéal principal de
l'entier «». A ces idéaux principaux, Dedekind a joint des
idéaux secondaires ; ce sont de nouvelles familles de nombres
déduites des précédentes par voie d'addition. La définition
générale d'un idéal peut s'énoncer ainsi :

Définition XII: Un idéal a est un ensemble formé d'une
infinité de nombres entiers ordinaires ou de nombres hyper-
complexes entiers, dits les éléments de l'idéal a, ensemble
jouissant des deux propriétés suivantes: 1° les éléments de
l'idéal se reproduisent par addition et soustraction; 2° si x
est un élément quelconque de l'idéal a, le produit g.x, où g
représente un complexe entier quelconque, est aussi contenu

dans cet idéal a.
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En vertu de cette définition, un idéal a contenant les deux
éléments a et b différents entre eux, contient nécessairement
aussi a -f- ô, a — b, g. a, g. b, où g est un complexe entier
quelconque pouvant lui-même faire partie, ou non, de l'idéal
en question. On démontre alors que tout idéal possède une
base finie (v. articles 16 et 17).

On définit ce qu'il faut entendre par le prod nit et par le
quotient de deux idéaux a et b, ce qu'est un idéal « premier »,

un idéal « composé », un diviseur d'idéal, le plus grand
commun diviseur de deux idéaux, et ainsi de suite.

Ceci montre que l'arithnomie du domaine [H] que l'on
veut étudier devient un calcul avec des idéaux, au lieu
d'être un calcul avec des nombres ordinaires ou avec des

complexes entiers. Mais ces idéaux au sens de Dedekind (et
contrairement aux « nombres idéaux » de Kummer) ne sont
plus des abstractions; ce sont des ensembles tout aussi
réels, tout aussi effectifs, que les nombres hvpercomplexes
eux-mêmes dont ils sont constitués. Tel est le principe de
la méthode de Dedekind, permettant d'étudier le domaine
holoïde [H] sans modifier ce domaine.

La méthode employée par E. E. Kummer est tout autre.
Elle modifie très profondément le domaine holoïde [H] à

étudier, puisqu'elle lui adjoint une infinité de « nombres
idéaux » qui, au fond, ne s'y trouvent pas du tout. Ces nombres
idéaux rappellent un peu les points imaginaires et les droites
imaginaires des géomètres quand ils disent, par exemple,
que deux circonférences dont l'une est entièrement intérieure
à l'autre se coupent, néanmoins, en deux (voire même en

quatre) points imaginaires et que ces mêmes circonférences
ont quatre tangentes communes, mais imaginaires. Les
nombres idéaux de la méthode de Kummer, comme les figures
imaginaires de la géométrie, touchent à ce qu'on pourrait
appeler la « m é ta ma thématique » (par analogie à

((métaphysique ») et restent impénétrables à beaucoup d'esprits. La
méthode de Kummer est du reste d'une application moins
facile que la théorie des idéaux, car on ne voit pas toujours
du premier coup d'oeil quelles sont les définitions qu'il faut

poser pour créer de façon appropriée les «nombres idéaux ».
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Les deux voies, si différentes en principe, celle de E. E.
Kummer et celle de R. Dedekincl, peuvent conduire au même

résultat : faire tomber les singularités que présente l'arith-
nomie de certains domaines holoïdes.

66. — Résumons en disant: la définition lipschitzienne du
nombre hypereomplexe entier a l'avantage d'être toujours
applicable et toujours univoque (v. définition Y) ; mais elle
est en quelque sorte superficielle, en ce sens qu'en l'adoptant,

on ne tient compte que de la nature des coordonnées,
sans aucun égard aux règles qui définissent le système envisagé

de nombres hypercomplexes. Malgré l'avantage d'être
toujours applicable et univoque, elle doit être rejetée comme
pouvant conduire à des arithnomies non régulières.

La manière hurwitzienne de définir le nombre hypereomplexe

entier est plus profonde (v. définition IX, art. 24), en
ce sens qu'en l'adoptant, on tient compte non seulement de
la nature des coordonnées, mais des propriétés intrinsèques
du système envisagé de nombres hypercomplexes, puisqu'on
doit rechercher un domaine holoïde maximal et qu'il n'est
pas possible de le déterminer sans se servir des règles qui
définissent le système en question. Aussi la définition hur-
witzienne conduit-elle à des arithnomies régulières là où la
définition lipschitzienne reste en défaut.

Par contre, la définition hurwitzienne a l'inconvénient de

ne pas être toujours univoque, et surtout celui de ne pas
pouvoir s'appliquer à tous les cas, puisqu'il existe des corps
de nombres sans domaine holoïde maximal. Pour étudier
ces systèmes de nombres, on se sert avec avantage de la
méthode cles idéaux. Elle consiste à modifier les définitions
de façon à ne plus avoir, dans la théorie de la divisibilité,
à calculer avec des nombres entiers isolés, mais avec des
idéaux. Cette méthode permet d'écarter les obstacles qui
pendant longtemps ont obstrué l'entrée d'une immense
région : l'arithnomie des nombres complexes généraux.

Neuchâtel, octobre 1915.
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