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Résumant les considérations précédentes, nous dirons :

il existe des systèmes de nombres hypercomplexes où Ton

peut procéder de plusieurs façons pour séparer le corps des

complexes rationnels en « nombres entiers » et « nombres

non entiers ».

IV

40. — Dans les chapitres précédents, nous avons reconnu

que définir le complexe « entier » de façon satisfaisante
revient à déterminer le domaine holoïde maximal (éventuellement,

s'il y en a plusieurs, les domaines holoïdes maximaux)
du corps de nombres j R j constitué par l'ensemble des

éléments

i ...n

*
X

où toutes les coordonnées x\ sont des nombres rationnels
arbitraires. On pourrait se demander si, étant donné un
système quelconque de nombres hypercomplexes, on peut
toujours séparer ainsi le corps rJ des complexes rationnels en
deux groupes, l'un comprenant tous les complexes entiers,
l'autre tous les complexes non entiers.

De prime abord, on ne posera guère cette question ; on
est porté tout naturellement à croire qu'on peut toujours
procéder de façon satisfaisante à cette distinction essentielle
entre complexes entiers et non entiers, peut-être d'une seule
manière, comme pour les nombres complexes de Gauss,
peut-être de plusieurs manières, comme pour les tettarions;
mais en tout cas, si on se laisse guider uniquement par
l'analogie, on admettra implicitement et a priori que cela est
toujours possible. Or, il n'en est rien. D'une manière plus précise

: les recherches aboutissent au résultat surprenant
exprimé par le théorème que voici: Il existe des corps de
nombres hypercomplexes rationnels contenant une infinité de
domaines holoïdes, mais parmi lesquels aucun n'est maximal.
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41. — Exprimons ce fait d'une manière plus frappante. On
a toujours à sa disposition, cela va sans dire, la définition
lipschitzieune du nombre hypercomplexe entier (v. définition

V) ; c'est même là son grand avantage : d'être toujours
applicable et toujours univoque. Mais nous avons reconnu
que cette définition qui s'en tient uniquement à la nature
des coordonnées, sans considérer en aucune manière les
propriétés intrinsèques du système de nombres hypercomplexes
en question, doit être écartée comme non satisfaisante,
comme pouvant conduire à des arithnomies non régulières ;

nous avons montré qu'il faut avoir recours à la définition
hurxitzienne (v. définition IX). Or, celle-ci implique l'existence

d'un domaine holoïde maximal ; sans domaine holoïde
maximal, point de nombres entiers.

Le théorème énoncé tout à l'heure prouve la réalité des

trois possibilités suivantes : certains corps de nombres
contiennent lin seal système de « nombres entiers » ; la définition

du complexe entier y est absolue et unique. D'autres

corps de nombres contiennent plusieurs systèmes différents
de « nombres entiers » ; la définition du complexe entier y
est relative et plurivoque. Enfin, d'autres corps de nombres
encore ne contiennent aucun système de « nombres entiers »;
la définition du complexe entier y devient, jusqu'à un certain
degré, arbitraire; aussi faut-il s'attendre à ce que l'arith-
nomie correspondante en porte l'empreinte plus ou moins
profonde.

Nous allons citer un exemple simple de nombres hyper-
complexes doués de cette particularité.

42. — Envisageons des nombres hypercomplexes à trois
unités relatives, tels x^=xlei + .r2e.> -|- x3e3, les nombres ,ry,
dits coordonnées du complexe .r, étant, comme toujours, des

nombres réels arbitraires. Si a= a4e { + a2e2 + aze3
b — bxex -f- b2e2 -f- b309 sont deux quelconques de ces
complexes, on définit Végalité et Vaddition de ces deux
complexes par l'égalité et l'addition de leurs coordonnées
correspondantes. En d'autres termes, ci b signifie l'existence
simultanée des trois égalités b\ (/. 1, 2, 3) ; la
soustraction, opération inverse de l'addition, est alors toujours
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possible et univoque, et Ton a les formules :

a±b — (at ± b1)e1 + («2 ± h)e* + K ± ''3)*3

En additionnant r fois de suite un complexe à lui-même,
on trouve que

7-.ci — ra1e1 + ra%e% -f- ra3 e3 (19)

et Ton étendra cette règle, par définition, à la multiplication
par un«nombre réel r quelconque.

La multiplication de ces complexes entre eux est fixée

par le tableau suivant qui donne le produit e..ek à l'intersection

de la ligne horizontale portant à gauche c. et de la
colonne verticale portant en haut ek (?', k= 1,2, 3)

1 1

i e2 | <?o

el ei e2 0

1
^

1

e2 © 0

e3 0 0 e3

Il en résulte que la multiplication est toujours commutative,

a b h.a.
Nous appellerons un tel complexe réel, quand sa

coordonnée moyenne sera nulle et en même temps ses deux
coordonnées extrêmes égales entre elles. Inversement : tout
nombre réel r pourra être envisagé comme un tel complexe
de la forme r rex + re3 /'(c1 + e3). On vérifie sans peine
que le symbole ei + e3 joue le rôle du nombre 1, de sorte
qu'on peut poser ici :

1

et que la règle exprimée par l'égalité (19) n'est qu'un cas
particulier des définitions condensées dans le tableau (20).

43. — A tout complexe a ctxex -f- a^e* + a3e3 correspond

un conjugué unique et bien déterminé :

A' a1 a3 e1 — a2 a,, e2 + (Ye^
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Le produit d'un complexe a et de son conjugué A' est

toujours réel et s'appelle « la norme de a », en signes :

iST(a) a. A' °\a'À •

La norme d'un produit est égale au produit des normes
de ses facteurs.

Si la norme de a est nulle, ce complexe a est dit « un
diviseur de zéro »1. Gela se présente dès que l'une au moins
des coordonnées extrêmes est nulle, et sans qu'on ait, pour
cela, nécessairement a 0. Un produit de tels complexes
peut ainsi être nul sans qu'aucun facteur ne le soit (v. 27).

La division, comme opération inverse de la multiplication,
est définie dans ce système de nombres hypercomplexes par
la formule :

^
a a.W <ix ax f>2 a2b1 a.è

^a J — — xjf} — /— <\ — ^2 T *3

Au moyen de ces définitions, les 4 opérations rationnelles
de l'addition, de la soustraction, de la multiplication et de
la division (sauf, éventuellement, la division par un diviseur
de zéro) sont parfaitement et univoquement établies dans le
domaine de ces nombres hypercomplexes, et l'on peut dire
qu'elles s'effectuent « suivant les règles ordinaires de

l'algèbre», en tenant compte du tableau (20).
44. — Faisons remarquer, en passant, que ce système spécial

de nombres hypercomplexes à trois coordonnées est un
sous-système, ou cas particulier, des tritettarions (v. art. 29

et 30). On peut en effet représenter le complexe a — alei
-j- <72c2 + ((?>e:] par le schéma carré

G *2 0

0 al 0

0 0 «%

1 II ne faut pas confondre « diviseur de zéro » avec « racine de zéro ». Tout nombre hyper-
complexe dont l'une des puissances est nulle est dit racine de zéro (d'après G. Frobenius),
ou nombre pseudo-nul (d'après E. Cartan), quelquefois nombre nilpotent (d'après B. Peirce),
Un nombre pseudo-nul est toujours diviseur de zéro, mais la réciproque peut ne pas avoir
lieu. Par exemple, dans le système dont il est ici question, e2 est pseudo-nul, puisque e? 0,

tandis que e± est diviseur de zéro sans être racine de zéro.
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caractérisé par

alx — a22 ; an — a?A o2?i — a32 a2i 0

45. — Nous allons envisager le corps de nombres | K j

constitué par l'ensemble de tous les complexes rationnels
du système en cjuestion (v. article 14). Le premier pas à

faire pour construire l'arithmétique généralisée de ce corps
| K | consiste à y définir le complexe entier. Gela revient à

déterminer, comme nous l'avons montré plus haut, le

domaine holoïde maximal, éventuellement les domaines ho-

loïdes maximaux, de ce corps de nombres j K J. Pour cette
détermination, prenons comme point de départ le théorème
fondamental suivant :

Le domaine holoïde le plus général contenu dans le corps
de nombres j K j a comme base

P §Pn\ j
iP e1 H- e9 j

(B)

(P — iîgxg2 ex + yr2 ]

où y est un nombre rationnel non nul du reste arbitraire,
etg,gi, g2 des nombres entiers quelconques assujettis aux
seules conditions g^P 0, g.{ p0.

L'ensemble de tous les complexes

mx. (P -f- m2 iP -{- 7n?).
b(3)

où les nombres ml, z??2, z??3 prennent, de toutes les manières
possibles, les valeurs entières de —x à + x alors que
g, gi, g\, y conservent la même valeur arbitrairement choisie,

mais fixe, cet ensemble, dis-je, constitue donc toujours
un domaine holoïde; nous le désignons par [h]. Inversement

: dans tout domaine holoïde faisant partie du corps j K J

il est possible de choisir une base de la forme (B). Les
différents domaines holoïdes de ce corps de nombres ne dif-
fè rent entre eux que par le choix des nombres g, gi. g.2, y
servant à former la base (B). Il s'agit de déterminer les
conditions pour qu'un tel domaine holoïde [h] soit maximal.
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46. — On démontre facilement qu'une condition nécessaire

pour que [A] soit maximal est que g gi — 1 ; g\2 ~ ; et
qu'un domaine holoïde du corps de nombres |lvj ne saurait
être maximal s'il ne possède une base telle que

e1
a(:2)

Té>2
rt(3) e3 (Bx)

Désignons par [ffi] le domaine holoïde correspondant à

cette base (BJ ; il sera constitué par l'ensemble de tous les
complexes

ni1 ßj -f- m-f- m?J- e3

où y ^ 0 est un nombre rationnel arbitrairement choisi,
mais fixe, tandis que les ut y représentent, comme d'habitude,
des nombres entiers ordinaires variant de — co à + gc On

voit, en effet, que [H.], puisqu'il contient ei, e3 et yc2, contient
aussi les éléments de la base (B), donc aussi cette base elle-
même,. donc aussi tous les complexes qu'on peut dériver
de cette base (B), en d'autres termes : tous les complexes
dont se compose [A] et, par conséquent, [A] lui-même. Mais
[HJ contient, en outre, des complexes ne faisant pas partie
de [A], par exemple c3, dès que g 1 ou g\ > 1. Donc enfin,
[A] ne saurait en tout cas être maximal s'il ne coïncide avec

[HJ — + WoY.p2 + e3J

C'est là une condition nécessaire, mais pas encore suffisante,
comme on va le voir.

47. — Mettons y, qui est un nombre rationnel non nul,

sous forme de fraction irréductible en posant: y ~ Un

domaine holoïde du corps j K j ayant une base de la forme
(B4) ne pourra être maximal si le nombre entier /• > 1. On

s'en convainc en supposant y - et prenant comme base

Déduisons de cette base B.ù le domaine holoïde

[U2] "h+ —" • e2 +
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et comparons-le au domaine [H J. On vérifie immédiatement

que pour /• 1, ces deux domaines holoïdes coïncident,
c'est-à-dire contiennent exactement les mêmes complexes,
mais que pour r > 1, le domaine holoïde [H J, contenant

qui ne fait pas partie de [11J, contient tous les éléments

cle [H J plus encore d'autres non renfermés dans [HJ. On en

conclut qu'un domaine holoïde du corps j K j, pour être
maximal, doit posséder une base de la forme (B2), où p est
un nombre entier non nul, du reste arbitraire. Nous allons
montrer que cette condition, nécessaire, n'est pas suffisante.

48. — Si p i, on a le domaine holoïde

[L] [m^e^ -\- m2p2 "h ma e31

constitué par tous les complexes à coordonnées entières; ce
n'est pas autre chose que le domaine lipschitzien (v. définition

V). Or, ici, ce domaine [L] n'est pas maximal (pas plus
qu'il ne l'est dans le cas des quaternions). Pour s'en
convaincre, il suffit de constater qu'on peut l'agrandir, sans
sortir du corps de nombres J K j, en adjoignant à [L] le

complexe qui n'y est pas contenu. On obtient alors l'ensemble

élargi
p*: miei + ~:je2 + ">

plus étendu que [L] et qui est également un domaine holoïde.
Donc, si l'on veut un domaine holoïde maximal de base (EL),
il faut en tout cas choisir/; > 1.

49. — Les faits prouvés ci-dessus portent à croire que

[HJ ensemble des complexes m1e1 -j- —- e.> -j- m? e?t

est un domaine holoïde maximal. Mais il n'en est rien. On
peut en effet, sans sortir du corps de nombres j K j élargir
encore le domaine holoïde [HJ en lui adjoignant le
complexe |§. Ce complexe ne fait pas partie de [HJ, puisque
l'équation

— M?} c1 -f- —- -j- m0 e
p- 11 P "
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entraînerait, en vertu delà définition de l'égalité des com-
1 l\ l 1 •

plexes, m3 0, —- —: d ou m„ - ce qui est en
p r P

contradiction avec l'hypothèse expresse p 1 el z/?2 un
nombre entier.

Il s'ensuit que le domaine [H3] ayant pour base

bm e,l>m ^e., (Ba)

et constitué par l'ensemble de tous les complexes

''h ei + ^ ^2 + "'3 e3 '

contient aussi p~~ - donc aussi la base (BJ, donc aussi
p2 p

v 27

tous les éléments dérivai)les de cette base, donc aussi [HJ.
En d'autres termes : [H3] contient tous les éléments de [il_>]

plus encore d'autres ne faisant pas partie de [il.,]. Or, [HJ est
de nouveau un domaine holoïde ; on en conclut que [Hne
saurait être maximal.

En posant p2 — g et répétant le même raisonnement sur le

domaine [H3] dérivé de la base ^ c3J qui n'est autre

que la base (B3) écrite différemment, on verrait que [ff3] n'est

pas non plus maximal.
Puisque p est un nombre naturel supérieur à 1 et d'ailleurs

absolument arbitraire, on voit bien que dans Le corps de

nombres j K j il n'y a pas de domaine holoide maximal.
50.—Remarque. Pour obtenir un domaine maximal, on

pourrait penser qu'il suffit d'attribuer aussi à p différentes
valeurs. Mais il faudrait faire prendre à p toutes les valeurs
entières de—oo à + oo ; et alors, l'ensemble |j| formé par

tous les complexes miei + 4- m3e3, où les m^

représentent des entiers arbitraires (mA ^ 0), est bien un domaine
d'intégrité contenant le nombre 1; mais il ne possède pas de
base finie au sens de l'article 16; en d'autres termes : il n'est

pas possible de choisir dans jjJ un nombre fini de
complexes pouvant reproduire, par les seules opérations de l'ad-
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dition et de la soustraction, tous les éléments de l'ensemble

en question. Donc, jjJ n'est pas un domaine holoïde et ne

saurait être envisagé comme composé exclusivement de

nombres entiers (v. article 17).

Y

51. — Bien que le corps de nombres |k| ne contienne

aucun domaine holoïde maximal, on peut néanmoins tenter
d'y construire une arithmétique généralisée. Comme fondement

de cette arithnomie, on essaiera la

Définition XI : un complexe rationnel

m2
Cl 1)1^ Gj —j— G^ "I- '"3 ^3

est réputé entier, si mi, m3 représentent des nombres
entiers ordinaires, pouvant prendre toutes les valeurs de

— go à -f- co étant un nombre entier non nul, arbitrairement

choisi, mais fixe.
L'ensemble

[H] jLej + '^eg +

est bien un domaine holoïde, et il renfermera exclusivement
des complexes entiers, en vertu de la définition XI; tous
les autres complexes du corps j&j, c'est-à-dire ceux ne
faisant pas partie de [H], seront réputés non entiers.

Les « nombres entiers » dont nous allons faire la théorie
constituent un domaine holoïde non maximal, de sorte qu'il
faut s'attendre a priori à ce que cette arithnomie ne soit pas
régulière, mais présente des singularités étonnantes,
comparée à l'arithmétique classique.

52. — Pour abréger l'écriture, nous représenterons nos
complexes entiers en écrivant uniquement les coordonnées.
Nous figurerons ces complexes, sans écrire les unités
relatives e^ ni les signes -f en mettant simplement les
coordonnées, séparées par des vigules, entre parenthèses; et ce
seront ces parenthèses qui indiqueront symboliquement la
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