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NOMBRES HYPERCOMPLEXES 221

est égale a 2; ce choix une fois fait, les quaternions pre-
miers dont les normes sont les nombres premiers suivants,
pris dans 'ordre indiqué, se déterminent de proche en proche,
sans ambigiité, jtfisqu’e‘l la fin. »

Cette singuliére exception tombe également quand on
passe du domaine [J,] au domaine holoide maximal [J].

24. — Résumons les considérations precedentes en disant:

Les nombres hypercomplexes « entiers » doivent former
non seulement un domaine holoide, mais un domaine holoide
maximal.

Définition IX : Un complexe rationnel

) PO
e =S,
A

sera dit entier, s’il est contenu dans le domaine holoide
maximal en question. Le complexe rationnel x sera dit non
entier, s'il ne fait pas partie du domaine holoide maximal en
question. (Définition hurwitzienne.) |

Cette définition hurwitzienne du nombre hypercomplexe
entier peut avoir comme conséquence qu'on.appellera « en-
tiers » méme certains complexes rationnels x a coordonnées
2y, fractionnaires. (Exemple : les quaternions.) Inversement :
il peut arriver aussi que certains nombres hypercomplexes
rationnels x ne soient pas des complexes « entiers », bien
que toutes leurs coordonnées x; soient des nombres entiers
ordinaires.

[11

25. — Pour construire Parithmétique d’un corps {R{ de
nombres hypercomplexes rationnels, il faut toujours com-
mencer par une opération préliminaire consistant a partager
ce corps ng en deux ensembles, mettant d’'un coté : les
complexes rationnels « entiers », de I'autre : les complexes
rationnels « non entiers ». Or, 1l peut se présenter la curieuse
circonstance que celte opération préliminaire ne soit pas
univoque. Nous l’avons découvert en étudiant une classe
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trés étendue de systemes de nombres hypercomplexes de la
forme

l...s
a=ae + ae, + ... + a.e = Ea)\e)\
A

caractérisée par le fait que le nombre s des coordonnées a,
est un carré parfait, s =1, 4,9, 16, ..., v®. Le cas le plus
simple est s —4, vu que s—1 donne les nombres réels
ordinaires.

26. — Soient donc

a=ae + a,e, + a,e, + a,e, et b= >be + bye, + bye, 4+ b,e,

deux de ces nombres hypercomplexes. On définit I’égalité de
deux complexes par 1'égalité des coordonnées correspon-
dantes. Ainsi, pour que a =5, il faut et il suffit que les
4 égalités ay = by, (A =1, 2, 3, 4) aient lieu simultanément.
On définit ensuite laddition de deux de ces nombres hyper-
complexes par 'addition des coordonnées correspondantes;
il s’ensuit que son opération inverse : la soustraction, est
univoque, toujours possible et se fait par la soustraction des
coordonnées correspondantes; en formule :

atb=\(a,b)e + (a,b)e, 4 (a, b)) ey + (a, = by)e, . (10)

Pour multiplier (ou diviser) un tel nombre hypercomplexe
par un nombre réel r, il faut multiplier (ou diviser) chacune
des coordonnées par r, d'ou la formule :

r.a=rae —+ ra,e, + raye, + ra,e, . (11)

La multiplication de ces nombres hypercomplexes entre
eux esl définie par le tableau suivant :

el el e
e, é, e, 0 0
€y O‘ 0 e, e, (12)
_;3- 2 €y 0 0
_;4— 0 0 ey e,

b e X

e R A s S LR
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Représentant par i et & l'un quelconque des nombres
1,2, 3, 4, on trouve le produite,.e, a lintersection de laligne
horizontale portant a gauche e, avec la colonne verticale por-
tant en haut ¢,.

Un tel nombre hypercomplexe est dit réel, lorsque ses
deux coordonnées moyennes sont nulles et, de plus, ses deux
coordonnées extrémes égales entre elles. Tout nombre réel
7 peut ainsi s’éérire: r==re, + re,=r(e, +¢). On vérifie
sans peine que le symbole e, + ¢, joue lerole du «nombre 1»,
de sorte qu'on peut poser, dans ce systéme de nmombres
hypercomplexes : e, + e, = 1. Moyennant ces délinitions, on
peut dire que l'addition, la soustraction et la multiplication
de ces nombres hypercomplexes se font « d’aprés les régles
ordinaires de I'algébre ». A noter cependant que la multipli-
cation n’est en général pas commutative dans ce systeme,
puisque, par exemple, e,.e; =e,, tandis que ¢,.¢, =e¢,. Iy
a donc lieu de distinguer ici, comme pour les (uaternions,
une «arithnomie 4 gauche » et une «arithnomie a droite »
(v. article 7).

27. — Pour introduire la division comme opération inverse
de la multiplication, on peut procéder par analogie avec les
nombres complexes de Gauss et avec les quaternions. A tout
nombre hypercomplexe ¢ =a,e, + a,e, + aze; + a,e, cor-
respond son conjugué: A'=a,e,— a,e, — a,e; + a,e,.

Le produit d’un tel nombre hypercomplexe et de son con-
jugué — ils sont commutables entre eux — est toujours réel
et s’appelle « la norme du nombre hypercomplexe a ». Cette
norme est ainsi définie par

N(ag) =a. A" =A.a=aa, — aya, . (13)

On en déduit le théoréeme fondamental que la norme d’un
produit est égale an produit des normes des facteurs:
N(a.b) = N(a).N().

La norme d’un tel complexe « peut étre nulle sans que
a=0; si N(a) =0, on dit que @ est « un diviseur de zéro ».
Ce systéme de nombres hypercomplexes présente donc, .
d’avec les nombres complexes de Gauss et les quaternions,
cette différence capitale qu'un produit de facteurs peut étre
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nul sans qu’aucun des facteurs de ce produit ne soit nul.
Ainsi, e;.e, =03 e,., =0 ¢ == ; ele,

Si @ n’est pas diviseur de zéro, c’est-a-dire si N(a) == 0, on
entend, en analogie avec les nombres complexes ordinaires
et avec les quaternions, par «l'inverse de a» le nombre

h‘ypercomplexe
AI

-1 — ;_:_ ‘ S 14
@ a N(a) (14

»

qul satisfait aux relations a.a™' = a¢'. a = 1.

Les nombres hypercomplexes @ et 6 étant donnés, avec
N(0) 0, on appellera, en analogie avec les quaternions, le
nombre hypercomplexe x — 67". @ « le quotient a droite de
a par b»; c’est la solution de I'équation a=10.x; et le
nombre hypercomplexe y =« . 6= sera « le quotient @ gauche
de @ par b»; c'est la solulion de l'équation « =17 .0. Le

. . . e . a \
signe ordinaire de la division, @ : b ou y , n’aura de sens, a

moins de définitions spéciales, que si « et B’ sont commu-
tables entre eux, B’ représentant le conjugué de b.

Dans le domaine de ces nombres hypercomplexes, cha-
cune des deux divisions est donc toujours possible et uni-
voque, a condition que la norme du diviseur ne soit pas
nulle. Un quotient dont le diviseur est de norme nulle n’a
de sens que si le dividende est aussi de norme nulle, et un
quotient de deux diviseurs de zéro, quand il a un sens, peut
étre indéterminé.

Les définitions précédentes suffisent pour établir parfaite-
ment les quatre opérations rationnelles dans le domaine de
ces nombres hypercomplexes. |

28. — Ces nombres hypercomplexes peuvent se repré-
senter par des schémas carrés ou ne figurent que les coor-
données. Ainsi,

a —

L'égalité « =0, la somme a + b, la différence a — b, se
figurent alors aisément, et I'on obtient pour le produit «.b:

% a, b, + a,b, a by + a, b,
« i —

azb, 4+ a, b, agby 4+ a,b,
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On voit par la, soit dit en passant, que la multiplication
de ces nombres entre eux se fait d'apres les mémes regles
que la composition des substitutions linéaires. A chacun de
ces complexes correspond une substitution linéaire bien
déterminée, et inversement. Le « nombre 1 » correspond a
1, 0

0. 4 (3 un nombre réel r

la substitution identique : 1:%

a " S; les unités relatives sont :
;r
(1;0 0; 1 0; 0 0; 0
61: 3 62: s 83: C 4: ’
10;0 0; 0 1;0 0; 1)

et ainsi de suite. Chaque propriété des substitutions linéaires
peut se traduire en un théoreme sur ces nombres hyper-
complexes.

29. — Cette correspondance étroite montre aussi la voie
de la généralisation au cas ou le nombre s des coordonnées
est un carré supérieur a 4, s=29, 16, ..., v% Par exemple,
pour ces nombres hypercomplexes a 9 coordonnées indé-
pendantes, on aura

a=ae + a,e, + aze, + ... 4 age, = Ealek ,
PN

nombre hypercomplexe qu’on représentera schématiquement
par
S @y Gy Oy
a —

a

5 6

8 N
a;, ag, a,

Or, il est plus pratique de se servir de deux indices et
d’écrire, pour le méme nombre hypercomplexe «,

all ¥ al" ? a’l3

B E Iazk € — { o1 » Qog» Qg

a a a

31 32 33

L'unité relative e, est représentée par le schéma carré dont
tous les éléments sont nuls sauf celui qui se trouve a l'in-
tersection de la ¢ ligne et de la & colonne, lequel est 1.
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La multiplication des unités relatives ¢, est alors définie par
les relations :

e Cps = €55 5 e -, =0 pour t =k (15)

Les lettres ¢, %, s, t représentent, chacune, 'un quelconque
des nombres 1, 2, 3.

Si
by, by, by,
b _2 by e == byy + bay s by
by s by s by,

représente un second nombre hypereomplexe du méme sys-
téeme, 'égalité, U'addition et la soustraction se définiront par
I'égalité, 'addition et la soustraction des coordonnées cor-
respondantes, et le produit @.b sera défini par

Scn, En 1 Ep 2
@ b= == 2 k€ _8c21, Cop 5 023,\\
€310 €399 Cg3
\ ] , ’
ou l'on a posé pour abréger:
1,2,3

ey = ay byt @by + a3by = 2 @33 b
A

€9 = dyy by + @13 byy + 505 S PN bys

e,
A

1,23
Cir =— & b]]t -4 ;o b)/c + at3 3k — fv ai)\ b)\k (16)

l

On appellera réel un tel nombre hypercomplexe » quand

il aura la forme
r, 0, 0
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en particulier, le « nombre 1 » sera

12,3 1,0, 0
1—=¢e, 4+ ¢ + ¢, = ey = 0,1, 0
. 0 0, 1

’

En se basant sur les propriétés bien connues des substi-
tutions linéaires, on définira d’abord «le conjugué A" d’un
tel nombre hypercomplexe a »; ce sera

g An » T A21 * A31
AIZ?'—A12~ A‘z‘z’ —‘A32
A13 T A23 ’ A33

o A, désigne le sous-déterminant correspondant a «a,,;
puis «la norme, N(a), de ce complexe a» en posant:

N(a) = a.A'= A’.a; cette norme est toujours un nombre
réel et égal au déterminant du systéme des coordonnées :
Ayp 5 dyg 0 Gy3
N{a) = | ay;, g9, Gy | ;
a31 » a32 ! a33 l

puis « I'Znverse d’'un complexe a de norme non nulle » en
posant ’équation de définition (14); enfin, un « quotient a
gauche » et un « quotient a droite » du complexe a par le
complexe &, ou 'on suppose N(0)~0, comme ci-dessus,
articles 7 et 27.

Une induction, facile pour qui connait les substitutions
linéaires, montre comment procéder dans le cas ou le
nombre s des coordonnées indépendantes est un carré supé-
rieur a 9, s =16, 25, ..., v2

30. — Remarquons que loutes ces définitions peuvent
subsister méme dans le cas ou les coordonnées du nombre
hypercomplexe en question sont elles-mémes des nombres
complexes de Gauss; alors, en posant comme de coutume
i =V —1, on a affaire (dans le cas de 4 unités relatives,
s = 4) a un complexe tel que

(a, + ib)) e, + (a, + b)) ey, + (a, + iby) e, + (a, + ib,) 8 -
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On voit combien il peut devenir fastidieux, quand on s’occupe
de pareils complexes, de distinguer entre les deux espéces
différentes de complexes, car il est nécessaire d’'éviter soi-
gneusement toute confusion entre: d’'une part les coor-
données qui sont des complexes de Gauss, et d'autre part le
complexe total constitué par I'ensemble de ces coordonnées.
Afin de simplifier la terminologie et de prévenir des con-
fusions possibles, nous avons introduit le néologisme de
tettartons pour désigner cette espece de nombres hyper-
complexes. Ce terme de tetlarion est tiré d’un mot grec qui
signifie carré et doit indiquer que le complexe en question
peut se représenter par un schéma carré. Suivant que le
nombre des lignes et des colonnes est 2, 3, 4, ..., donc le
nombre correspondant des coordonnées s =4, 9, 16, ...,
nous parlons de duotettarions, tritettarions, tétratettarions, ...,
en général de y-tettarions ou polytettarions.

Les duotettarions sont donc les nombres hypercomplexes
définis dans les articles 26-28 ; les tritettarions ceux traités
a l'article 29 ; etc.

Dans la suite, nous ne parlerons que des duotetlarions ;
nous pourrons ainsi les désigner par « tettarions » tout court.
De plus, nous envisagerons exclusivementdes duotettarions
rationnels, et le corps %R% constitué par leur ensemble
(v. article 14).

31. — Aprés cette digression sur les tettarions en général,
proposons-nous de construire Parithnomie du corps ;R% formé
par tous les duotettarions rationnels. Le premier pas devra
consister a définir le tettarion « entier ». A cet effet, il s'agit
de trouver le domaine holoide maximal contenu dans ce
corps de nombres $R§ (v. les définitions VI et VII).

Pour bien faire ressortir le fait nouveau qui se produil ici,
nous allons procéder par analogie. ‘

Répétons que nous adoptons toujours la définition lLur-
witzienne du nombre entier (v. définition IX).

Dans le corps des nombres ordinaires comprenant ’en-
semble de tous les nombres rationnels, il existe un seul
domaine holoide; il est, par conséquent, maximal : c’est
'ensemble des nombres entiers ; nous le désignons par [1].
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Pour savoir si un nombre ralionnel pris au hasard est entier
ou non entier, il suflit de déterminer s’il fait partie du
domaine [1], ou non. Aucune ambigiiité n’est possible, puis-
quil existe un seul domaine holoide, donc aussi.une seule
facon de séparer les nombres rationnels en «entiers» et
« fractionnaires ». |

32. — Envisageons, en second lieu, les nombres complexes
ordinaires, ou complexes de Gauss, a, + a,i. Dans le corps
de nombres constitué par 'ensemble des complexes ration-
nels de Gauss, il y a une infinité de domaines holoides dif-
renls ; leur base est: (1, pi), ot p est un nombre entier arbi-
trairement choisi, mais fixe. Parmitous ces domaines holoides,
un seul est maximal; c'est précisément celui dont Gauss et
plus tard M. Lipschitz ont fait Dlarithnomie, a savoir le
domaine [1, ] = ensemble de tous les m, + m,z, ou m, etm,
sont des entiers ordinaires.

Si 'on prend au hasard un nombre complexe o + 3¢
rationnel quelconque, on pourra dire immédiatement et sans
équivoque, si ce complexe rationnel est «enlier» ou «non
entier »; 1l suffira de déterminer s’il est contenu, ou non,
dans ce domaine [1;¢]. Iei aussi, aucune ambigiiité n’est
possible, parcequ’il existe un seul domaine holoide maximal;
en d’autres termes : il n'y a qu'une facon de séparer les
nombres complexes rationnels de Gauss en complexes
« entiers » et complexes « non entiers ». A la question : «Le
complexe rationnel « 4+ (3¢ est-1l entier ?» on répondra d’une
maniere absolue, soit par oui, soit par non; aucune autre
alternative n'est possible. |

33. — Envisageons, en troisiéme lieu, les quaternions. Le
corps des quaternions rationnels (v. définition [1) contient
une multiple infinité de domaines holoides différents. Mais
de tous ces domaines holoides contenant les unités relatives
L, Uy, Uy, un seul est maximal; c’'est le domaine [J] décou-
vert par M. Hurwitz (v. avticle 19). Choisissant arbitrairement
un quaternion rationnel x, on pourra décider sans équi-
voque et d’'une maniere absolue, si » est « entier» ou «non
enticr»; il suffira de déterminer s'il fait partie de ce domaine
[J], ou non. Ici encore, aucune ambigiité n'est possible,
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parcequ’il existe un seul domaine holoide maximal, et partant
une seule facon de séparer les quaternions rationnels en
« entiers » et «non entiers». A la question: «le quaternion
rationnel x est-il entier? » on répondra également d’une
maniére absolue, soit par oui, soit par non; aucune autre
alternative ne sera possible.

34. — En quatriéme lieu, envisageons les tettarions et exa-

minons le corps ;T; des tettarions rationnels. 1l s’agit de

séparer ce corps §T§ en deux ensembles, mettant dans le
premier: les tettarions « entiers» encore a définir, dans le
second : les tettarions « non entiers ». D’apres ce quiprécede,
cela revient & chercher quel est le domaine holoide maximal
du corps ;Té Or, voici le fait nouveau qui se produit ici:
Parmi tous les domaines holoides que contient le corps %Tg .
une infinité sont maximauzx, quoique tres différents entre eux.
Nous avons, en effet, démontré ailleurs le théoreme sui-
vant :

Le domaine holoide maximal le plus général contenu dans
le corps ?T% des tettarions rationnels posséde la base que
voici :

/ 8182 £e
g3_— ’ - , 0
1 8 (1; 0 g, 0
i =% , s Ty =g g ; 13:? y Iy =
Sdg, 8,8 ZT’ s 0; 1 0, 0
cg ' 8
oue==41; & ==x1; ¢, d, g, 9, S2,» §s representant

des nombres entiers arbitrairement choisis, mais fixes, et
assujettis aux conditions:

14

c#0, d20, g0, 2(88 +89) — &g =c¢ ,

ou g, est un nombre entier quelconque.
On obtient donc un domaine holoide maximal en faisant
parcourir, dans l'expression

myt, 4 myty + myt, + myt,

aux 4 nombres m; et indépendamment les uns les autres, la
série des nombres entiers ordinaires, de — e« a 4+ o , apres
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avoir fixé, conformément aux conditions ci-dessus, mais
. - . . 4 y
d’ailleurs arbitrairement, les entiers e, ¢', ¢, @, &, &1 8>

g, et g,.
35.— Parmi ces domaines h0101des maximaux se trouve, par

exemple, le domaine |e,, 2, pe,, e ou p est un nombre
p ’ ‘1 p 3 4]

entier non nul, du reste arbitrairement choisi, mais fixe. Ge
domaine holoide maximal que nous désignons par [Jp] estdonc
constitué par I’ensemble des tettarions

m, e, + e‘) + pmge, + e, . (17)

Il contient une infinité de tettarions a coordonnées entiéres :
il suffit d'y choisir pour m, un multiple de p; mais il ne con-
tient pas tous les tettarions a coordonnées entieres; ainsi,
ni e;, ni 2e,, ni 3¢, ..., ni (p — 1)e;, ni uneinfinité d'autres,
n’en font partie. Par contre, [J ] contient certains tettarions a
coordonnées fractionnaires, par exemple

et une infinité d’autres.
Citons encore le domaine holoide maximal [H,] formé par
I’ensemble des tettarions

("’1 — %) e, —{— M2 ey + <m3 — "—21—2> e; + (m —m, 4 2m, 4 m‘,> e, (18)

ou les m, représentent, comme toujours, des nombres entiers
quelconques. Ce domaine [H,], quoique comprenant (outre
des tettarions a4 coordonnées fractionnaires) une infinité de
tettarions a coordonnées entieres, ne les contient cependant
pas tous; par exemple, il ne contient pas e, ; par contre, ce
méme tettarion e, fait partie de chacun des domaines|[J |, quel
que soit p.

Chacun des domaines holoides [J ] est cependant maximal;
en d’autres termes : il n’existe pas, dans le corps de tettamons
%T% , un autre domaine holoide contenant tous les éléments
de[J ] plus encore d’autres non compris dans [J]. Etil en est
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de méme pour tous les autres domaines holoides maximaux.
Chacun d’eux constitue un ensemble de « nombres entiers »
avec toutes leurs propriétés caractéristiques ; c’est dire qu'on
peut ériger, dans chacun de ces domaines holoides maxi-
maux, une arithmétique en tous points semblable a 'arithmé-
tique hurwitzienne des quaternions entiers.

36. -- Si l'on fait'arithnomie du domaine [H,] par exemple,
tous les tettarions contenus dans [H,] seront réputés « tetta-
rions entiers », et tous les autres, donc aussi e,, seront con-
sidérés comme tettarions « non entiers ». Par contre, si1 'on
fait I'arithnomie d’un domaine [J ], ce seront tous les tetta-
rions faisant partie de [J ]. donc aussie,, qui seront réputés
« entiers », a le\gluslon de tous les autres. Ainsi, le tetta-
rion e, qui est pourtant a coordonnées entieres devra étre
envisagé soit comme « nombre entier », soit comme «nombre
non entier », suivant le domaine holoide considéré. On ne
peut donc pas, quand on s’occupe de l'arithnomie des tetla-

rions, appliquer purement et simplement la définition IX du
tettarion entier en disant : « un tettarion rationnel

:t\ s

sera entier, s'il fait partie d'un domaine holoide maximal» ;
on est obligé d’ajouter : « entier par rapport au domaine
[J]», ou blen « entier par rapport au domaine [H, »], etc.

3'7 — Prenez maintenant au hasard un tettarion rationnel ¢
et posez la question: « est-il entier?» On ne pourra plus
vous répondre, en général, d'une maniere absolue, soit par
oui, soit par non. Il pourra se faire, au contraire, qu'on doive
répondre « cela dépend », car il y a plusieurs facons de
séparer le corps des tettarions rationnels en « entiers » et
« non entiers » ; il ya méme une infinité de maniéres d’opérer
cette séparation, et la réponse a la question ci-dessus doit
dépendre, ou du moins peut dépendre, de la facon dont ona
départagé le corps des tetlarions rationnels en entiers et non
entiers.

38. — Certains tettarions rationnels sont contenus dans
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tous les domaines holoides maximaux ; tels les nombres
entiers ordinaires envisagés comme tettarions réels ; ceux-la
sont donc toujours et stirement des tettarions entiers; on
pourrait les nommer «absolument entiers ». D’autres tetta-
rions rationnels ne sont contenus dans aucun domaine
holoide maximal ; ceux-la sont donc toujours des teltarions
non entiers; on pourrait les dénommer « absolument non
entiers » ou « absolument fractionnaires ». Enfin, il y a une
catégorie de tettarions rationnels contenus dans tel domaine
holoide maximal [Jp]‘ mais pas dans les autres ; ceux-la
peuvent étre tantdt enizers, tantot non entiers, suivant la
maniére donton sépare en deux le corps des tettarions ration-
nels. On pourrait nommer « conditionnellement entiers » les
tettarions de cette troisieme catégorie. “

Au point de vue de l'arithnomie, le corps des nombres
rationnels ordinaires et celui des complexes rationnels de
Gauss se partagent, chacun, en deux groupes seulement,
dont 'un contient tous les «nombres entiers» et 'aulre
tous les « nombres non entiers ». Par contre, le corps des
tettarions rationnels devrait plulot se. partager en trois
groupes : celui des nombres «absolument entiers», celui
des nombres « absolument fractionnaires», et enfin celui
des nombres « conditionnellement entiers ».

39. — Parmi les domaines holoides maximaux du corps
3T$ des tettarions rationnels se trouve le domaine [J,] cons-
titué par 'ensemble des tettarions a coordonnées entieres:

[J,] = ensemble de tous les mye; 4 mye, + mye, + mye, |

ou les m; représentent des nombres entiers ordinaires d’ail-
leurs quelconques. En appliquant la définition lipschitzienne
au cas des duotettarions, c’est-a-dire en posant la

Définition X: Un duotettarion ¢ sera dit « enlier », si ses
(quatre coordonnées /;, sont toutes des nombres entiers ordi-
naires, en posant celte définition, dis-je, on obtient un do-
maine holoide maximal. Il s’en suit que l'arithnomie hasée
sur cette définition X est «réguliére », semblable en tous
points a la théorie hurwitzienne des qualernions entiers,

L’Enseignement mathém., 18¢ année ; 1916, 16
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nous voulons dire: exempte de ces exceptions singuliéres
(que présente la théorie lipschitzienne des quaternions entiers.

L'exemple des duotettarions prouve donc que les nombres
complexes de Gauss ne constituent pas le seul systéme de
nombres complexes ou la définition lipschitzienne du com-
plexe entier soit satisfaisante (v. définition V).

Celui qui poseraitun peu au hasard et sans en connaitre
la raison profonde, en se laissant guider par l'induction ou
par I'analogie avec les nombres complexes ordinaires, cette
définition X du teltarion entier, simplement parce qu’'elle se
présente le plus naturellement a l'esprit, celui-la aurait de la
chance, en ce sens que le domaine holoide ainsi délimité est
maximal, car bien souvent (I'exemple des quaternions, entre
autres, le prouve, la définition lipschitzienne du complexe
entier (v. définition V) engendre des domaines holoides non
maximaux et partant, une arithnomie « non réguliere ».

Mais en posant la définition X simplement par induction et
pour des raisons d’analogie, sans en approfondir le pour-
quoi, et l'arithnomie basée sur cette définition X étant par
hasard «réguliere », c¢’est-a-dire exempte de ces exceptions
singulieres qui donnent a réfléchir, on ne s’apercevrait pas
de ce quil vy a d'intéressant dans le cas des tettarions, de ce
qui les distingue d'autres systémes de nombres hypercom-
plexes, a savoir: que cette définition X n’est pas la seule
possible, puisqu’on peut séparer les tettarions rationnels de
plusieurs manieres, méme d'une infinité de maniéres, en
tettarions entiers et non entiers.

Exprimons cette différence en disant que, pour obtenir
une arithmétique « réguliere »

1° dans le systeme des nombres complexes de Gauss, on
doit se baser sur la définition lipschitzienne ; c’est la seule
satisfaisante ,

2° dans le systeme des tettarions, on peut se baser surla
définition lipschitzienne; mais ce n’est pas la seule qui y soit
satisfaisante ;

3° dans le systéme des quaternions, il ne faut pas se
baser sur la définition lipschitzienne; elle n'y est pas satis-
faisante.
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Résumant les considérations précédentes, nous dirons :
il existe des systémes de nombres hypercomplexes ou l'on
peut procéder de plusieurs fagcons pour séparer le corps des
complexes rationnels en « nombres entiers » et « nombres
non entiers ».

1Y

40. — Dans les chapitres précédents, nous avons reconnu
que définir le complexe « entier » de facon satisfaisante
revient a déterminer le domaine holoide maximal (éventuelle-

ment, s'il y en a plusieurs, les domaines holoides maximaux)

du corps de nombres %R€ constitué par 'ensemble des élé-

ments

X = Elew

ott toutes les coordonnées .y sont des nombres rationnels
arbitraires. On pourrait se demander si, étant donné un sys-
téeme quelconque de nombres hypercomplexes, on peut tou-
jours séparer ainsi le corps 3 —“\é des complexes rationnels en
deux groupes, 'un comprenant tous les complexes entiers
I'autre tous les complexes non entiers.

De prime abord, on ne posera guere cette question ; on
est porté tout naturellement a croire qu'on peut toujours
procéder de facon satisfaisante a cette distinction essentielle
entre complexes entiers et non entiers, peut-étre d'une seule
maniére, comme pour les nombres complexes de Gauss,
peut-élre de plusieurs maniéeres, comme pour les tettarions;
mais en tout cas, si onse laisse guider uniquement par I'ana-
logie, on admettra implicitement et « priori que cela est tou-
jours possible. Or, il n'en est rien. D'une maniére plus pré-
cise : les recherches aboutissent au résultat surprenant
exprimé par le théoreme que voici: /I exisie des corps de
nombres hypercomplexes rationnels contenant une infinité de
domacnes holoides, mais parmi lesquels aucun n’est maximal.
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