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est égale à 2; ee choix une fois fait, les quaternions
premiers dont les normes sont les nombres premiers suivants,

pris dans l'ordre indiqué, se déterminent de proche en proche,
sans ambigiiité, jusqu'à la fin. »

Cette singulière exception tombe également quand on

passe du domaine [J0] au domaine holoïde maximal [J].
24. — Résumons les considérations précédentes en disant :

Les nombres hypercomplexes « entiers « doivent former
non seulement un domaine holoïde, mais un domaine holoïde
maximal.

Définition IX: Un complexe rationnel

1 ...r

X — T- e-s' » À A

X

sera dit entier, s'il est contenu dans le domaine holoïde
maximal en question. Le complexe rationnel x sera dit non
entier, s'il ne fait pas partie du domaine holoïde maximal en

question. (Définition hurwitzienne.)
Cette définition hurwitzienne du nombre hypercomplexe

entier peut avoir comme conséquence qu'on appellera ((entiers

» même certains complexes rationnels x à coordonnées
.xy fractionnaires. (Exemple : les quaternions.) Inversement :

il peut arriver aussi que certains nombres hypercomplexes
rationnels x ne soient pas des complexes « entiers », bien
que toutes leurs coordonnées x\ soient des nombres entiers
ordinaires.

III

25. — Pour construire l'arithmétique d'un corps |r| de
nombres hypercomplexes rationnels, il faut toujours
commencer par une opération préliminaire consistant à partager
ce corps |r| en deux ensembles, mettant d'un côté: les
complexes rationnels « entiers », de l'autre : les complexes
rationnels « non entiers ». Or, il peut se présenter la curieuse
circonstance que cette opération préliminaire ne soit pas
univoque. Nous l'avons découvert en étudiant une classe
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très étendue de systèmes de nombres hypercomplexes de la
forme

1....Ç

a—a.Cj+ a,_e2 + +- ases =2"XeX
X

caractérisée par le fait que le nombre s des coordonnées a y

est un carré parfait, s 1, 4, 9, 16, y2. Le cas le plus
simple est .9 4, vu que ,9=1 donne les nombres réels
ordinaires.

26. — Soient donc

Ct —f- ^2 ~~b ^3^3 ~t~ ^4^4 ^ ^ ^ ^1^1 ~b ^2 ~b ^3^3 ~b ^4^4

deux de ces nombres hypercomplexes. On définit l'égalité de
deux complexes par l'égalité des coordonnées correspondantes.

Ainsi, pour que a b, il faut et il suffit que les
4 égalités a^ (a ~= 1, 2, 3, 4) aient lieu simultanément.
On définit ensuite l'aclclition de deux de ces nombres
hypercomplexes par l'addition des coordonnées correspondantes;
il s'ensuit que son opération inverse : la soustraction, est
univoque, toujours possible et se fait par la soustraction des
coordonnées correspondantes; en formule :

a + b — (a1 db />3) + (a2 ib l>2) e2 + (o3 bb b) <?3 -f- (a4 ± b4) e4 (10)

Pour multiplier (ou diviser) un tel nombre hypercomplexe
par un nombre réel /*, il faut multiplier (ou diviser) chacune
des coordonnées par /', d'où la formule :

V CI nz TÇij pj —j— i'Ci2 f?, —|— pci3 P3 -|- tct4e4 (11)

La multiplication de ces nombres hypercomplexes entre
eux est définie par le tableau suivant :

1 1 *1 1 ** 1 *3 [ *4

iT e2 0
1l0|oT 0 0 ei e2

1̂
1

^3 e4 0 0

^4 0 0 e3 ^4
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Représentant par i et k l'un quelconque des nombres

1, 2, 3, 4, on trouve le produit e£. ek à l'intersection de la ligne
horizontale portant à gauche e. avec la colonne verticale portant

en haut ek.
Un tel nombre hypercomplexe est dit réel, lorsque ses

deux coordonnées moyennes sont nulles et, de plus, ses deux

coordonnées extrêmes égales entre elles. Tout nombre réel

r peut ainsi s'écrire: .v re4 + — + eù* On vérifie
sans peine que le symbole ei + e4 joue le rôle du « nombre 1 »,

de sorte qu'on peut poser, dans ce système de nombres

hypercomplexes : ex + e4 1. Moyennant ces définitions, on

peut dire que l'addition, la soustraction et la multiplication
de ces nombres hypercomplexes se font « d'après les règles
ordinaires de l'algèbre ». A noter cependant que la multiplication

n'est en général pas commutative dans ce système,
puisque, par exemple, eci.e3 ex, tandis que es.e2 e4. Il y
a donc lieu de distinguer ici, comme pour les quaternions,
une « arithnomie à gauche » et une a arithnomie à droite »

(v. article 7).
27. — Pour introduire la division comme opération inverse

de la multiplication, on peut procéder par analogie avec les
nombres complexes de Gauss et avec les quaternions. A tout
nombre hypercomplexe a alei + a^e2 + a3e3 + a4e4

correspond son conjugué : A' a4e4— a2e2— a3e3 + a{ e4.
Le produit d'un tel nombre hypercomplexe et de son

conjugué — ils sont commutables entre eux — est toujours réel
et s'appelle « la norme du nombre hypercomplexe a ». Cette
norme est ainsi définie par

N (a) — a A' A'. a — o2a3 (13)

On en déduit le théorème fondamental que la norme d'un
produit est égale au produit des normes des facteurs :

N(a.6) N(fl).N(6).
La norme d'un tel complexe a peut être nulle sans que

a 0 ; si N(a) 0, on dit que a est « un diviseur de zéro ».
Ce système de nombres hypercomplexes présente donc,
d'avec les nombres complexes de Gauss et les quaternions,
cette différence capitale qu'un produit de facteurs peut être



224 L.-G. DUPASQU [ER

nul sans qu'aucun des facteurs de ce produit ne soit nul.
Ainsi, e3.e4 0; eA.ei=0%- e* 0; etc.

Si a n'est pas diviseur de zéro, c'est-à-dire si N(a) ^ 0, on
entend, en analogie avec les nombres complexes ordinaires
et avec les quaternions, par « l'inverse de a » le nombre
hypercomplexe

a-1 -E- (14)
a N («]

qui satisfait aux relations a.cr1 ci"1, a — 1.

Les nombres hypercomplexes a et b étant donnés, avec
N (b) 5^ 0, on appellera, en analogie avec les quaternions, le
nombre hypercomplexe s^b~\a aie quotient a droite de
a par £ » ; c'est la solution de l'équation ci — b.x\ et le
nombre hypercomplexe y— ci. b~[ sera « le quotient à gauche
de ci par b » ; c'est la solution de l'équation ci y.b. Le

signe ordinaire de la division, a : b ou - n'aura de sens, à

moins de définitions spéciales, que si a et B' sont commu-
tables entre eux, B' représentant le conjugué de b.

Dans le domaine de ces nombres hypercomplexes,
chacune des deux divisions est donc toujours possible et uni-
voque, à condition que la norme du diviseur ne soit pas
nulle. Un quotient dont le diviseur est de norme nulle n'a
de sens que si le dividende est aussi de norme nulle, et un
quotient de deux diviseurs de zéro, quand il a un sens, peut
être indéterminé.

Les définitions précédentes suffisent pour établir parfaitement

les quatre opérations rationnelles dans le domaine de

ces nombres hypercomplexes.
28. — Ces nombres hypercomplexes peuvent se

représenter par des schémas carrés où ne figurent que les
coordonnées. Ainsi,

L'égalité ci — b, la somme a + ô, la différence a — b, se

figurent alors aisément, et l'on obtient pour le produit ci.b:

(>l 2 ~f~ a2 ^4

ff:i l>2 + a4bé
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On voit par là, soit dit en passant, que la multiplication
de ces nombres entre eux se fait d'après les mêmes règdes

que la composition des substitutions linéaires. A chacun de

ces complexes correspond une substitution linéaire bien
déterminée, et inversement. Le « nombre 1 » correspond à

i ; 0
la substitution identique: l j j; un nombre réel r

jr; 0
à : les unités relatives sont :

0 ; r y

j1 ; o 0 ; 11 (0 ; 01 (0 ; 01
i 0 ; 0 ' *2

0 ; 0 ' *3
1 ; 0 j ' ^ ~~

0 ; 1
'

et ainsi de suite. Chaque propriété dés substitutions linéaires
peut se traduire en un théorème sur ces nombres hyper-
complexes.

29. — Cette correspondance étroite montre aussi la voie
de la généralisation au cas où le nombre s des coordonnées
est un carré supérieur à 4, .9 9, 16, v2. Par exemple,
pour ces nombres hypercomplexes à 9 coordonnées
indépendantes, on aura

1...9

a — a1e1 -f- o2e2 -j- aze2 -j- -j- ctQeQ a^ e^
X

nombre hypercomplexe qu'on représentera schématiquement
par

Or, il est plus pratique de se servir de deux indices et
d'écrire, pour le même nombre hypercomplexe a,

1,2, 3 ail ' ai2 ' ai3

a —2 a'ik 6ik ~)021 ' '

i®k \
V a31 ' a32 ' ^33 /

L'unité relative e.k est représentée par le schéma carré dont
tous les éléments sont nuls sauf celui qui se trouve à

l'intersection de la fi4me ligne et de la kiime colonne, lequel est 1.
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La multiplication des unités relatives e.k est alors définie par
les relations :

Gik - eks eis ; eik •=0 p°ur 1 ^k (15)

Les lettres i, k, s, t représentent, chacune, l'un quelconque
des nombres 1, 2, 3.

représente un second nombre hypereomplexe du même
système, Végalité, Yaddition et la soustraction se définiront par
Légalité, l'addition et la soustraction des coordonnées
correspondantes, et le produit a.b sera défini par

Si

1, 2,3

Eik - ai\ bu + «a b2k + aaha2 "a <16'

On appellera réel un tel nombre hypereomplexe r quand
il aura la forme

r 0 0
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en particulier, le « nombre 1 » sera

227

1 — ei + e5 + — 2
1,2,3

exx —

1,0,0
0,1,0
0,0,1

En se basant sur les propriétés bien connues des
substitutions linéaires, on définira d'abord « le conjugué A! d'un
tel nombre hypercomplexe a » ; ce sera

où A ne désigne le sous-déterminant correspondant à ctik\
puis cela norme, N[ci], de ce complexe a» en posant:
N(«) cc.Af= Ar.a; cette norme est toujours un nombre
réel et égal au déterminant du système des coordonnées :

puis « l'inverse d'un complexe a de norme non nulle » en

posant l'équation de définition (14); enfin, un «quotient à

gauche» et un «quotient à droite» du complexe a par le
complexe b, où l'on suppose N(ù)^0, comme ci-dessus,
articles 7 et 27.

Une induction, facile pour qui connaît les substitutions
linéaires, montre comment procéder dans le cas où le
nombre s des coordonnées indépendantes est un carré supérieur

à 9, s 16, 25, v2.

30. — Remarquons que toutes ces définitions peuvent
subsister même dans le cas où les coordonnées du nombre
hypercomplexe en question sont elles-mêmes des nombres
complexes de Gauss ; alors, en posant comme de coutume
i — — 1, on a affaire (dans le cas de 4 unités relatives,
s 4) à un complexe tel que

«21 > «22 ' a'<

(«i + ei 4~ («2 e2 (a?, ù;3) -j- [a4 -f- ib4) e4
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On voit combien il peut devenir fastidieux, quand on s'occupe
de pareils complexes, de distinguer entre les deux espèces
différentes de complexes, car il est nécessaire d'éviter
soigneusement toute confusion entre : d'une part les
coordonnées qui sont des complexes de Gauss, et d'autre part le
complexe total constitué par l'ensemble de ces coordonnées.
Afin de simplifier la terminologie et de prévenir des
confusions possibles, nous avons introduit le néologisme de
tettarions pour désigner cette espèce de nombres hyper-
complexes. Ce terme de teltarion est tiré d'un mot grec qui
signifie carré et doit indiquer que le complexe en question
peut se représenter par un schéma carré. Suivant que le
nombre des lignes et des colonnes est 2, 3, 4, donc le
nombre correspondant des coordonnées s 4, 9, 16,

nous parlons de duotettarions, tritettarions, tétratettarions, ...T

en général de v-tettarions ou polytettarions.
Les duotettarions sont donc les nombres hypercomplexes

définis dans les articles 26-28 ; les tritettarions ceux traités
à l'article 29 ; etc.

Dans la suite, nous ne parlerons que des duotettarions ;

nous pourrons ainsi les désigner par « tettarions » tout court.
De plus, nous envisagerons exclusivement des duotettarions
rationnels, et le corps )r| constitué par leur ensemble
(v. article 14).

31. — Après cette digression sur les tettarions en général,
proposons-nous de construire l'a ri t lin o mie du corps JPij formé

par tous les duotettarions rationnels. Le premier pas devra
consister à définir le tettarion « entier ». A cet effet, il s'agit
de trouver le domaine holoïde maximal contenu dans ce

corps de nombres Jr| (v. les définitions VI et VII).
Pour bien faire ressortir le fait nouveau qui se produit ici,

nous allons procéder par analogie.
Répétons que nous adoptons toujours la définition hur-

witzienne du nombre entier (v. définition IX).
Dans le corps des nombres ordinaires comprenant

l'ensemble de tous les nombres rationnels, il existe un seul
domaine holoïde ; il est, par conséquent, maximal : c'est
l'ensemble des nombres entiers; nous le désignons par [1].
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Pour savoir si un nombre rationnel pris au hasard est entier

ou non entier, il suffit de déterminer s'il fait partie du

domaine [1], ou non. Aucune ambigûité n'est possible, puisqu'il

existe un seul domaine holoïde, donc aussi une seule

façon de séparer les nombres rationnels en « entiers » et
<( fractionnaires ».

32. — Envisageons, en second lieu, les nombres complexes
ordinaires, ou complexes de Gauss, a0 + aA i. Dans le corps
de nombres constitué par l'ensemble des complexes rationnels

de Gauss, il y a une infinité de domaines holoïdes dif-
rents ; leur base est : (1, pi), où p est un nombre entier
arbitrairement choisi, mais fixe. Parmi tous ces domaines holoïdes,
un seul est maximal ; c'est précisément celui dont Gauss et

plus tard M. Lipschitz ont fait l'arithnomie, à savoir le
domaine [1, i] ensemble de tous les mx -j- mp, où mi et m^

sont des entiers ordinaires.
Si l'on prend au hasard un nombre complexe a + ßi

rationnel quelconque, on pourra dire immédiatement et sans
équivoque, si ce complexe rationnel est «entier» ou «non
entier»; il suffira de déterminer s'il est contenu, ou non,
dans ce domaine [1 ; i\. Ici aussi, aucune ambigûité n'est
possible, parcequ'il existe un seul domaine holoïde maximal;
en d'autres termes : il n'y a qu'une façon de séparer les
nombres complexes rationnels de Gauss en complexes
« entiers» et complexes « non entiers ». A la question : «Le
complexe rationnel a + ßi est-il entier ?» on répondra d'une
manière absolue, soit par oui, soit par non ; aucune autre
alternative n'est possible.

33. —Envisageons, en troisième lieu, les quaternions. Le

corps des quaternions rationnels (v. définition 11) contient
une multiple infinité de domaines holoïdes différents. Mais
de tous ces domaines holoïdes contenant les unités relatives
ix, i%n i3, un seul est maximal; c'est le domaine [J] découvert

par M. Hurwitz (v. article 19). Choisissant arbitrairement
un quaternion rationnel z, on pourra décider sans
équivoque et d'une manière absolue, si z est « entier» ou «non
entier » ; il suffira de déterminer s'il fait partie de ce domaine
[.J], ou non. Ici encore, aucune ambigûité n'est possible,
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parcequ'il existe un seul domaine holoïde maximal, et partant
une seule façon de séparer les quaternions rationnels en
« entiers » et « non entiers ». A la question : « le quaternion
rationnel x est-il entier » on répondra également d'une
manière absolue, soit par oui, soit par non ; aucune autre
alternative ne sera possible.

34. — En quatrième lieu, envisageons les tettarions et
examinons le corps |t| des tettarions rationnels. 11 s'agit de

séparer ce corps j T J en deux ensembles, mettant dans le

premier : les tettarions « entiers » encore à définir, dans le
second: les tettarions « non entiers ». D'après ce qui précède,
cela revient à chercher quel est le domaine holoïde maximal
du corps Jt|. Or, voici le fait nouveau qui se produit ici :

Parmi tous les domaines holoïdes que contient le corps |t| *

une infinité sont maximaux, quoique très différents entre eux.
Nous avons, en effet, démontré ailleurs le théorème
suivant :

Le domaine holoïde maximal le plus général contenu dans
le corps j T j des tettarions rationnels possède la base que
voici :

es
i I 0, 0

t - j ~ dg(
t —S, t -( 1 ; °|. / ~s\g' 0

^
ï'ég2 8x8% \

2

8i\
" \ 0; 1)

4 (0, 0

où £ =h 1 ; e' h= 1 ; c, d, g, g^ g2, g3 représentant
des nombres entiers arbitrairement choisis, mais fixes, et

assujettis aux conditions :

c^O, d^ 0 g?± 0 g(gAg3 + ggf — gig. es

oil gA est un nombre entier quelconque.
On obtient donc un domaine holoïde maximal en faisant

parcourir, dans l'expression

m1t1 -f m2t2 + mztz -f m4/4

aux 4 nombres m-A et indépendamment les uns les autres, la
série des nombres entiers ordinaires, de — oc à -f- 00 après
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avoir fixé, conformément aux conditions ci-dessus, mais

d'ailleurs arbitrairement, les entiers s, sf, c, d, g", gx, g*2 >

§3et54.
35. — Parmi ces domaines holoïdes maximaux se trouve, par

exemple, le domaine /?<?3, où p est un nombre

entier non nul, du reste arbitrairement choisi, mais fixe. Ce

domaine holoïde maximal que nous désignons par [JP| est donc
constitué par l'ensemble des tettarions

miei H" e2 + pm3e3 -h /»4e4 (17)

Il contient une infinité de tettarions à coordonnées entières :

il suffit d'y choisir pour /??2 un multiple de p ; mais il ne
contient pas tous les tettarions à coordonnées entières ; ainsi,
ni é?3, ni 2e3, ni 3es, ni (p— l)e3, ni une infinité d'autres,
n'en font partie. Par contre, [J ] contient certains tettarions à

coordonnées fractionnaires, par exemple

ÎJ ?£? ^2 p~ 1

f Co »

P P P P

et une infinité d'autres.
Citons encore le domaine holoïde maximal [H2] formé par

l'ensemble des tettarions

— Y) ei "h '23 ^ — ifj e3 + ('"l — m3 + + 5) e4 (18)

où les 7??^ représentent, comme toujours, des nombres entiers
quelconques. Ce .domaine [H2], quoique comprenant (outre
des tettarions à coordonnées fractionnaires) une infinité de
tettarions à coordonnées entières, ne les contient cependant
pas tous ; par exemple, il ne contient pas ei ; par contre, ce
même tettarion ei fait partie de chacun des domaines [Jp], quel
que soit p.

Chacun des domaines holoïdes [J.] est cependant maximal ;
en d'autres termes : il n'existe pas, dans le corps de tettarions
|Tj, un autre domaine holoïde contenant tous les éléments
de [JJ plus encore d'autres non compris dans [JJ. Etil en est
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de même pour tous les autres domaines holoïdes maximaux.
Chacun d'eux constitue un ensemble de « nombres entiers »

avec toutes leurs propriétés caractéristiques ; c'est dire qu'on
peut ériger, dans chacun de ces domaines holoïdes
maximaux, une arithmétique en tous points semblable à l'arithmétique

kurwitzienne des quaternions entiers.
36. — Si l'on fait l'arithnomie du domaine [HJ par exemple,

tous les tettarions contenus dans [H2] seront réputés « tetta-
rions entiers », et tous les autres, donc aussi ex, seront
considérés comme tettarions «non entiers». Par contre, si l'on
fait l'arithnomie d'un domaine [Jp], ce seront tous les tettarions

faisant partie de [JT], donc aussi qui seront réputés
« entiers », à l'exclusion de tous les autres. Ainsi, le tetta-
rion el qui est pourtant à coordonnées entières devra être
envisagé soit comme « nombre entier», soit comme «nombre
non entier », suivant le domaine holoïde considéré. On ne

peut donc pas, quand on s'occupe de l'arithnomie des
tettarions, appliquer purement et simplement la définition IX du

tettarion entier en disant : « un tettarion rationnel

sera entier, s'il fait partie d'un domaine holoïde maximal» ;

on est obligé d'ajouter : « entier par rapport au domaine

[Jp] ^ 011 bien : « entier/2«/' rapport au domaine [H2 »], etc.
37. — Prenez maintenant au hasard un tettarion rationnel t

et posez la question: « est-il entier?» On ne pourra plus
vous répondre, en général, d'une manière absolue, soit par
oui, soit par non. Il pourra se faire, au contraire, qu'on doive

répondre « cela dépend », car il y a plusieurs façons de

séparer le corps des tettarions rationnels en « entiers » et
« non entiers » ; il y a même une infinité de manières d'opérer
cette séparation, et la réponse à la question ci-dessus doit
dépendre, ou du moins peut dépendre, de la façon dont on a

départagé le corps des tettarions rationnels en entiers et non
entiers.

38. — Certains tettarions rationnels sont contenus dans

A
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tous les domaines holoïdes maximaux ; tels les nombres
entiers ordinaires envisagés comme tettarions réels ; ceux-là

sont donc toujours et sûrement des tetta ri on s entiers ; on

pourrait les nommer « absolument entiers ». D'autres tetta-
rions rationnels ne sont contenus dans aucun domaine
holoïde maximal ; ceux-là sont donc toujours des tettarions
non entiers ; on pourrait les dénommer « absolument non
entiers » ou « absolument fractionnaires ». Enfin, il y a une
catégorie de tettarions rationnels contenus dans tel domaine
holoïde maximal [JJ. mais pas dans les autres ; ceux-là

peuvent être tantôt entiers, tantôt non entiers, suivant la

manière dont on sépare en deux le corps des tettarions rationnels.

On pourrait nommer « conditionnellement entiers » les
tettarions de cette troisième catégorie.

Au point de vue de l'arithnomie, le corps des nombres
rationnels ordinaires et celui des complexes rationnels de
Gauss se partagent, chacun, en deux groupes seulement,
dont l'un contient tous les <c nombres entiers» et l'autre
tous les « nombres non entiers». Par contre, le corps des
tettarions rationnels devrait plutôt se partager en trois
groupes: celui des nombres «absolument entiers », celui
des nombres «absolument fractionnaires», et enfin celui
des nombres « conditionnellement entiers ».

39. — Parmi les domaines holoïdes maximaux du corps
| T des tettarions rationnels se trouve le domaine [3 fi] constitué

par l'ensemble des tettarions à coordonnées entières :

[JJ — ensemble de tous les m1e1 -j- m2 e2 -f- m3 e3

où les /;?; représentent des nombres entiers ordinaires
d'ailleurs quelconques. En appliquant la définition Mpschitzienne
au cas des duotettarions, c'est-à-dire en posant la

Définition X: Un duotettarion t sera dit « entier», si ses
quatre coordonnées fi sont toutes des nombres entiers
ordinaires, en posant cette définition, dis-je, on obtient un
domaine holoïde maximal. Il s'en suit que l'arithnomie basée
sur cette définition X est «régulière», semblable en tous
points à la théorie hurwitzknne des quaternions entiers,
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nous voulons dire : exempte de ces exceptions singulières
que présente la théorie lipschitzieune des quaternions entiers.

L'exemple des duotettarions prouve donc que les nombres
complexes de Gauss ne constituent pas le seul système de
nombres complexes où la définition lipschitzienne du
complexe entier soit satisfaisante (v. définition V).

Celui qui poserait un peu au hasard et sans en connaître
la raison profonde, en se laissant guider par l'induction ou

par l'analogie avec les nombres complexes ordinaires, cette
définition X du tel tari on entier, simplement parce qu'elle se

présente le plus naturellement à l'esprit, celui-là aurait de la

chance, en ce sens que le domaine holoïde ainsi délimité est
maximal, car bien souvent (l'exemple des quaternions, entre
autres, le prouve la définition lipschitzienne du complexe
entier (v. définition Y) engendre des domaines holoïdes non
maximaux et partant, une arithnomie «non régulière ».

Mais en posant la définition X simplement par induction et

pour des raisons d'analogie, sans en approfondir le pourquoi,

et l'arithnomie basée sur cette définition X étant par
hasard «régulière», c'est-à-dire exempte de ces exceptions
singulières qui donnent à réfléchir, on ne s'apercevrait pas
de ce qu'il y a d'intéressant dans le cas des tettarions, de ce

qui les distingue d'autres systèmes de nombres hypercom-
plexes, à savoir: que cette définition X n'est pas la seule
possible, puisqu'on peut séparer les tettarions rationnels de

plusieurs manières, même d'une infinité de manières, en
tettarions entiers et non entiers.

Exprimons cette différence en disant que, pour obtenir
une arithmétique « régulière »

1° dans le système des nombres complexes de Gauss, on
doit se baser sur la définition lipschitzienne ; c'est la seule
satisfaisante

2° dans le système des tettarions, on peut se baser sur la

définition lipschitzienne ; mais ce n'est pas la seule qui y soit
satisfaisante ;

3° dans le système des quaternions, il ne faut pas se
baser sur la définition lipschitzienne ; elle n'y est pas
satisfaisante.
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Résumant les considérations précédentes, nous dirons :

il existe des systèmes de nombres hypercomplexes où Ton

peut procéder de plusieurs façons pour séparer le corps des

complexes rationnels en « nombres entiers » et « nombres

non entiers ».

IV

40. — Dans les chapitres précédents, nous avons reconnu

que définir le complexe « entier » de façon satisfaisante
revient à déterminer le domaine holoïde maximal (éventuellement,

s'il y en a plusieurs, les domaines holoïdes maximaux)
du corps de nombres j R j constitué par l'ensemble des

éléments

i ...n

*
X

où toutes les coordonnées x\ sont des nombres rationnels
arbitraires. On pourrait se demander si, étant donné un
système quelconque de nombres hypercomplexes, on peut
toujours séparer ainsi le corps rJ des complexes rationnels en
deux groupes, l'un comprenant tous les complexes entiers,
l'autre tous les complexes non entiers.

De prime abord, on ne posera guère cette question ; on
est porté tout naturellement à croire qu'on peut toujours
procéder de façon satisfaisante à cette distinction essentielle
entre complexes entiers et non entiers, peut-être d'une seule
manière, comme pour les nombres complexes de Gauss,
peut-être de plusieurs manières, comme pour les tettarions;
mais en tout cas, si on se laisse guider uniquement par
l'analogie, on admettra implicitement et a priori que cela est
toujours possible. Or, il n'en est rien. D'une manière plus précise

: les recherches aboutissent au résultat surprenant
exprimé par le théorème que voici: Il existe des corps de
nombres hypercomplexes rationnels contenant une infinité de
domaines holoïdes, mais parmi lesquels aucun n'est maximal.
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