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II

13. — Envisageons un système de nombres hypercomplexes
à r coordonnées indépendantes, système constitué par une
infinité de « complexes » ou « éléments » tels que

l...r
x — x1e1 + x2e2 + + xrer ^^P^X

X

où les xy sont des nombres réels quelconques dits «

coordonnées du complexe x », et les e\ des symboles dits « unités
relatives du système de nombres hypercomplexes 1 ».

Supposons définies, dans ce système de nombres hyper-
complexes, les opérations rationnelles de l'addition et de la

multiplication, leurs opérations inverses : la soustraction
et la division, ainsi que l'égalité de deux complexes. On sait

que, dans ce cas, le produit e..ek de deux unités relatives
quelconques est une fonction linéaire, à coefficients réels,
des mêmes unités relatives ey. Par exemple, i et k désignant,
chacun, l'un quelconque des nombres 1, 2, 3, /', on a

1 ...r

ei-ek ïl ei+ Ï2e2 + + Yrer =2T^ '

X

Pour indiquer dans la notation que les constantes réelles

peuvent varier avec i et k, écrivons

ei'ek — tik\e i "h (ik'2 f>2 + ••• + Tikrer

ou, sous forme condensée,

1 ...r

ei-ek k '•2- ••• • • (5)

X

Ces relations (5), jointes aux définitions de l'addition et de

1 11 est souvent utile de distinguer entre « coordonnées » et « composantes >> d'un nombre
complexe. Par « coordonnées », on entend les nombres x±; x2;...; xr, tandis que les «

composantes » du nombre hypercomplexe x sont les produits xx e± ; x2c2; : xrer.
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l égalité, fixent le système considéré de nombres hyper-
complexes et le définissent complètement.

14. — La considération du nombre hypercomplexe rationnel

est fondamentale pour tout ce qui va suivre. Commençons

donc par poser la

Définition IV: Appelons complexe rationnel un tel nombre

hypercomplexe x dont toutes les r coordonnées x^ sont des

nombres rationnels quelconques, entiers ou fractionnaires.-
Un complexe

!.../•

x —2e^
x

sera dit non rationnel, si Lune au moins de ses r coordonnées

est un nombre réel irrationnel.
Dans la suite, il sera question exclusivement de complexes

rationnels.
L'ensemble de tous les complexes rationnels forme un

<( corps de nombres » ou « domaine de rationalité », c'est-à-
dire que les complexes rationnels se reproduisent par addition,

soustraction, multiplication et division. Autrement dit :

la somme, la différence, le produit et le quotient (pour autant
que la division est possible) de complexes rationnels est
toujours de nouveau un complexe rationnel. Nous désignerons
par le symbole j R j ce corps comprenant tous les complexes
rationnels.

15. — Pour faire l'arithmétique généralisée ou arithnomie
de ce corps de nombres j Pi j, il faut tout d'abord le partager
en deux ensembles, mettant d'une part : les complexes
rationnels «entiers», d'autre part: les complexes rationnels
« non entiers ». La définition suivante, que j'appelle « la
définition lipschitzienne », se présente le plus naturellement
à l'esprit :

Définition V ; Un complexe rationnel x est dit entier, si
toutes ses r coordonnées sont des nombres entiers
ordinaires; le complexe rationnel x sera dit non entier, si Tune
au moins de ses r coordonnées est un nombre fractionnaire.

En se basant sur cette définition du complexe entier, on
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peut construire toute une arithmétique du système considéré
de nombres hypercomplexes, arithmétique généralisée qui
présente beaucoup d'analogies, mais aussi bien des
contrastes, avec l'arithmétique ordinaire. Or, l'exemple des
quaternions rationnels prouve que cette définition lipschit-
zienne n'est pas toujours satisfaisante. Voici les considérations

qui peuvent conduire à une autre définition, souvent
préférable à la définition lipschitzienne du complexe entier.

16. — Les « nombres entiers » sont caractérisés par les
quatre propriétés fondamentales suivantes :

1° lis doivent se reproduire par addition, soustraction et
multiplication; en d'autres termes : la somme, la différence
et le produit de deux « entiers » quelconques doit toujours
être de nouveau un « entier ». On exprime cela en disant que
les nombres entiers doivent «former un domaine d'intégrité

».
2° Ce domaine d'intégrité doit contenir « le nombre 1 » et

« le nombre zéro », c'est-à-dire deux complexes jouant, dans
ce domaine, le même rôle que 1 et 0 dans l'arithmétique
ordinaire. Sans « le nombre 1 », on aurait un système de
nombres entiers dont aucun ne serait divisible par lui-même,
ce qui n'est pas normal; sans «le nombre zéro», la
soustraction ne serait pas toujours possible.

3° L'ensemble des « nombres entiers » doit former un
domaine d'intégrité à base finie; en d'autres termes, il doit
être possible de choisir, dans cet ensemble, un nombre fini
de complexes, disons ^ T /2, tn, jouissant de la propriété
suivante : si mi, mn désignent des nombres entiers
ordinaires, l'expression

mlt1 + m2t2 H- + mnta (6)

doit pouvoir reproduire, par des valeurs appropriées des
nombres entiers mabsolument tous les éléments de
l'ensemble en question ; et inversement : ce domaine d'intégrité
doit se composer exclusivement des éléments, mais de tous
les éléments, qu'on obtient en attribuant, dans l'expression
(6) ci-dessus, à mA, /??2, mn, de toutes les manières
possibles, les valeurs entières de — go à + go
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Dans ce cas, les complexes /2, tn peuvent engendrer,

par les seules opérations de Vaddition et de la
soustraction répétées un nombre ßni de fois, n'importe quel autre
élément du domaine d'intégrité. On dit que ces complexes
« forment une base » du domaine d'intégrité envisagé, et
l'on désigne celui-ci d'ordinaire par le symbole

[<v 's. • • 'J •

Si l'on remarque que pour passer de + t à —/, il suffit
de soustraire deux fois de suite -f- t de lui-même; puis, que

soustraire — t » est complètement équivalent à «

additionner t », on peut dire ceci : En partant des éléments de
la base, on peut reproduire chacun des éléments du domaine
en question au moyen d'un nombre fini de soustractions. Le
nom de « base » attribué à ces éléments est ainsi pleinement

justifié.
17. — Le fait de constituer un domaine d'intégrité contenant

le nombre 1 n'est pas suffisant, à lui tout seul, pour
caractériser des nombres « entiers ». On le voit en considérant

l'ensemble engendré par où m et n représentent des

nombres entiers quelconques. Cet ensemble que nous

désignons par constitue pourtant un domaine d'intégrité
contenant le nombre 1 ; il jouit des propriétés 1° et 2° ci-
dessus énumérées, mais il ne possède aucune base finie au
sens ci-dessus: on ne peut pas indiquer un nombre fini
d'expressions de la forme ~ telles qu'elles pourraient engendrer

toutes les autres par les seules opérations de l'addition
et de la soustraction, puisque ces deux opérations ne per-

1 1
mettent pas de passer de — à Aussi le domaine d'intégrité

i;i ne contient-il pas uniquement des nombres entiers.

18. — Pour abréger, nous emploierons une terminologie
proposée par M. /. König et poserons la

Définition VI: Nous appellerons «domaine holoïde » tout
ensemble de complexes quelconques jouissant des trois
propriétés fondamentales ci-dessus énumérées (art. 16).
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Donc, en vertu de cette définition, tout domaine holoïde

contient une infinité d'éléments, parmi lesquels le nombre 1

et le nombre zéro; de plus, on peut y effectuer, sans restriction

aucune, l'addition, la soustraction et la multiplication,
et cela sans jamais sortir du domaine en question; et enfin,
il possède une base finie.

Exemples : Les nombres entiers ordinaires forment un
domaine holoïde dont la base est 1; l'expression (6) se réduit
dans ce cas à mi 1 qui reproduit bien tous les nombres
entiers, lorsqu'on fait parcourir à 7??1 la série des nombres
entiers.

Les nombres complexes de Gauss à coordonnées entières
(voir la définition I) forment un domaine holoïde dont la
base est 1, i; en effet, l'expression (6) devient dans ce cas
m ^

1 -j- m2 • £, laquelle reproduit bien tous les complexes
entiers de Gauss, et exclusivement ceux-là, quand mx et m2

parcourent, indépendamment l'un de l'autre, la série des
nombres entiers ordinaires. On désigne ce domaine holoïde
parle symbole [1; i].

Les « quaternions entiers » de M. Lipschitz forment un
domaine holoïde de base 1, i\, L, i3, puisque tout quaternion
« entier d'après la définition lipschitzienne » peut se mettre
sous la forme ?n0. 1 -f- mx 4 -f- z??2. 4 + m3. /3 et que cette
expression donne toujours un quaternion à cordonnées
entières, quelles que soient les valeurs entières attribuées aux
?7iy. On désigne,c;e domaine holoïde par le symbole [1, ix, 4> /3].

Un corps de nombres, n'ayant pas une base finie au sens
indiqué plus haut, ne constitue lui-même pas un domaine
holoïde, bien que pouvant en contenir une infinité.

19. — Les trois propriétés ci-dessus énumérées et qui
caractérisent le domaine holoïde, ne sont pas suffisantes

pour caractériser les « nombres entiers ». 11 en faut une
quatrième. C'est de cette quatrième propriété que n'avait
pas tenu compte M. Lipschitz, c'est elle qu'a découverte
M. Hurwitz. La voici :

4° Le domaine holoïde formé par les « nombres entiers »

doit être maximal.
Définition Vil: Soit [JJ un domaine holoïde quelconque.
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Il sera dit maximal, s'il n'existe pas, dans le corps de nombres
considéré, un autre domaine holoïde contenant tous les
éléments du domaine en question [J-4] plus encore d'autres
éléments non contenus dans [JJ.

Or, M. Hurwitz a découvert que le domaine holoïde
[1, i\, i2, e8] formé par l'ensemble des quaternions à

coordonnées entières n'est pas maximal, qu'il est possible de

l'élargir en restant dans le même corps de nombres |r|; on

peut, en effet, agrandir de la manière suivante le domaine
holoïde [1, i{, z*2, /8] sans sortir du domaine de rationalité
|R| constitué par l'ensemble des quaternions rationnels:
soit pour abréger

Dans le corps |r| des quaternions rationnels, le domaine
holoïcle maximal a pour base p, ii, i2, i3. Désignons ce
domaine holoïde maximal par Je symbole [J], de sorte que [J]
sera constitué par l'ensemble des quaternions

m0p -j- ni 1 i1 -j- m2i2 -f- m3/3 (7)

où les 4 nombres ordinaires m^ prennent, indépendamment
les uns des autres, toutes les valeurs entières possibles.
Avec M. Hurwitz, nous poserons la définition suivante que
nous appellerons « la définition hurwitzienne du quaternion
entier » :

Deßnition VIII : Un quaternion rationnel est dit « entier »,
s'il est contenu dans ce domaine holoïde maximal [J]. Un
quaternion rationnel est dit « non entier », s'il n'est pas contenu

dans ce domaine holoïde maximal [J].
20. — Tout quaternion entier tel que t sera donc de la

forme (7), ou, en remplaçant p par sa valeur :

< + (m, + t)+ (-», + y*) + (», + ?)181
On trouvera tous les quaternions entiers, en prenant pour

les quatre nombres m0l mA, /??2, 77? 3, de toutes les manières
possibles, des valeurs entières quelconques.

Si mq est pair, toutes les coordonnées du quaternion t

L'Enseignement mathém., 18e année, 1916. 15
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seront des nombres entiers. Dans ce cas, t sera un quaternion

« entier» également d'après la définitiôn lipschitzieune
(y. définitions III et V).

Si, au contraire, m0 est impair, les coordonnées non nulles
de t seront des nombres rationnels non entiers, des fractions
de dénominateur commun 2. Dans ce cas, d'après la définition

lipschitzienue, t serait un quaternion « non entier »,
tandis qu'en réalité, en vertu de la définition hurwitzienne
que nous adoptons, t sera réputé «quaternion entier».
En particulier, les 16 quaternions —

1 ± h ± h q{,\ se_

raient tous des quaternions « non entiers » au sens de M. Lip-
schitz, sont en réalité des quaternions entiers, en vertu de
la définition hurwitzienne. La norme de chacun de ces 16

quaternions est égale à 1; ils constituent 16 unités dans le
domaine holoïcle envisagé. Celui-ci contient donc 24 unités
en tout, dont 8 seulement à coordonnées entières. (Voir les
définitions à l'art. 10.)

21. — Désignons par [J0] l'ensemble constitué par tous les
quaternions à coordonnées entières. On voit immédiatement
que [J0] est contenu entièrement dans fJ]. En effet, le
domaine [J], tout en faisant partie, lui aussi, du corps |r| des

quaternions rationnels, contient non seulement tous les
éléments de [J0], mais encore une infinité d'autres à coordonnées

fractionnaires. Ainsi, [J0] n'est pas un domaine holoïde
maximal.

En construisant l'arithmétique du domaine [J0], M. Lip-
schitz faisait donc l'arithnomie d'un domaine non maximal;
or, quand on fait cela, il faut s'attendre à priori à des irrégularités.

Qu'on me permette une analogie : Essayez de
construire l'arithmétique des nombres entiers ordinaires en vous
basant sur la définition suivante : « J'appelle nombre entier
tout nombre pair, et nombre non entier tous les autres. »

D'après cette définition, les nombres impairs seraient donc
des nombres «non entiers». En érigeant une arithmétique
basée sur cette définition-là, vous vous apercevrez vite de
l'existence d'anomalies déconcertantes. On devine même à

l'avance que les théorèmes classiques sur la divisibilité, par
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exemple, ne joueront pas toujours, si l'on fait reposer l'arith-
nomie sur une définition pareille. Ce n'est là, bien entendu,

qu'une analogie. (La différence capitale provient de ce que
l'ensemble de tous les nombres pairs ne contient pas le

nombre 1 et ne constitue pas, en conséquence, de domaine

holoïde, tandis que [J0] en est un.) Aussi n'ai-je voulu, en

employant cette image, que faire sentir en quelque sorte la

raison profonde pourquoi l'on doit s'attendre, à priori, à des

anomalies, quand on entreprend de construire l'arithnomie
d'un domaine holoïde non maximal.

On le vérifierait sans doute sur un cas concret, déjà dans
le domaine des nombres complexes de Gauss, en faisant,

par exemple, l'arithnomie du domaine holoïde

[1 360 i] m1 + 360;?i2 i (9)

où ml et m2 représentent des entiers quelconques. Gela
reviendrait à remplacer la définition de Gauss (définition 1)

par celle-ci : Un nombre complexe a0 + axi sera dit entier,
s'il est contenu dans le domaine (9). Tous les autres
complexes rationnels, même ceux à coordonnées entières (donc
tous ceux dont la partie imaginaire n'est pas divisible par
360), seraient réputés non entiers.

22. — Les nombres complexes de Gauss, a + bi, où les
coordonnées a et b sont des nombres entiers ordinaires,
constituent un domaine holoïde maximal; définition lip-
schitzienne et définition hurwitzienne sont équivalentes dans
ce système de nombres complexes; les deux conduisent au
même ensemble de complexes entiers ; voilà pourquoi il est
possible, en adoptant la définition lipschitzienne, d'y
construire une arithnomie d'une simplicité analogue à celle de

l'arithmétique classique. On peut se demander si Gauss, en
posant cette définition 1, a simplement eu de la chance, ou
s'il connaissait la raison profonde pourquoi il faut la poser?
Il est permis de croire que si Gauss avait été amené à faire
l'arithmétique généralisée des quaternions « entiers », il
aurait commencé par se baser sur la définition lipschit-
zienne III; puis cherchant la raison d'être des singulières
exceptions qu'il eut constatées, que Gauss aurait alors fait
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la découverte, dont la priorité revient à M. Hurwitz, que le
domaine holoïde [J0] n'est pas maximal, qu'il est en
conséquence préférable de fixer d'une autre manière la notion du
quaternion entier.

23. — En adoptant la définition hurwitzienne VIII du
quaternion entier, définition qui engendre le domaine [J] de
l'article 19, on peut ériger une arithnomie des quaternions
entiers exempte de ces exceptions singulières que présente
la théorie lipschitzienne qui n'envisage que le domaine [J0]
de l'article 21. Reprenons les exemples cités plus haut. Les
quaternions entiers a — 2 êt ô 1 + + L2 -f- i3 (v. art. 12;

possèdent, dans le domaine [J], comme plus grand commun
diviseur 2 (ils y sont même associés), alors que dans la
théorie lipschitzienne (domaine [J0]), ils n'en possèdent aucun.

Le théorème de décomposition (v. art. 11) reste applicable,
dans le domaine [J], à tout quaternion entier c, quelle que
soit sa norme, et peut s'énoncer ainsi : Soit c un quaternion
entier primitif donné, de norme

N(c) Pl.p2.p3. ps

où les pi sont les facteurs premiers, égaux ou inégaux entre
eux, de la norme de c, facteurs rangés dans un ordre tout à

fait arbitraire, mais déterminé. Il est alors toujours possible
de représenter le quaternion donné c comme produit de

quaternions premiers :

tels que N(7ti)=pi; N(tt2) p2 ; ; N(t:ç)=/>5, et cette
décomposition est univoque. Chacun des quaternions premiers
qui figurent dans le produit se détermine de proche en proche,
sans ambigiiité.

Dans sa théorie qui n'envisage que le domaine [J0], M. Lip-
schitz est obligé d'ajouter une exception : « Tout se passe
de même pour les quaternions entiers primitifs dont la norme
est divisible par 4, jusqu'à ce que l'ordre fixé pour les
facteurs de cette norme amène pour la première fois le nombre 2 ;

on peut alors choisir arbitrairement, comme facteur premier,
l'un quelconque des 24 quaternions premiers dont ia norme
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est égale à 2; ee choix une fois fait, les quaternions
premiers dont les normes sont les nombres premiers suivants,

pris dans l'ordre indiqué, se déterminent de proche en proche,
sans ambigiiité, jusqu'à la fin. »

Cette singulière exception tombe également quand on

passe du domaine [J0] au domaine holoïde maximal [J].
24. — Résumons les considérations précédentes en disant :

Les nombres hypercomplexes « entiers « doivent former
non seulement un domaine holoïde, mais un domaine holoïde
maximal.

Définition IX: Un complexe rationnel

1 ...r

X — T- e-s' » À A

X

sera dit entier, s'il est contenu dans le domaine holoïde
maximal en question. Le complexe rationnel x sera dit non
entier, s'il ne fait pas partie du domaine holoïde maximal en

question. (Définition hurwitzienne.)
Cette définition hurwitzienne du nombre hypercomplexe

entier peut avoir comme conséquence qu'on appellera ((entiers

» même certains complexes rationnels x à coordonnées
.xy fractionnaires. (Exemple : les quaternions.) Inversement :

il peut arriver aussi que certains nombres hypercomplexes
rationnels x ne soient pas des complexes « entiers », bien
que toutes leurs coordonnées x\ soient des nombres entiers
ordinaires.

III

25. — Pour construire l'arithmétique d'un corps |r| de
nombres hypercomplexes rationnels, il faut toujours
commencer par une opération préliminaire consistant à partager
ce corps |r| en deux ensembles, mettant d'un côté: les
complexes rationnels « entiers », de l'autre : les complexes
rationnels « non entiers ». Or, il peut se présenter la curieuse
circonstance que cette opération préliminaire ne soit pas
univoque. Nous l'avons découvert en étudiant une classe
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