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212 L.-G. DUPASQUIER
[T
13. — Envisageons un systéme de nombres hypercomplexes

a r coordonnées indépendantes, systéme constitué par une
infinité de « complexes » ou « éléments » tels que

Aol
x:xlel+x282—i—...+xrer:2x)\el (&)
A

ou les xy sont des nombres réels quelconques dits « coor-
données du complexe x », et les e; des symboles dits «unités
relatives du systeme de nombres hypercomplexes?! ».
Supposons définies, dans ce systeme de nombres hyper-
complexes, les opérations rationnelles de 'addition et de la
multiplication, leurs opérations inverses: la soustraction
et la division, ainsi que I'égalité de deux complexes. On sait
que, dans ce cas, le produit e,.e, de deux unités relatives
. quelconques est une fonction linéaire, a coeflicients réels,
des mémes unités relatives e, . Par exemple, 7 et & désignant,
chacun, I'un quelconque des nombres 1, 2,3, ... , r, on a

i PR o
ei'ek:Ylel+Y262+...+Y"er: Y)\ek
A

Pour indiquer dans la notation que les constantes réelles
75 peuvent varier avec ¢ et k, écrivons

. 5 iz

€;-p = Yir1€1 & Yiae t oo T+ Yyl

ou, sous forme condensée,

1...r
ei.ekzzyikxe)\ i, h=1,2, ...,1). (5)
)

Ces relations (5), jointes aux définitions de I'addition et de

1 ]1 est souvent utile de distinguer entre « coordonnées » et « composantes » d’un nombre
complexe. Par « coordonnées », on entend les nombres z,; x,;...; x,., tandis que les « com-

posantes » du nombre hypercomplexe x sont les produits x,e; x,e,: . .; X, €p.
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NOMBRES HYPERCOMPLEXES 213

I'égalité, fixent le systéme considéré de nombres hyper-
complexes et le définissent complétement. '
14. — La considération du nombre hypercomplexe ration-
nel est fondamentale pour tout ce qui va suivre. Commen-
cons donc par poser la
Définition 1V : Appelons complexe rationnel un tel nombre
hypercomplexe x dont toutes les » coordonnées x, sout des

nombres rationnels quelconques, entiers ou fractionnaires:
Un com plexe

& 1...r
X :E x)\ 67\
A

sera dit non rationnel, si 'une au moins de ses r coordon-
nées est un nombre réel irrationnel.

Dans la suite, il sera question exclusivement de complexes
rationnels. |

L’ensemble de tous les complexes rationnels forme un
« corps de nombres » ou « domaine de rationalité », c’est-a-
dire que les complexes rationnels se reproduisent par addi-
tion, soustraction, multiplication et division. Autrement dit:
la somme, la différence, le produit et le quotient (pour autant
que la division est possible) de complexes rationnels est tou-
jours de nouveau un complexe rationnel. Nous désignerons
par le symbole { R} ce corps comprenant tous les complexes
rationnels.

15. — Pour faire 'arithmétique généralisée ou arithnomie
de ce corps de nombres | R, il faut tout d’abord le partager
en deux ensembles, mettant d’une part: les complexes ra-
tionnels « entiers.», d’autre part: les complexes rationnels
«non entiers ». La définition suivante, que jappelle «la
définition lipschitzienne », se présente le plus naturellement
a l'esprit:

Définition V: Un complexe rationnel x est dit entier, si
toutes ses r coordonnées sont des nombres entiers ordi-
naires; le complexe rationnel x sera dit non entier, si I'une
au moins de ses r coordonnées est un nombre fractionnaire.

En se basant sur cette définition du complexe entier, on
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peut construire toute une arithmétique du systéme considéré
de nombres hypercomplexes, arithmétique généralisée qui
présente beaucoup d’analogies, mais aussi bien des con-
trastes, avec l'arithmétique ordinaire. Or, l'exemple des
quaternions rationnels prouve que cette définition lipschit-
ztenne n'est pas toujours satisfaisante. Voici les considé-
rations qui peuvent conduire a4 une autre définition, souvent
préférable a la définition lipschitzienne du complexe entier.

16. — Les « nombres enliers » sont caractérisés par les
quatre propriétés fondamentales suivantes :

1° Iis doivent se reproduire par addition, soustraction et
multiplication; en d’autres termes : la somme, la différence
et le produit de deux « entiers » quelconques doit toujours
etre de nouveau un « entier ». On exprime cela en disant que
les nombres entiers doivent «former wn domaine d’inté-
g/'ité ».

2° Ce domaine d’'intégrité doit contenir « le nombre 1 » et
« le nombre zéro », c’est-a-dire deux complexes jouant, dans
ce domaine, le méme role que 1 et 0 dans l'arithmétique
ordinaire. Sans «le nombre 1», on aurait un systeme de
nombres entiers dont aucun ne serait divisible par lui-méme,
ce qui n’est pas normal; sans «le nombre zéro », la sous-
traction ne serait pas toujours possible.

3° L’ensemble des « nombres entiers » doit former un
domaine d’intégrité a base finie; en d'autres termes, il doit
étre possible de choisir, dans cet ensemble, un nombre fint
de complexes, disons #,, ¢, ... , Z,, jouissant de la propriété
suivante : si m,, m,. ..., m, désignent des nombres entiers
ordinaires, 'expression

my ¢, + myty + ... =+ m“ntn (6)

doit pouvoir reproduire, par des valeurs appropriées des
nombres entiers m,;, absolument tous les éléments de l'en-
semble en question; et inversement : ce domaine d’intégrité
doit se composer exclusivement des éléments, mais de fous
les éléments, qu’'on obtient en altribuant, dans ’expression
(6) ci-dessus, a m,, my, ... , m,., de toutes les manieres pos-
sibles, les valeurs entiéeres de — o a + .

T R
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Dans ce cas, les complexes ¢, ¢,, ... , &, peuvent engen-
drer, par les seules opérations de laddition et de la sous-
traction répétées un nombre fini de fois, n'importe quel autre
élément du domaine d’'intégrité. On dit que ces complexes
« forment wune base» du domaine d’intégrité envisage, et
'on désigne celui-ci d’ordinaire par le symbole

[tl" t2’ R tn] :

Si I'on remarque que pour passer de 4 ¢ a — ¢, il suflit
de soustraire deux fois de suite + ¢ de lui-méme; puis, que
« soustraire — ¢ » est complétement équivalent a «addi-
tionner ¢ », on peul dire ceci: En partant des éléments de
la base, on peut reproduire chacun des éléments du domaine
en question au moyen d'un nombre fini de soustractions. Le
nom de « base » attribué a ces éléments ¢, est ainsi pleinc-
ment justifié. *' |

17. — Le fait de constituer un domaine d'intégrité conte-
nant le nombre 1 n'est pas suffisant, & lui tout seul, pour
caractériser des nombres « entiers ». On le voit en considé-

, m . ,
vant 'ensemble engendré par g0 O m et nreprésentent des

nombres entiers quelconques. Cel ensemble que nous dési-
gnons par ['2’—;] constitue pourtant un domaine d’intégrité
contenant le nombre 1; il jouit des propriétés 1° et 2° ci-
dessus énumérées, mais il ne possede aucune base finie au
sens ci-dessus: on ne peul pas indiquer un nombre fini d’ex-

# N m N
pressions de la forme 7 telles quelles pourraient engen-

drer toutes les autres par les seules opérations de 'addition
et de la soustraction, puisque ces deux opérations ne per-

1. X i .,
mettent pas de passer de 0 a Aussi le domaine d’inté-

2[!-*—‘1 ’
.., m . . . .
gmte é?[ ne contient-il pas u mquement des nombres entiers.

18. — Pour abréger, nous emploierons une terminologie
proposée par M. J. Konig et poserons la

Définition VI: Nous appellerons « domaine holoide » tout
ensemble de complexes quelconques jouissant des trois pro-
priétés fondamentales ci-dessus énumérées (art. 16).
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Donc; en vertu de cette définition, tout domaine holoide
contient une infinité d’éléments, parmi lesquels le nombre 1
et le nombre zéro; de plus, on peuty effectuer, sans restric-
tion aucune, 'addition, la soustraction et la multiplication,
et cela sans jamais sortir du domaine en question; et enfin,
il posséde une base finie.

Exemples: Les nombres entiers ordinaires forment un
domaine holoide dont la base est 1; I'expression (6) se réduit
dans ce cas a m,.l qui reproduit bien tous les nombres
entiers, lorsqu’on fait parcourir a m, la série des nombres
entiers.

Les nombres complexes de Gauss & coordonnées entiéres
(voir la définition I) forment un domaine holoide dont la
base est 1, 7; en effet, 'expression (6) devient dans ce cas
m, .1+ m,.i, laquelle reproduit bien tous les complexes
entiers de Gauss, et exclusivement ceux-la, quand m, et m,
parcourent, indépendamment 'un de l'autre, la série des
nombres entiers ordinaires. On désigne ce domaine holoide
par le symbole [1; £].

Les « quaternions entiers » de M. Lipschitz forment un
domaine holoide de base 1, 7,, i,, 75, puisque tout quaternion
« entier d’aprés la définition lipschitzienne » peut se mettre
sous la forme m,. 1+ m,.i + m,.i, + m,.7, et que cette
expression donne toujours un quaternion a cordonnées en-
tieres, quelles que soient les valeurs entiéres attribuées aux
m, . On désigne ce domaine holoide par le symbole [1, 7,, 7,. 7,].

Un corps de nombres, n'ayant pas une base finie au sens
indiqué plus haut, ne constitue lui-méme pas un domaine
holoide, bien que"-i‘)ouvant en contenir une infinité.

19. — Les trois propriétés ci-dessus énumérées et qui
caractérisent le domaine -holoide, ne sont pas suffisantes
pour caractériser les « nombres entiers». Il en faut une
quatriéme. C'est de cette quairiéme propriété que n'avait
pas tenu compte M. Lipschiiz, c’est elle qu’a découverte
M. Hurwitz. La voici:

4° Le domaine holoide formé par les « nombres entiers »
doit étre maximal.

. Définition VII: Soit [J,] un domaine holoide quelconque.
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1l sera dit maximal, s’il n’existe pas, dans le corps de nombres
considéré, un autre domaine holoide contenant tous les élé-
ments du domaine en question [J,] plus encore d’autres élé-
ments non contenus dans [J,]. |

Orv, M. Hurwitz a découvert que le domaine holoide
[1,7,,7,,i,] formé par I'ensemble des quaternions a coor-
données entiéres n’est pas maximal, qu’il est possible de
I'élargir en restant dans le méme corps de nombres {R{; on
peut, en effet, agrandir de la maniére suivante le domaine
holoide [1, i, Z,, 7;] sans sortir du domaine de rationalité
{R| constitué par I'ensemble des quaternions rationnels :
soit pour abréger

1 ) . .
p:§(1+11+12—l—13);

Dans le corps {RY des quaternions rationnels, le domaine
holoide maximal a pour base p, i, 15, 1;. Désignons ce do-
maine holoide maximal par le symbole [J], de sorte que [J]
sera constitué par I'ensemble des quaternions

myo + m i, + myi, + myi, (7)

ou les 4 nombres ordinaires m; prennent, indépendamment
les uns des autres, toutes les valeurs entiéres possibles.
Avec M. Hurwitz, nous poserons la définition suivante que
nous appellerons «la définition Zurwitzienne du quaternion
entier » : A
Définition VIl : Un quaternion rationnel est dit « entier »,
s'il est contenu dans ce domaine holoide maximal [J]. Un
quaternion rationnel est dit « non entier », s'il n’est pas con-
tenu dans ce domaine holoide maximal [J].
~20. — Tout quaternion entier tel que ¢ sera douc de la
forme (7), ou, en remplacant p par sa valeur:

’"0

t=50 4 (o )i+ (e + )i (5 )i

On trouvera tous les quaternions entiers, en prenant pour

les quatre nombres m,, m,, m,, m;, de toutes les maniéres
possibles, des valeurs entiéres quelconques.

Si m, est pair, toutes les coordonnées du quaternion ¢

L’Enseignement mathém., 18¢ année, 1916. 5
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seront des nombres entiers. Dans ce cas, ¢ sera un quater-
nion « entier » également d’apres la:définition lipschitzienne
(v. définitions 111 et V).

~ Si, au contraire, m, est impair, les coordonnées non nulles
de ¢ seront des nombres rationnels non entiers, des fractions
de dénominateur commun 2. Dans ce cas, d’aprés la défini-
tion lipschitzienne, t serait un quaternion « non entier »,
tandis qu'en réalité, en vertu de la définition hurwitzienne
que nous adoptons, ¢ sera réputé « quaternion entier ».
+ iyt

En particulier, les 16 quaternions 5 f qui se-

raient tous des quaternions « non entiers » au sens de M. Lip-
schitz, sont en réalité des quaternions entiers, en vertu de
la définition hurwitzienne. La norme de chacun de ces 16
quaternions est égale a 1; ils constituent 16 unités dans le
domaine holoide envisagé. Celui-ci contient donc 24 unités
en tout, dont 8 seulement a coordonnées entieres. (Voir les
définitions a l'art. 10.)

21. — Désignons par [J,] I'ensemble constitué par tous les
(uaternions a coordonnées entiéres. On voit immédiatement
que [J,] est contenu entierement dans [J]. En effet, le do-
maine [J]. tout en faisant partie, lui aussi, du corps R} des
(uaternions rationnels, contient non seulement tous les élé-
ments de [J ], mais encore une infinité d’autres a coordon-
nées fractionnaires. Ainsi, [J ] n’est pas un domaine holoide
maximal.

En construisant l'arithmétique du domaine [J;], M. Lip-
schitz faisait donc l'arithnomie d'un domaine non maximal;
or, quand on fait cela, il faut s’attendre a priori a des irrégu-
larités. Qu’on me permette une analogie : Essayez de cons-
truire Parithmétique des nombres entiers ordinaires en vous
basant sur la définition suivante : « J'appelle nombre entier
tout nombre pair, et nombre non entier tous les autres. »
D’apres cette définition, les nombres impairs seraient donc
des nombres «non entiers ». En érigeant une arithmétique
basée sur cetle définition-la, vous vous apercevrez vite de
I’existence d anomalies déconcertantes. On devine méme a
Pavance que les théorémes classiques sur la divisibilité, par
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exemple, ne joueront pas toujours, si 'on fait.reposer I'arith-
nomie sur une définition pareille. Ce n'est la, bien entendu,
qu'une analogie. (La différence capitale provient de ce que
'ensemble de tous les nombres pairs ne contient pas le
nombre 1 et ne constitue pas, en conséquence, de domaine
holoide, tandis que [J,] en est un.) Aussi n’ai-je voulu, en
employant cette image, que faire sentir en quelque sorte la
raison profonde pourquoi I'on doit s’attendre, a priori, a des
anomalies, quand on entreprend de construire l'arithnomie
d’un domaine holoide non maximal.

On le vérifierait sans doute sur un cas concret, déja dans
le domaine des nombres complexes de Gauss, en faisant,
par exemple, I'arithnomie du domaine holoide

[1, 360i] = m, + 360m,: , (9)

ot m, et m, représentent des entiers quelconques. Cela
reviendrait a remplacer la définition de Gauss (définition I)
par celle-ci: Un nombre complexe @, + a,¢ sera dit entzer,
s'1l est contenu dans le domaine (9). Tous les autres com-
plexes rationnels, méme ceux a coordonnées entiéres (donc
tous ceux dont la partie imaginaire n’est pas divisible par
360), seraient réputés non entiers.

22. — Les nombres complexes de Gauss, a + bi, ou les
coordonnées a et b sont des nombres entiers ordinaires,
constituent un domaine holoide maximal; définition lip-
schitzienne et définition hurwitzienne sont équivalentes dans
ce systtme de nombres complexes; les deux conduisent au
méme ensemble de complexes entiers; voila pourquoi il est
possible, en adoptant la définition lipschitzienne, d’y con-
struire une arithnomie d'une simplicité analogue a celle de
I'arithmétique classique. On peut se demander si Gauss, en
posant cette définition I, a simplement eu de la chance, ou
s'il connaissait la raison profonde pourquoi il faut la poser?
[l est permis de croire que si Gauss avait été amené a faire
Parithmétique généralisée des quaternions « entiers », il
aurait commencé par se baser sur la définition lipschit-
zienne 11I; puis cherchant la raison d’étre des singuliéres
exceptions qu’il elt constatées, que Gauss aurait alors fait
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la découverte, dont la priorité revient a M. Hurwitz, que le
domaine holoide [J,] n'est pas maximal, qu’il est en consé-
quence préférable de fixer d’'une autre maniére la notion du
quaternion entier.

23. — En adoptant la définition Aurwitzienne VIII du qua-
ternion entier, définition qui engendre le domaine [J] de
larticle 19, on peut ériger une arithnomie des quaternions
entiers exempte de ces exceptions singuliéres que présente
la théorie lipschitzienne qui n’envisage que le domaine [J,]
de 'article 21. Reprenons les exemples cités plus haut. Les
quaternions enliers ¢« =2 et b=—=1 -+ 7, + 7, + 7, (v. art. 12)
possédent, dans le domaine [J], comme plus grand commun
diviseur 2 (ils y sont méme associés), alors que dans la
théorie lipschitzienne (domaine [J,]), ils n’en possédent aucun.

Le théoréme de décomposition (v. art. 11) reste applicable,
dans le domaine [J], a tout quaternion entier ¢, quelle que
solt sa norme, et peut s’énoncer ainsi: Soit ¢ nn quaternion
entier primitif donné, de norme

Nieg| =Pyafoc Py == P

ou les p; sont les facteurs premiers, égaux ou inégaux entre
eux, de la norme de ¢, facteurs rangés dans un ordre tout a
fait arbitraire, mais déterminé. Il est alors toujours possible
de représenter le quaternion donné ¢ comme produit de
(uaternions premiers :

C = 70 TRy« 7% w~

1.“2-1-3~ e -S

tels que N(m)=p,; N(m)=p,: ...: N(z)=p,, et cette dé-
composition est univoque. Chacun des quaternions premiers
qui figurent dans le produit se détermine de proche en proche,
sans ambiguiité.

Dans sa théorie qui n'envisage que le domaine [J,], M. Lip-
schitz est obligé d’ajouter une exception: « Tout se passe
de méme pour les quaternions entiers primitifs dontla norme
est divisible par 4, jusqu'a ce que l'ordre fixé pour les fac-
teurs de cette norme ameéne pour la premiére foisle nombre 2
on peut alors choisir arbitrairement. commne facleur premier,
I’'un quelconque des 24 quaternions premiers dont la norme
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est égale a 2; ce choix une fois fait, les quaternions pre-
miers dont les normes sont les nombres premiers suivants,
pris dans 'ordre indiqué, se déterminent de proche en proche,
sans ambigiité, jtfisqu’e‘l la fin. »

Cette singuliére exception tombe également quand on
passe du domaine [J,] au domaine holoide maximal [J].

24. — Résumons les considérations precedentes en disant:

Les nombres hypercomplexes « entiers » doivent former
non seulement un domaine holoide, mais un domaine holoide
maximal.

Définition IX : Un complexe rationnel

) PO
e =S,
A

sera dit entier, s’il est contenu dans le domaine holoide
maximal en question. Le complexe rationnel x sera dit non
entier, s'il ne fait pas partie du domaine holoide maximal en
question. (Définition hurwitzienne.) |

Cette définition hurwitzienne du nombre hypercomplexe
entier peut avoir comme conséquence qu'on.appellera « en-
tiers » méme certains complexes rationnels x a coordonnées
2y, fractionnaires. (Exemple : les quaternions.) Inversement :
il peut arriver aussi que certains nombres hypercomplexes
rationnels x ne soient pas des complexes « entiers », bien
que toutes leurs coordonnées x; soient des nombres entiers
ordinaires.

[11

25. — Pour construire Parithmétique d’un corps {R{ de
nombres hypercomplexes rationnels, il faut toujours com-
mencer par une opération préliminaire consistant a partager
ce corps ng en deux ensembles, mettant d’'un coté : les
complexes rationnels « entiers », de I'autre : les complexes
rationnels « non entiers ». Or, 1l peut se présenter la curieuse
circonstance que celte opération préliminaire ne soit pas
univoque. Nous l’avons découvert en étudiant une classe
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