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~ SUR L’ARITHMETIQUE
DES NOMBRES HYPERCOMPLEXES

‘PAR

L.-G. DuPasquier (Neuchatel).

SOMMAIRE :

I. Le nombre complexe « entier » d’aprés Gauss et le quaternion « entier »
d’aprés M. Lipschitz.

IT. Propriétés caractéristiques des nombres entiers; le domaine holoide
maximal ; définition lipschitzienne et définition hurwitzienne du
nombre hypercomplexe « entier ».

III. La définition hurwitzienne dans le cas des tettarions.

IV. Un exemple particulier de corps de numbres sans domaine holoide
maximal.

V. Quelques singularités de l'arithmétique généralisée dans ce domaine
holoide non maximal.

Méthodes propres a faire tomber ces singularités; « nombres
idéaux » de Kummer et théorie des « idéaux » de Dedekind.

1. — En construisant une théorie des nombres ou arith-
el dont les élé 1 t 1 br
nomie! dont les éléments sont non seulement les nombres
entiers ordinaires, mais les nombres entiers dits imagi-
naires, ou complexes, de la forme a, + a,7, ou a, et a,
représentent des nombres réels quelconques, tandis que
est un symbole défini par I'équation

9
“

2 =—1, ce qui fait écrire i=y—1,

! Le néologisme d’arithnomie est proposé par M. A. AuBrRY a Dijon; c’est une abré-
viation d’«arithmonomie » qui est synonyme d’« arithmologie », de « théorie des nombres »,
ou d’« arithmétique généralisée». (En grec, « arithmos » = nombre ; « nomos» = loi; d'oi
« arithmonomie » ; Uarithnomie signifie donc : la science des lois qui régissent les nombres.)

L’Enscignement mathém., 18¢ année; 1916. 14
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en créant cette arithmétique généralisée, dis-je, Gauss a fait
ceuvre de génie, car cette création hardie ouvrait a la théorie
des nombres des horizons tout nouveaux et un champ de
recherches d'une étendue insoupconnée.

Cette arithmétique généralisée due a Gauss repose sur
une définition qui semble se présenter d’elle-méme a l'esprit
et que voiclt:

Définition I': Soit @ =— a, + a,¢ un nombre complexe. ou
a, et a, représentent deux nombres réels dits coordonnéees
du nombre complexe «. Nous appellerons @ «un nombre
complexe entier», si ses deux coordonnées, «, et «,, sont
des nombres entiers ordinaires positifs, nuls ou négatifs :
nous appellerons « «un nombre complexe non -entier», si
I'une au moins de ses deux coordonnées est fractionnaire ou
irrationnelle.

Par abréviation, nous dirons souvent, dans la suite, entier
complexe au lieu de « nombre complexe entier ».

2. — L'arithmétique généralisée érigée par Gauss dans le
domaine de ces nombres complexes et basée sur la défini-
tion | ci-dessus, présente des analogies frappantes avec
Parithmétique ordinaire. On v retrouve, entre autres, les
nombres complexes entiers {rréductibles jouant le méme
role que les nombres premiers dans 'arithmétique classique.
Nous les appellerons souvent, pour abréger, nombres pre-
miers complexes. On sait que ce sont: [°les nombres pre-
miers ordinaires de la forme p = 4n + 3, a savoir

3 7 11, 19, 23, 3l 43, 47, 39,

L] ’

dont la norme est p?; 2° le nombre 1| 4 ¢ dont la norme est
égale a 2; 3° les nombres complexes entiers r 4 sz dont la

norme, 7?4+ s*, est un nombre premier ordinaire p de la

forme 4n + 1, par exemple

| -2, 2 40, 243(, 342, 144, 441, 245, 52,
160, 1 —6i, %45, 544,

On retrouve ensuite, dans l'arithmétique généralisée de

Gauss, la décomposition, toujours possible et toujours uni-
voque, de tout entier complexe donné en ses facteurs pre-
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miers. On y retrouve encore le plus grand commun diviseur
et le plus petit commun multiple de deux (ou, plus généra-
lement, de n) entiers complexes donnés; I'analogue de l'algo-
rithme d’Euclide permettant de déterminer ce plus grand
commun diviseur par un nombre fini d’opérations ration-
nelles. On y trouve aussi toute la théorie des congruences;
on y retrouve I'analogue du théoréme de Fermat, 'analogue
du théoréme de Wilson, etc.

3. — En 1886, M. Lipschitz publiait le résultat de ses
recherches sur la transformation, par des substitutions
réelles, d’'une somme de deux carrés en elle-méme?!. En
partant d’un point de vue trésjoriginal et tout a fait per-
sonnel, M. Lipschitz découvrait & nouveau le calcul des
nombres complexes de la forme «, + «,7, ou 2= — 1. 1l
reconstruisait alors 'arithmétique généralisée ou arithnomie
de ces nombres complexes, comme Gauss I'avait déja fait
avant lui, en prenant aussi comme éléments les nombres
complexes entiers tels qu’ils résultent de la définition I ci-
dessus. Quoique son point de départ soit tout autre que celui
de Gauss, M. Lipschitz arrive au méme résultat: a la méme
arithnomie, en se basant sur la méme définition.

4. — Pour préparer la généralisation a d’autres systémes
de nombres complexes, nous introduirons dés maintenant
un nouveau symbole e; en posant e, = 1; écrivant alors e, a
la place de ¢, de sorte que

2 ey " P
el___—l___——e0 ,

on voit que les nombres complexes de Gauss peuvent s’écrire

sous la forme
0;

1
<
a = a,e, + a, e, = Z a ey
A

ou les e, sont des symboles dits «unités relatives du sys-

v Untersuchungen itber die Summen von Quadraten. Bonn, 1886. Voir la traduction francaise
publiée par J. Molk dans le « Journal de mathématiques pures et appliquées» fondé par
Liouville, 1Ve série, tome 2¢ (année 1886), p. 373-439 : Recherches sur la transformation , par
des substitutions reelles, d’une somme de deux ow de trois carreés en elle-méme.
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téme de nombres complexes », symboles obéissant, par défi-
nition, aux relations

Nous dirons que les nombres complexes de Gauss forment
«un systeme de nombres complexes 4 2 coordonnées indé-
pendantes », ou «a 2 unités relatives », systéme entiére-
ment défini par les conventions sur 1'égalité, 'addition et
par les relations (1) qui réglent la multiplication. On peut
ranger celles-ci en un tableau de la maniére suivante :

¢ et k& représentant 'un des nombres 0 ou 1, le produit e,.e,
se trouve dans la ligne (horizontale) ayant a gauche e, et
dans la colonne (verticale) portant en haut e, .

5. — Cherchant a étendre ses résultats a la transforma-
tion, par des substitutions réelles, d’'une somme de trois
carrés en elleeméme, M. Lipschitz, partant du méme point
de vue original, retrouva le calcul des quaternions découvert
avant lui, en 1843, par W. R. Hamilton.

Voici, a 'intention des lecteurs non versés dans la théorie
des quaternions, les principes fondamentaux de ce calcul
exposés dans un langage purement arithmétique.

On sait que les gquaternions sont des nombres hyper-
complexes a 4 coordonnées indépendantes, tel par exemple

a=a, + a1, + ayi, + azi, ,

ou a,, a,, a,, a, représentent qualre nombres réels dits les
coordonnées' du quatérnion a, et i, 7,, 73, trois symboles

1 Nous distinguons entre « coordonnées» et « composantes» d’'un nombre complexe (ou
hypercomplexe). Par composantes du quaternion a, nous entendons les produits a, i ; ayt,;

1’
ayi,. Comparez la note suivante.
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dits les unités relatives, obéissant aux relations suivantes:

2 .2 2 .
1'1%_-‘12:13:-—1 (2)

, 1

Ig-ly = ¥, gl = — lylg = 0

Deux quaternions sont dits égaur, si les 4 coordonnées de
'un sont égales, .respectivement, aux coordonnées corres-
pondantes de l'autre.

Désignons par & le quaternion

b= b, + byi, + byi, + byi, ;

I'égalité entre quaternions @ == b est alors équivalente aux
quatre égalités simultanées

ak:b)\ A=0,1,2,3) .

L’addition, la soustraction et la multiplication des guater-
nions se font d’apres les régles ordinaires de 'algébre, les
symboles 7; se composant conformément aux relations (2).
La principale différence entre l'algébre classique el celle
des quaternions provient de ce que la multiplication des
quaternions n’est pas commutative en général; en effet,
a.b % b.a, comme on le voit en calculant directement ces
deux produits, s1 @ et b désignent, comme ci-dessus, deux
quaternions quelconques. Donc, la valeur d’un produit de
quaternions dépend, en général, de l'ordre de succession
des facteurs de ce produit. Il s'ensuit que la division n’est
en général pas univoque dans ce domaine; il faut distinguer
entre une « division a gauche » et une « division a droite »,
suivant que, les quaternions « et b étant donnés, on cherche
le quaternion

Y =00+t b ol + 03l telque  a=p.b,
ou le quaternion
X=X, 4 X0 - a5l x40, tel que &= h.x .

6. — Par analogie avec la théorie des nombres compléxes
de Gauss, on pose les définitions suivantes :

Le quaternion a est dit réel, si ses trois derniéres coor-
données, a,, a,. a,, sont nulles.
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A tout quaternion @ correspond un quaternion

l

r . .
a _(lo—(llll——(l2l2-—a3

dit conjugué de a. Le produit d’'un quaternion quelconque «
et de son conjugué a’ est toujours réel et s’appelle «la norme
du quaternion @ ». La norme de «, égale du reste a la norme
de a’, est donc définie par I’équation ‘

- . 2 2 2 2
N (a) :a,a’:a’,a:ao+ a + a, + a, .

Ce nombre réel n’est nul que dans le cas ot @« = 0. Si
a = 0, on entend par «linverse de a» le quaternion a—!
ainsi défini :

a"lzi
a

il satisfait aux relations a.a=!' — a—t.a = 1.

On vérifie sans peine que le conjugué du produit de plu-
sieurs quaternions donnés est égal au produit des conjugués
des facteurs pris dans l'ordre renversé; en formule :

(a.b) = b".a" .

Il s’ensuit le théoréme fondamental que la norme d'un pro-
duit de quaternions est égale au produit des normes des

facteurs :
N(a.b) = N(a).N(D) .

7. — Puisqu’en intervertissant l'ordre des facteurs, on
change le produit, il exislte en général deux quotients diffé-
rents du quaternion donné a par le quaternion donné b ou
’on suppose b = 0, a savoir :

1° le quaternion b—'.a qui est «le quotient a droite de «a
par b»; c’est la solution x de I'équation @ = b..x;

2° le quaternion a.b—"' qui est «le quotient a gauche de a
par b»; c’estla solution ¥ de I'équation @ = y.5b. On ne peut
donc pas, en général, employer pour la division le signe

. . (l el . _ . % . .
ordinaire @:b ou ;. Sauf définition spéciale, ces signes

n'ont de sens que si les deux quaternions « et b' sont com-
mulables, c’est-a-dire si @.b' = 0'. a, ce qui n’est pas le cas
en général.
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Dans le domaine des quaternions, il y a donc lieu de dis-
tinguer deux arithmétiques se développant parallelement
'une a 'autre, mais différentes I'une de 'autre : une «arith-
métique a gauche » et une «arithmétique a droite ». Elles se
pénétrent du reste souvent l'une l'autre, engendrant des
analogies et des contrastes frappants avec l'arithmétique
classique.

8. — Pour nous conformer aux notations générales utiles
plus tard, nous introduirons de nouveau les symboles ¢, dits
unités relatives, en posant

=1, A= 4 s 8y = 1 , e, Iy -

Tout quaternion x s’écrit alors
0..3

X == Ly By X538 + Fyy - T8y = 2 Xy €y
A

Nous dirons que les quaternions forment « un systéeme de
nombres hypercomplexes a 4 coordonnées indépendantes »,
ou «a 4 unités relatives », systeme qui sera défini par les
conventions se rapporlant a I'égalité, a l'addition et par les
relations suivantes qui réglent la multiplication:

2 2 2 2
€y = €y ; e, =e¢,=¢€ == — ¢, 3)
81.92:——92_61:83 " 6’2.(’3:_- 63.02261 5 03.(’1:—— (’1.83202

Ces relations se trouvent condensées dans le tableau sui-
vant :

‘ € l al ‘ e, | e
€ € €y €9 €3 ;
€ € - ’60 €3 — 0
ol o |—al—al o
—;:: €3 €s i — & — €

Représentant par ¢ et par # 'un des nombres 0, 1, 2, 3, on
trouvera la valeur du produite;.e, al'intersection de la ligne
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(horizontale) portant & gauche e, et de la colonne (verticale)
portant en haut e, .

- Définition Il : Un quaternion
U

42

B
I
~ | \/J:w

est dit rationnel, si chacune de ses 4 coordonnées a, est un

nombre rationnel quelconque, entier ou fractionnaire.

L’ensemble de tous les quaternions rationnels forme alors
un « corps de quaternions» ou « domaine de rationalité » ;
c'est-a-dire que les quaternions rationnels se reproduisent
par addition, soustraction, multiplication et division; en
d’autres termes encore : la somme, la différence, les produits
et les quotients de deux quaternions rationnels sont toujours
de nouveau des quaternions rationnels.
~G'est exclusivement de quaternions rationnels que nous
parlerons dans la suite.

9. — Apreés cette digression sur les quaternions, revenons
au memoire de M. Lipschitz cité plus haut.

Ayant retrouvé, par une voie toute personnelle le calcul
des quaternions, M. Lipschitz érige une nouvelle arithmé-
tique généralisée dont les éléments sont les quaternions en-
tiers. Cette arithnomie des quaternions, érigée par M. Lip-
schitz, repose sur une définition qui se présente d’elle-méme
a l'esprit et qui semble une extension naturelle de la défini-
tion I ci-dessus, donnée déja par Gauss pour les nombres
complexes ordinaires.

Nous appellerons lipschitzienne cette définition du qua-
ternion entier, par opposition a la définition Ahurwilzienne
que nous introduirons plus bas et que nous démontrerons
étre préférable. Voici la définition «lipschitzienne » du qua-
ternion entier: ~

Définitron IIl: Un quaternion rationnel a = «, 4+ a,z,
+ a,i, + a;i; est dit entier, si ses coordonnées «; (ou
1 =20, 1, 2, 3) sont toutes quatre des nombres entiers ordi-
naires, positifs, nuls ou négatifs.

Le quaternion rationnel a sera dit non entier, si I'une au
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moins de ses quatre coordonnées est un nombre fraction-
naire. : ,

10. — L’arithnomie des quaternions telle que l'a érigée
M. Lipschitz présente des exceptions étonnantes aux regles
générales; on dirait presque des anomalies. Nous allons en
citer deux exemples. A cet effet, il est nécessaire de poser
encore quelques définitions.

Le quaternion entier a est dit « divisible a droite [resp. @
gauche] par le quaternion entier 0 », s'il existe un quaternion
entier c¢ vérifiant I'égalité @ = c¢.b [vesp. a = b.c]. Dans ce
cas, on dit-aussi que « b est un diviseur a droite [resp. a
gauchel de a », ou encore: que « b est contenu, ou entre
dans @, comme diviseur a droite [resp. a gauche]». D'aprés
cela, le quaternion entier et non nul & sera un diviseur a
droite de @, si @.b7"' est un quaternion entier.

Pour que le quaternion entier ¢ soit contenu comme divi-
seur a droite dans n'importe quel quaternion entier, il faut
que «' soit entier; alorse est aussi contenu comme diviseur
4 gauche dans tout quaternion entier. Un tel quaternion e
est dit «une wunité». La condition nécessaire el suffisante
pour que e soit une unité est que N(e)=— 1. Il existe, dans le
domaine des quaternions entiers au sens de M. Lipschitz,
8 unités qui sont &= 1, =7, 4+=1,, == i;.

Deux qualernions enliers sont dits associés a droite (resp
a gauche), s'ils ne different 'un de 'autre que par un fac-
teur unité a droite (resp. a gauche); ainsi, a désignant un
quaternion entier, +a, *+a.i,, +a.l,, = a.i, sont «associés
a droite», et = a, 4= i,.a, = i,.a, + i,.a sont « associés a
gauche ». Dans les recherches sur la divisibilité, des qua-
ternions associés sont équivalents, c’esl-a-dire qu’ils peuvent
se remplacer I'un 'autre (comme c’est le cas dans la théorie
classique des nombres et dans l'arithnomie des « complexes
entiers » de Gauss).

On définit le quaternion primaire de facon a ce qu'il soit
toujours déterminé univoquement dans le groupe des 8 qua--
ternions associés entre eux; dans les théorémes de divisi-
bilité, on peut alors se borner a la considération des qua-
ternions primaires.
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Enfin, un quaternion entier a est primitif (ou proprement
dil), si ses 4 coordonnées @, n’ont pas d’autre commun divi-
seur que 1; dans le cas contraire, @ est un quaternion non
primitif (ou improprement dil); exemple : 9 + 37, + 6, + ni,
est primitif dés que sa derniére coordonnée, n, n’est pas divi-
sible par 3, mais non primitif, si n est multiple de 3.

11. — Malgré la non-commutativité de la multiplication,
on réussit a définir le quaternion entier irréductible, ou qua-
ternton premier, 'analogue du nombre premier de Darith-
métique classique. Pour qu’'un quaternion entier p soit pre-
mier, il faut et il suffit que sa norme N(p) soitt un nombre
premier ordinaire. 11 existe en tout p 4+ 1 quaternions pre-
miers, tous de méme norme p, essentiellement différents
entre eux, c’est-a-dire non associés, par exemple tous pri-
maires. M. Lipschitz démontre ensuite qu’on peut toujours
mettre un quaternion entier primitif donné, ¢, sous forme
d’un produit de quaternions premiers, en imposant a ces
quaternions de se suivre, de droite a gauche, dans un ordre
tel que leurs normes suivent un ordre fixé arbitrairement
pour les facteurs premiers de lanorme du quaternion donné c.
Une fois qu’on a fixé cet ordre, chacun des quaternions pre-
miers qui figurent dans le produit est déterminé, de proche
en proche, sans ambiguité, a condition toutefois que N{c)
soit un nombre impair ou le double d’un nombre impair.

Ainsi, ladécomposition du quaternion entier primitifdonné
¢ est univoque deés que, ayant décomposé sa norme N(c) en
ses facteurs premiers, par exemple N(¢c)=p.r.s..., on a
arrété ’ordre de succession de ces facteurs premiers p, r, s ...
qui peuvent naturellement étre égaux ou inégaux entre eux.

Mais il y a une curieuse exception : ¢’est quand la norme
du quaternion donné c¢ est divisible par 4; dans ce cus, la
décomposition de ¢, quand bien méme on a arrété l'ordre
de succession des facteurs premiers p, r, s, ..., n'est plus
univoque, mais possible de 24 maniéeres différentes! On peut
bien dire que c’est la une anomalie.

12. — On en trouve aussi dans la théorie du plus grand
commun diviseur. Deux quaternions entiers donnés, a et 0,
ont un plus grand commun diviseur différent d’'une unité
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quand leurs normes, N(a) et N(b), ne sont pas deux nombres
premiers entre eux. Mais ici encore, il y a de curieuses
exceptions, des anomalies étonnantes qui paraissent tout a
fait inexplicables, déconcertantes méme. :

En prenant, par exemple, a =2, b=141, 4+ i, + I3, ON
a N(a)=N(b)=4 et I'on s’attend a ce que a et b possédent
«un plus grand commun diviseur a droite », disons ¢, de
facon a ce qu'on ait simultanément

2:]).8; l+i1+1'2+i3:p1.5,

ou p et p, désigneraient certains quaternions entiers. (Pour
donner un exemple concret, nous prenons « I'arithnomie a
droite ».) Les égalités

2= (1 — ). (1 4+ i) = (1 — i) 1 4 iy = (1 — i) . (L =+ i)
1 p iy oy iy = (A ) (g == (i) (L) = (1 i) (1 47y

montrent bien que les deux quaternions en question pos-
sédent trois « commuus diviseurs a droite », a savoir :

o, =1 44 , 0, =1 4+ 1, , 6, =1 41, .

Raison de plus, semble-t-il, pour qu’il existe «un plus
grand commun diviseur a droite ». d, lequel devrait étre un
commun multiple des trois diviseurs d,, J,, J,, en sorte
qu’on ait 0 =d,.d, = d,.0,—=d,.d,, ou d,, d,, d, désigneraient
certains quaternions entiers. Or, il n’en est rien.

On démontre trés facilement, en prenant les normes, que
les trois dernieres équations sont en contradiclion avec
2=pd. 1+, + 7, + {,=p,.d. Voila donc deux quaternions
entiers a et b de méme norme, possédant trois communs divi-
seurs différents (ces diviseurs sont méme tous trois des qua-
ternions premiers), mais n’ayant, malgré cela, pas de plus
grand commun diviseur, au sens habituel de ce terme. On
peut bien dire, de nouveau, que ¢’est la une anomalie.

La raison profonde de ces anomalies a été trouvée et indi-
quée pour la premiére fois par M. 4. Hurwitz a Zurich. Elle
tient a la définition méme du quaternion « entier », comme
nous allons le montrer.
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