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SUR L'ARITHMÉTIQUE
DES NOMBRES HYPERCOMPLEXES

PAR

L.-G. DuPasquier (Neuchâtel).

Sommaire :

I. Le nombre complexe « entier » d'après Gauss et le quaternion « entier »

d'après M. Lipschitz.
II. Propriétés caractéristiques des nombres entiers ; le domaine holoïde

maximal ; définition lipschitzienne et définition hurwitzienne du
nombre hypercomplexe « entier ».

III. La définition hurwitzienne dans le cas des tettarions.
IY. Un exemple particulier de corps de nombres sans domaine holoïde

maximal.
Y. Quelques singularités de l'arithmétique généralisée dans ce domaine

holoïde non maximal.
Méthodes propres à faire tomber ces singularités ; « nombres

idéaux » de Kummer et théorie des « idéaux » de Dedekind.

I

1. — En construisant une théorie cles nombres ou cirit
lino mie 1 dont les éléments sont non seulement les nombres
entiers ordinaires, mais les nombres entiers dits
imaginaires, ou complexes, de la forme a0 + ax G où ciQ et ai
représentent des nombres réels quelconques, tandis que i
est un symbole défini par l'équation

i2 — — 1 ce qui fait écrire i — j/— 1

1 Le néologisme d'arithnomie est proposé par M. A. Aubry à Dijon ; c'est une
abréviation d'« arithmonomie » qui est synonyme d'« arithmologie », de « théorie des nombres »,
ou d'« arithmétique généralisée». (En grec, « arithmos » nombre; « nomos » loi; d'où
« arithmonomie » ; Yafûhnomie signifie donc : la science des lois qui régissent les nombres.)

L'Enseignement mathém., 18e année; 1916. 14
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en créant cette arithmétique généralisée, dis-je, Gauss a fait
œuvre de génie, car cette création hardie ouvrait à la théorie
des nombres des horizons tout nouveaux et un champ de
recherches d'une étendue insoupçonnée.

Cette arithmétique généralisée due à Gauss repose sur
une définition qui semble se présenter d'elle-même à l'esprit
et que voici :

Définition I : Soit a a0 -f- cp i un nombre complexe, où

a0 et cp représentent deux nombres réels dits coordonnées
du nombre complexe a. Nous appellerons a « un nombre
complexe entier », si ses deux coordonnées, aQ et cp, sont
des nombres entiers ordinaires positifs, nuls ou négatifs1 :

nous appellerons a «un nombre complexe non -entier », si
l'une au moins de ses deux coordonnées est fractionnaire ou
irrationnelle.

Par abréviation, nous dirons souvent, dans la suite, entier
complexe au lieu de « nombre complexe entier».

2. — L'arithmétique généralisée érigée par Gauss dans le
domaine de ces nombres complexes et basée sur la définition

J ci-dessus, présente des analogies frappantes avec
l'arithmétique ordinaire. On y retrouve, entre autres, les
nombres complexes entiers irréductibles jouant le même
rôle que les nombres premiers dans l'arithmétique classique.
Nous les appellerons souvent, pour abréger, nombres
premiers complexes. On sait que ce sont : L° les nombres
premiers ordinaires de la forme p 4n + 3, à savoir

3 7 11 19 23 31 43 47 59

dont la norme est p-; 2° le nombre 1 + i dont la norme est
égale à 2 ; 3° les nombres complexes entiers r -f- si dont la

norme, r2 + v2, est un nombre premier ordinaire p de la

forme 4n + i, par exemple :

1 —24 2 -f- i 2 —j— 3£ 3 4* 2 i 1 —{— 4 z 4 —j— i 2 -j- 5 i 5 -f- 2 i

1 —}— 61 J — 61 -± —j— o i 5 —j— -ii,

On retrouve ensuite, dans l'arithmétique généralisée de
Gauss, la décomposition, toujours possible et toujours uni-
voque, de tout entier complexe donné en ses facteurs pre-



NOMBRES HYPERCOMPLEXES 203

miers. On y retrouve encore le plus grand commun diviseur
et le plus petit commun multiple de deux (ou, plus généralement,

de n) entiers complexes donnés ; l'analogue de
l'algorithme à'Euclide permettant de déterminer ce plus grand
commun diviseur par un nombre fini d'opérations rationnelles.

On y trouve aussi toute la théorie des congruences ;

on y retrouve l'analogue du théorème de Fermât, l'analogue
du théorème de Wilson, etc.

3. — En 1886, M. Lipschitz publiait le résultat de ses
recherches sur la transformation, par des substitutions
réelles, d'une somme de deux carrés en elle-même1. En

partant d'un point de vue très -original et tout à fait
personnel, M. Lipschitz découvrait à nouveau le calcul des
nombres complexes de la forme aQ -f ap, où i2 — 1. 11

reconstruisait alors l'arithmétique généralisée ou arithnomie
de ces nombres complexes, comme Gauss l'avait déjà fait
avant lui, en prenant aussi comme éléments les nombres
complexes entiers tels qu'ils résultent de la définition 1 ci-
dessus. Quoique son point de départ soit tout autre que celui
de Gauss, M. Lipschitz arrive au même résultat : à la même
arithnomie, en se basant sur la même définition.

4. — Pour préparer la généralisation à d'autres systèmes
de nombres complexes, nous introduirons dès maintenant
un nouveau symbole e0 en posant e0 i ; écrivant alors ei à

la place de i, de sorte que

e* — 1 - e0

on voit que les nombres complexes de Gauss peuvent s'écrire
sous la forme

0; 1

a a0e0+ «, <>, ffXeX '

X

où les e^ sont des symboles dits a unités relatives du sys-

1 Untersuchungen über die Summen von Quadraten. Bonn, 1886. Voir la traduction française
publiée par J. Molk dans le « Journal de mathématiques pures et appliquées » fondé par
Liouville, IVe série, tome 2<> (année 1886), p. 373-439 : Recherches sur la transformation par
des substitutions réelles, d'une somme de deux ou de trois carrés en elle-mêm e.



204 L.-G. DUPA S QU 1ER

tème de nombres complexes », symboles obéissant, par
définition, aux relations

e0 e0 ' e\ — ^0 ' eo-ei — ei-eo i1)

Nous dirons que les nombres complexes de Gauss forment
« un système de nombres complexes à 2 coordonnées
indépendantes », ou « à 2 unités relatives », système entièrement

défini par les conventions sur l'égalité, l'addition et

par les relations (1) qui règlent la multiplication. On peut
ranger celles-ci en un tableau de la manière suivante :

i et k représentant l'un des nombres 0 ou 1, le produit e.. ek

se trouve dans la ligne (horizontale) ayant à gauche e. et
dans la colonne (verticale) portant en haut ek.

5. — Cherchant à étendre ses résultats à la transformation,

par des substitutions réelles, d'une somme de trois
carrés en elle-même, M. Lipschitz, partant du même point
de vue original, retrouva le calcul des quaternions découvert
avant lui, en 1843, par W. R. Hamilton.

Voici, à l'intention des lecteurs non versés dans la théorie
des quaternions, les principes fondamentaux de ce calcul
exposés dans un langage purement arithmétique.

On sait que les quaternions sont des nombres hyper-
complexes à 4 coordonnées indépendantes, tel par exemple

ci — a() + ar i1 -j- «2 h + a?, h »

où a0, ail #2, a?> représentent quatre nombres réels dits les
coordonnées1 du quaternion et ii, /2, /3, trois symboles

1 Nous distinguons entre « coordonnées » et « composantes » d'un nombre complexe (ou
hypercomplexe). Par composantes du quaternion a, nous entendons les produits atit;
azh' Comparez la note suivante.
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dits les unités relatives, obéissant aux relations suivantes :

.2 .2 .2
^*i li lz

h'h — h-h — h > h'h — h-h h > V'i
Deux quaternions sont dits égaux, si les 4 coordonnées de

l'un sont égales,.respectivement, aux coordonnées
correspondantes de l'autre.

Désignons par b le quaternion
b — bQ -f- b1i1 b2i2 -f- b?j ?3 ;

l'égalité entre quaternions a b est alors équivalente aux
quatre égalités simultanées

b^ (31 0,1,2.3).
L'addition, la soustraction et la multiplication des quaternions

se font d'après les règles ordinaires de l'algèbre, les
symboles i-k se composant conformément aux relations (2).

La principale différence entre l'algèbre classique et celle
des quaternions provient de ce que la multiplication des

quaternions n'est pas commutative en général; en effet,
a.b b. a, comme on le voit en calculant directement ces
deux produits, si a et b désignent, comme ci-dessus, deux
quaternions quelconques. Donc, la valeur d'un produit de

quaternions dépend, en général, de l'ordre de succession
des facteurs de ce produit. Il s'ensuit que la division n'est
en général pas univoque dans ce domaine; il faut distinguer
entre une « division à gauche » et une « division à droite »,
suivant que, les quaternions a et b étant donnés, on cherche
le quaternion

y Jo + Ji h + j2 h + Ts h tel que a — y-h »

ou le quaternion

x — xQ -}- Xj -f- x0 i2 -f- x3 i3 tel que a — b .x

6. — Par analogie avec la théorie des nombres complexes
de Gauss, on pose les définitions suivantes :

Le quaternion a est dit réel, si ses trois dernières
coordonnées, aA, a2, a3, sont nulles.

• • _ •

(2)

h h — ]2 i
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A tout quaternion a correspond un quaternion

ar — — o11\ — a2 i2 — a3 i3

dit conjugué de a. Le produit d'un quaternion quelconque a
et de son conjugué ctf est toujours réel et s'appelle « la norme
du quaternion a ». La norme de a, égale du reste à la norme
de et est donc définie par l'équation

N (a) ~ a.a' — a' .a — aQ -f a\ + a\ + a\

Ce nombre réel n'est nul c[ue dans le cas où a 0. Si

cl 0, on entend par «.Y inverse de a » le quaternion a~1

ainsi défini :

il satisfait aux relations a .a~~x — a~x.ct 1.

On vérifie sans peine que le conjugué du produit de
plusieurs quaternions donnés est égal au produit des conjugués
des facteurs pris dans l'ordre renversé; en formule :

(a. b)' — h' .a'

Il s'ensuit le théorème fondamental que la norme d'un produit

de quaternions est égale au produit des normes des
facteurs :

N (a.b) — N(a).N(/>)

7. — Puisqu'en intervertissant l'ordre des facteurs, on
change le produit, il exisle en général deux quotients différents

du quaternion donné a par le quaternion donné b où
l'on suppose b ^ 0, à savoir :

1° le quaternion b~~l.a qui est «le quotient ci droite de a

par b » ; c'est la solution x de l'équation a b .x ;

2° le quaternion a.b~x qui est «le quotient à gauche de a

par b » ; c'est la solution y de l'équation a— y. b. On ne peut
donc pas, en général,, employer pour la division le signe

ordinaire a : b ou ^ Sauf définition spéciale, ces signes

n'ont de sens que si les deux quaternions a et b' sont com-
mutableSy c'est-à-dire si ct.b' b'. a, ce qui n'est pas le cas
en général.
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Dans le domaine des quaternions, il y a donc lieu de

distinguer deux arithmétiques se développant parallèlement
l'une à l'autre, mais différentes l'une de l'autre : une «

arithmétique à gauche » et une « arithmétique à droite ». Elles se

pénètrent du reste souvent l'une l'autre, engendrant des

analogies et des contrastes frappants avec l'arithmétique
classique.

8. — Pour nous conformer aux notations générales utiles
plus tard, nous introduirons de nouveau les symboles e^ dits
unités relatives, en posant

e0 — 1 e1 i1 e2 — i2 e3 — i3

Tout quaternion x s'écrit alors
0. .3

,x- ,r0 e0 + ,r1 e, + x2 e2 -j- .r3 =2 xX '

X

Nous dirons que les quaternions forment « un système de

nombres hypercomplexes à 4 coordonnées indépendantes »,

ou « à 4 unités relatives », système qui sera défini par les
conventions se rapportant à l'égalité, à l'addition et par les
relations suivantes qui règlent la multiplication :

2 2 2 2

co - ^ ^
^2,ei — e3 • e2'e?, ez-e2-— 61 ' eZ'ei — e\-ez — e2

Ces relations se trouvent condensées dans le tableau
suivant :

Représentant par i et par k l'un des nombres 0, 1, 2, 3, on
trouvera la valeur du produit e.. ek à l'intersection de la ligne
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(horizontale) portant à gauche e^, et de la colonne (verticale)
portant en haut ek.

Définition II : Un quaternion

0. .3

a=^2iaxex
À

est dit rationnel, si chacune de ses 4 coordonnées a^ est un
nombre rationnel quelconque, entier ou fractionnaire.

L'ensemble de tous les quaternions rationnels forme alors
un « corps de quaternions » ou « domaine de rationalité » ;

c'est-à-dire que les quaternions rationnels se reproduisent
par addition, soustraction, multiplication et division; en
d'autres termes encore : la somme, la différence, les produits
et les quotients de deux quaternions rationnels sont toujours
de nouveau des quaternions rationnels.

C'est exclusivement de quaternions rationnels que nous
parlerons dans la suite.

9. — Après cette digression sur les quaternions, revenons
au mémoire de M. Lipschitz cité plus haut.

Ayant retrouvé, par une voie toute personnelle, le calcul
des quaternions, M. Lipschitz érige une nouvelle arithmétique

généralisée dont les éléments sont les quaternions
entiers. Cette arithnomie des quaternions, érigée par M.
Lipschitzrepose sur une définition qui se présente d'elle-même
à l'esprit et qui semble une extension naturelle de la définition

I ci-dessus, donnée déjà par Gauss pour les nombres
complexes ordinaires.

Nous appellerons lipschitzienne cette définition du
quaternion entier, par opposition à la définition hurwitzienne
que nous introduirons plus bas et que nous démontrerons
être préférable. Voici la définition «lipschitzienne» du
quaternion entier :

Définition III: Un quaternion rationnel a a0 + afix
a^ic2 -f- a3is est dit entier, si ses coordonnées a-A (où

a 0, 1, 2, 3) sont toutes quatre des nombres entiers
ordinaires, positifs, nuls ou négatifs.

Le quaternion rationnel a sera dit non entier, si l'une au
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moins de ses quatre coordonnées est un nombre factionnaire.

10. — L'arithnomie des quaternions telle que l'a érigée
M. Lipschitz présente des exceptions étonnantes aux règles
générales; on dirait presque des anomalies. Nous allons en
citer deux exemples. A cet effet, il est nécessaire de poser
encore quelques définitions.

Le quaternion entier a est dit « divisible à droite [resp. à

gauche] par le quaternion entier b », s'il existe un quaternion
entier c vérifiant l'égalité a~c.b [resp. a b.c\. Dans ce

cas, on dit aussi que « b est un diviseur a droite [resp. à

gauche] de a », ou encore : que « b est contenu, ou entre
dans a, comme diviseur à droite [resp. à gauche] ». D'après
cela, le quaternion entier et non nul b sera un diviseur à

droite de a, si a.b~x est un quaternion entier.
Pour que le quaternion entier e soit contenu comme diviseur

à droite dans n'importe quel quaternion entier, il laut
que e-1 soit entier; alors e est aussi contenu comme diviseur
à gauche dans tout quaternion entier. Un tel quaternion e

est dit «une unité y). La condition nécessaire et suffisante
pour que s soit une unité est que N(e) 1. Il existe, dans le
domaine des quaternions entiers au sens de M. Lipschitz,
8 unités qui sont ± 1, zt ix, zhh, zh h •

Deux quaternions entiers sont dits associés et droite (resp.
à gauche), s'ils ne diffèrent l'un de l'autre que par un
facteur unité à droile (resp. à gauche); ainsi, a désignant un
quaternion entier, ziz a, ±a.ix, ±a.i%, ±a.iz sont «associés
à droite », et ± ax -h- i\.a, -h i^.a\ ztz is.a sont « associés à

gauche ». Dans les recherches sur la divisibilité, des
quaternions associés sont équivalents, c'est-à-dire qu'ils peuvent
se remplacer l'un l'autre (comme c'est le cas dans la théorie
classique des nombres et dans l'arithnomie des « complexes
entiers » de Gauss).

On définit le quaternion primaire de façon à ce qu'il soit
toujours déterminé univoquement dans le groupe des 8
quaternions associés entre eux; dans les théorèmes de divisibilité,

on peut alors se borner à la considération des
quaternions primaires.



210 L.-G. DUPASQUIER
Enfin, un quaternion entier a est primitif (ou proprement

dit), si ses 4 coordonnées a^ n'ont pas d'autre commun diviseur

que 1; dans le cas contraire, a est un quaternion non
primitif (ou improprement dit) ; exemple : 9 + 3^ -f- + ni3
estprimitif dès que sa dernière coordonnée, n n'est pas
divisible par 3, mais non primitif, si n est multiple de 3.

11. — Malgré la non-commutativité de la multiplication,
on réussit à définir le quaternion entier irréductible, ou
quaternion premier, l'analogue du nombre premier de
l'arithmétique classique. Pour qu'un quaternion entier p soit
premier, il faut et il suffit que sa norme N(p) soit un nombre
premier ordinaire. Il existe en tout p -f- 1 quaternions
premiers, tous de même norme p, essentiellement différents
entre eux, c'est-à-dire non associés, par exemple tous
primaires. M. Lipschitz démontre ensuite qu'on peut toujours
mettre un quaternion entier primitif donné, c, sous iorme
d'un produit de quaternions premiers, en imposant à ces

quaternions de se suivre, de droite à gauche, dans un ordre
tel que leurs normes suivent un ordre fixé arbitrairement
pour les facteurs premiers de la norme du quaternion donné c.
Une fois qu'on a fixé cet ordre, chacun des quaternions
premiers qui figurent dans le produit est déterminé, de proche
en proche, sans ambiguïté, à condition toutefois que N (c)

soit un nombre impair ou le double d'un nombre impair.
Ainsi, la décomposition du quaternion entier primitif donné

c est univoque dès que, ayant décomposé sa norme N(c) en
ses facteurs premiers, par exemple N (c) p .r.s on a

arrêté l'ordre de succession de ces facteurs premiers p, r, s

qui peuvent naturellement être égaux ou inégaux entre eux.
Mais il y a une curieuse exception : c'est quand la norme

du quaternion donné c est divisible par 4; dans ce cas, la

décomposition de c, quand bien même on a arrêté l'ordre
de succession des facteurs premiers />,/', s, n'est plus
univoque, mais possible de 24 manières différentes! On peut
bien dire que c'est là une anomalie.

12. — On en trouve aussi dans la théorie du plus grand
commun diviseur. Deux quaternions entiers donnés, a et b,
ont un plus grand commun diviseur différent d'une unité
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quand leurs normes, N(a) et N(ô), ne sont pas deux nombres

premiers entre eux. Mais ici encore, il y a de curieuses

exceptions, des anomalies étonnantes qui paraissent tout à

fait inexplicables, déconcertantes même.
En prenant, par exemple, a — 2, b i + ix + ^ + h, on

a N(ß) N(i)~4 et l'on s'attend à ce que a et b possèdent
« un plus grand commun diviseur à droite », disons §, de

façon à ce qu'on ait simultanément

2 — p. 8 ; '1 ^ -f- -[- '3 — Pi •
^

>

où p etpi désigneraient certains quaternions entiers. (Pour
donner un exemple concret, nous prenons « Parithnomie à

droite ».) Les égalités

2 — (1 — ÙM'l ~f~ Ç) — P — ù).(l h' — P — "P h)

1 -|- it + /2 ~P h — (1 ~P O • P "P ù) ^ P "P h) • (t + Ù) — (t ~P P) • (t + '3)

montrent bien que les deux quaternions en question
possèdent trois « communs diviseurs à droite », à savoir :

^1 — 1 + h ' — 1 "P h ' ^3 — 1 + *3 •

Raison de plus, semble-t-il, pour qu'il existe « un plus
grand commun diviseur à droite », <î, lequel devrait être un
commun multiple des trois diviseurs <3^, $2, <î3, en sorte
qu'on ait ^ di.$i d2.S2 — d3.ds, où ^ d.2, ^désigneraient
certains quaternions entiers. Or, il n'en est rien.

On démontre très facilement, en prenant les normes, que
les trois dernières équations sont en contradiction avec
2 — p 1 + L + h + Pi-d' Voilà donc deux quaternions
entiers a et b de même norme, possédant trois communs
diviseurs différents (ces diviseurs sont même tous trois des
quaternions premiers), mais n'ayant, malgré cela, pas de plus
grand commun diviseur, au sens habituel de ce terme. On

peut bien dire, de nouveau, que c'est là une anomalie.
La raison profonde de ces anomalies a été trouvée et indiquée

pour la première fois par M. A. Harwitz à Zurich. Elle
tient à la définition même du quaternion « entier», comme
nous allons le montrer.
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