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SUR L'ARITHMÉTIQUE
DES NOMBRES HYPERCOMPLEXES

PAR

L.-G. DuPasquier (Neuchâtel).

Sommaire :

I. Le nombre complexe « entier » d'après Gauss et le quaternion « entier »

d'après M. Lipschitz.
II. Propriétés caractéristiques des nombres entiers ; le domaine holoïde

maximal ; définition lipschitzienne et définition hurwitzienne du
nombre hypercomplexe « entier ».

III. La définition hurwitzienne dans le cas des tettarions.
IY. Un exemple particulier de corps de nombres sans domaine holoïde

maximal.
Y. Quelques singularités de l'arithmétique généralisée dans ce domaine

holoïde non maximal.
Méthodes propres à faire tomber ces singularités ; « nombres

idéaux » de Kummer et théorie des « idéaux » de Dedekind.

I

1. — En construisant une théorie cles nombres ou cirit
lino mie 1 dont les éléments sont non seulement les nombres
entiers ordinaires, mais les nombres entiers dits
imaginaires, ou complexes, de la forme a0 + ax G où ciQ et ai
représentent des nombres réels quelconques, tandis que i
est un symbole défini par l'équation

i2 — — 1 ce qui fait écrire i — j/— 1

1 Le néologisme d'arithnomie est proposé par M. A. Aubry à Dijon ; c'est une
abréviation d'« arithmonomie » qui est synonyme d'« arithmologie », de « théorie des nombres »,
ou d'« arithmétique généralisée». (En grec, « arithmos » nombre; « nomos » loi; d'où
« arithmonomie » ; Yafûhnomie signifie donc : la science des lois qui régissent les nombres.)

L'Enseignement mathém., 18e année; 1916. 14
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en créant cette arithmétique généralisée, dis-je, Gauss a fait
œuvre de génie, car cette création hardie ouvrait à la théorie
des nombres des horizons tout nouveaux et un champ de
recherches d'une étendue insoupçonnée.

Cette arithmétique généralisée due à Gauss repose sur
une définition qui semble se présenter d'elle-même à l'esprit
et que voici :

Définition I : Soit a a0 -f- cp i un nombre complexe, où

a0 et cp représentent deux nombres réels dits coordonnées
du nombre complexe a. Nous appellerons a « un nombre
complexe entier », si ses deux coordonnées, aQ et cp, sont
des nombres entiers ordinaires positifs, nuls ou négatifs1 :

nous appellerons a «un nombre complexe non -entier », si
l'une au moins de ses deux coordonnées est fractionnaire ou
irrationnelle.

Par abréviation, nous dirons souvent, dans la suite, entier
complexe au lieu de « nombre complexe entier».

2. — L'arithmétique généralisée érigée par Gauss dans le
domaine de ces nombres complexes et basée sur la définition

J ci-dessus, présente des analogies frappantes avec
l'arithmétique ordinaire. On y retrouve, entre autres, les
nombres complexes entiers irréductibles jouant le même
rôle que les nombres premiers dans l'arithmétique classique.
Nous les appellerons souvent, pour abréger, nombres
premiers complexes. On sait que ce sont : L° les nombres
premiers ordinaires de la forme p 4n + 3, à savoir

3 7 11 19 23 31 43 47 59

dont la norme est p-; 2° le nombre 1 + i dont la norme est
égale à 2 ; 3° les nombres complexes entiers r -f- si dont la

norme, r2 + v2, est un nombre premier ordinaire p de la

forme 4n + i, par exemple :

1 —24 2 -f- i 2 —j— 3£ 3 4* 2 i 1 —{— 4 z 4 —j— i 2 -j- 5 i 5 -f- 2 i

1 —}— 61 J — 61 -± —j— o i 5 —j— -ii,

On retrouve ensuite, dans l'arithmétique généralisée de
Gauss, la décomposition, toujours possible et toujours uni-
voque, de tout entier complexe donné en ses facteurs pre-
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miers. On y retrouve encore le plus grand commun diviseur
et le plus petit commun multiple de deux (ou, plus généralement,

de n) entiers complexes donnés ; l'analogue de
l'algorithme à'Euclide permettant de déterminer ce plus grand
commun diviseur par un nombre fini d'opérations rationnelles.

On y trouve aussi toute la théorie des congruences ;

on y retrouve l'analogue du théorème de Fermât, l'analogue
du théorème de Wilson, etc.

3. — En 1886, M. Lipschitz publiait le résultat de ses
recherches sur la transformation, par des substitutions
réelles, d'une somme de deux carrés en elle-même1. En

partant d'un point de vue très -original et tout à fait
personnel, M. Lipschitz découvrait à nouveau le calcul des
nombres complexes de la forme aQ -f ap, où i2 — 1. 11

reconstruisait alors l'arithmétique généralisée ou arithnomie
de ces nombres complexes, comme Gauss l'avait déjà fait
avant lui, en prenant aussi comme éléments les nombres
complexes entiers tels qu'ils résultent de la définition 1 ci-
dessus. Quoique son point de départ soit tout autre que celui
de Gauss, M. Lipschitz arrive au même résultat : à la même
arithnomie, en se basant sur la même définition.

4. — Pour préparer la généralisation à d'autres systèmes
de nombres complexes, nous introduirons dès maintenant
un nouveau symbole e0 en posant e0 i ; écrivant alors ei à

la place de i, de sorte que

e* — 1 - e0

on voit que les nombres complexes de Gauss peuvent s'écrire
sous la forme

0; 1

a a0e0+ «, <>, ffXeX '

X

où les e^ sont des symboles dits a unités relatives du sys-

1 Untersuchungen über die Summen von Quadraten. Bonn, 1886. Voir la traduction française
publiée par J. Molk dans le « Journal de mathématiques pures et appliquées » fondé par
Liouville, IVe série, tome 2<> (année 1886), p. 373-439 : Recherches sur la transformation par
des substitutions réelles, d'une somme de deux ou de trois carrés en elle-mêm e.
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tème de nombres complexes », symboles obéissant, par
définition, aux relations

e0 e0 ' e\ — ^0 ' eo-ei — ei-eo i1)

Nous dirons que les nombres complexes de Gauss forment
« un système de nombres complexes à 2 coordonnées
indépendantes », ou « à 2 unités relatives », système entièrement

défini par les conventions sur l'égalité, l'addition et

par les relations (1) qui règlent la multiplication. On peut
ranger celles-ci en un tableau de la manière suivante :

i et k représentant l'un des nombres 0 ou 1, le produit e.. ek

se trouve dans la ligne (horizontale) ayant à gauche e. et
dans la colonne (verticale) portant en haut ek.

5. — Cherchant à étendre ses résultats à la transformation,

par des substitutions réelles, d'une somme de trois
carrés en elle-même, M. Lipschitz, partant du même point
de vue original, retrouva le calcul des quaternions découvert
avant lui, en 1843, par W. R. Hamilton.

Voici, à l'intention des lecteurs non versés dans la théorie
des quaternions, les principes fondamentaux de ce calcul
exposés dans un langage purement arithmétique.

On sait que les quaternions sont des nombres hyper-
complexes à 4 coordonnées indépendantes, tel par exemple

ci — a() + ar i1 -j- «2 h + a?, h »

où a0, ail #2, a?> représentent quatre nombres réels dits les
coordonnées1 du quaternion et ii, /2, /3, trois symboles

1 Nous distinguons entre « coordonnées » et « composantes » d'un nombre complexe (ou
hypercomplexe). Par composantes du quaternion a, nous entendons les produits atit;
azh' Comparez la note suivante.
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dits les unités relatives, obéissant aux relations suivantes :

.2 .2 .2
^*i li lz

h'h — h-h — h > h'h — h-h h > V'i
Deux quaternions sont dits égaux, si les 4 coordonnées de

l'un sont égales,.respectivement, aux coordonnées
correspondantes de l'autre.

Désignons par b le quaternion
b — bQ -f- b1i1 b2i2 -f- b?j ?3 ;

l'égalité entre quaternions a b est alors équivalente aux
quatre égalités simultanées

b^ (31 0,1,2.3).
L'addition, la soustraction et la multiplication des quaternions

se font d'après les règles ordinaires de l'algèbre, les
symboles i-k se composant conformément aux relations (2).

La principale différence entre l'algèbre classique et celle
des quaternions provient de ce que la multiplication des

quaternions n'est pas commutative en général; en effet,
a.b b. a, comme on le voit en calculant directement ces
deux produits, si a et b désignent, comme ci-dessus, deux
quaternions quelconques. Donc, la valeur d'un produit de

quaternions dépend, en général, de l'ordre de succession
des facteurs de ce produit. Il s'ensuit que la division n'est
en général pas univoque dans ce domaine; il faut distinguer
entre une « division à gauche » et une « division à droite »,
suivant que, les quaternions a et b étant donnés, on cherche
le quaternion

y Jo + Ji h + j2 h + Ts h tel que a — y-h »

ou le quaternion

x — xQ -}- Xj -f- x0 i2 -f- x3 i3 tel que a — b .x

6. — Par analogie avec la théorie des nombres complexes
de Gauss, on pose les définitions suivantes :

Le quaternion a est dit réel, si ses trois dernières
coordonnées, aA, a2, a3, sont nulles.

• • _ •

(2)

h h — ]2 i
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A tout quaternion a correspond un quaternion

ar — — o11\ — a2 i2 — a3 i3

dit conjugué de a. Le produit d'un quaternion quelconque a
et de son conjugué ctf est toujours réel et s'appelle « la norme
du quaternion a ». La norme de a, égale du reste à la norme
de et est donc définie par l'équation

N (a) ~ a.a' — a' .a — aQ -f a\ + a\ + a\

Ce nombre réel n'est nul c[ue dans le cas où a 0. Si

cl 0, on entend par «.Y inverse de a » le quaternion a~1

ainsi défini :

il satisfait aux relations a .a~~x — a~x.ct 1.

On vérifie sans peine que le conjugué du produit de
plusieurs quaternions donnés est égal au produit des conjugués
des facteurs pris dans l'ordre renversé; en formule :

(a. b)' — h' .a'

Il s'ensuit le théorème fondamental que la norme d'un produit

de quaternions est égale au produit des normes des
facteurs :

N (a.b) — N(a).N(/>)

7. — Puisqu'en intervertissant l'ordre des facteurs, on
change le produit, il exisle en général deux quotients différents

du quaternion donné a par le quaternion donné b où
l'on suppose b ^ 0, à savoir :

1° le quaternion b~~l.a qui est «le quotient ci droite de a

par b » ; c'est la solution x de l'équation a b .x ;

2° le quaternion a.b~x qui est «le quotient à gauche de a

par b » ; c'est la solution y de l'équation a— y. b. On ne peut
donc pas, en général,, employer pour la division le signe

ordinaire a : b ou ^ Sauf définition spéciale, ces signes

n'ont de sens que si les deux quaternions a et b' sont com-
mutableSy c'est-à-dire si ct.b' b'. a, ce qui n'est pas le cas
en général.
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Dans le domaine des quaternions, il y a donc lieu de

distinguer deux arithmétiques se développant parallèlement
l'une à l'autre, mais différentes l'une de l'autre : une «

arithmétique à gauche » et une « arithmétique à droite ». Elles se

pénètrent du reste souvent l'une l'autre, engendrant des

analogies et des contrastes frappants avec l'arithmétique
classique.

8. — Pour nous conformer aux notations générales utiles
plus tard, nous introduirons de nouveau les symboles e^ dits
unités relatives, en posant

e0 — 1 e1 i1 e2 — i2 e3 — i3

Tout quaternion x s'écrit alors
0. .3

,x- ,r0 e0 + ,r1 e, + x2 e2 -j- .r3 =2 xX '

X

Nous dirons que les quaternions forment « un système de

nombres hypercomplexes à 4 coordonnées indépendantes »,

ou « à 4 unités relatives », système qui sera défini par les
conventions se rapportant à l'égalité, à l'addition et par les
relations suivantes qui règlent la multiplication :

2 2 2 2

co - ^ ^
^2,ei — e3 • e2'e?, ez-e2-— 61 ' eZ'ei — e\-ez — e2

Ces relations se trouvent condensées dans le tableau
suivant :

Représentant par i et par k l'un des nombres 0, 1, 2, 3, on
trouvera la valeur du produit e.. ek à l'intersection de la ligne
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(horizontale) portant à gauche e^, et de la colonne (verticale)
portant en haut ek.

Définition II : Un quaternion

0. .3

a=^2iaxex
À

est dit rationnel, si chacune de ses 4 coordonnées a^ est un
nombre rationnel quelconque, entier ou fractionnaire.

L'ensemble de tous les quaternions rationnels forme alors
un « corps de quaternions » ou « domaine de rationalité » ;

c'est-à-dire que les quaternions rationnels se reproduisent
par addition, soustraction, multiplication et division; en
d'autres termes encore : la somme, la différence, les produits
et les quotients de deux quaternions rationnels sont toujours
de nouveau des quaternions rationnels.

C'est exclusivement de quaternions rationnels que nous
parlerons dans la suite.

9. — Après cette digression sur les quaternions, revenons
au mémoire de M. Lipschitz cité plus haut.

Ayant retrouvé, par une voie toute personnelle, le calcul
des quaternions, M. Lipschitz érige une nouvelle arithmétique

généralisée dont les éléments sont les quaternions
entiers. Cette arithnomie des quaternions, érigée par M.
Lipschitzrepose sur une définition qui se présente d'elle-même
à l'esprit et qui semble une extension naturelle de la définition

I ci-dessus, donnée déjà par Gauss pour les nombres
complexes ordinaires.

Nous appellerons lipschitzienne cette définition du
quaternion entier, par opposition à la définition hurwitzienne
que nous introduirons plus bas et que nous démontrerons
être préférable. Voici la définition «lipschitzienne» du
quaternion entier :

Définition III: Un quaternion rationnel a a0 + afix
a^ic2 -f- a3is est dit entier, si ses coordonnées a-A (où

a 0, 1, 2, 3) sont toutes quatre des nombres entiers
ordinaires, positifs, nuls ou négatifs.

Le quaternion rationnel a sera dit non entier, si l'une au
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moins de ses quatre coordonnées est un nombre factionnaire.

10. — L'arithnomie des quaternions telle que l'a érigée
M. Lipschitz présente des exceptions étonnantes aux règles
générales; on dirait presque des anomalies. Nous allons en
citer deux exemples. A cet effet, il est nécessaire de poser
encore quelques définitions.

Le quaternion entier a est dit « divisible à droite [resp. à

gauche] par le quaternion entier b », s'il existe un quaternion
entier c vérifiant l'égalité a~c.b [resp. a b.c\. Dans ce

cas, on dit aussi que « b est un diviseur a droite [resp. à

gauche] de a », ou encore : que « b est contenu, ou entre
dans a, comme diviseur à droite [resp. à gauche] ». D'après
cela, le quaternion entier et non nul b sera un diviseur à

droite de a, si a.b~x est un quaternion entier.
Pour que le quaternion entier e soit contenu comme diviseur

à droite dans n'importe quel quaternion entier, il laut
que e-1 soit entier; alors e est aussi contenu comme diviseur
à gauche dans tout quaternion entier. Un tel quaternion e

est dit «une unité y). La condition nécessaire et suffisante
pour que s soit une unité est que N(e) 1. Il existe, dans le
domaine des quaternions entiers au sens de M. Lipschitz,
8 unités qui sont ± 1, zt ix, zhh, zh h •

Deux quaternions entiers sont dits associés et droite (resp.
à gauche), s'ils ne diffèrent l'un de l'autre que par un
facteur unité à droile (resp. à gauche); ainsi, a désignant un
quaternion entier, ziz a, ±a.ix, ±a.i%, ±a.iz sont «associés
à droite », et ± ax -h- i\.a, -h i^.a\ ztz is.a sont « associés à

gauche ». Dans les recherches sur la divisibilité, des
quaternions associés sont équivalents, c'est-à-dire qu'ils peuvent
se remplacer l'un l'autre (comme c'est le cas dans la théorie
classique des nombres et dans l'arithnomie des « complexes
entiers » de Gauss).

On définit le quaternion primaire de façon à ce qu'il soit
toujours déterminé univoquement dans le groupe des 8
quaternions associés entre eux; dans les théorèmes de divisibilité,

on peut alors se borner à la considération des
quaternions primaires.
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Enfin, un quaternion entier a est primitif (ou proprement

dit), si ses 4 coordonnées a^ n'ont pas d'autre commun diviseur

que 1; dans le cas contraire, a est un quaternion non
primitif (ou improprement dit) ; exemple : 9 + 3^ -f- + ni3
estprimitif dès que sa dernière coordonnée, n n'est pas
divisible par 3, mais non primitif, si n est multiple de 3.

11. — Malgré la non-commutativité de la multiplication,
on réussit à définir le quaternion entier irréductible, ou
quaternion premier, l'analogue du nombre premier de
l'arithmétique classique. Pour qu'un quaternion entier p soit
premier, il faut et il suffit que sa norme N(p) soit un nombre
premier ordinaire. Il existe en tout p -f- 1 quaternions
premiers, tous de même norme p, essentiellement différents
entre eux, c'est-à-dire non associés, par exemple tous
primaires. M. Lipschitz démontre ensuite qu'on peut toujours
mettre un quaternion entier primitif donné, c, sous iorme
d'un produit de quaternions premiers, en imposant à ces

quaternions de se suivre, de droite à gauche, dans un ordre
tel que leurs normes suivent un ordre fixé arbitrairement
pour les facteurs premiers de la norme du quaternion donné c.
Une fois qu'on a fixé cet ordre, chacun des quaternions
premiers qui figurent dans le produit est déterminé, de proche
en proche, sans ambiguïté, à condition toutefois que N (c)

soit un nombre impair ou le double d'un nombre impair.
Ainsi, la décomposition du quaternion entier primitif donné

c est univoque dès que, ayant décomposé sa norme N(c) en
ses facteurs premiers, par exemple N (c) p .r.s on a

arrêté l'ordre de succession de ces facteurs premiers p, r, s

qui peuvent naturellement être égaux ou inégaux entre eux.
Mais il y a une curieuse exception : c'est quand la norme

du quaternion donné c est divisible par 4; dans ce cas, la

décomposition de c, quand bien même on a arrêté l'ordre
de succession des facteurs premiers />,/', s, n'est plus
univoque, mais possible de 24 manières différentes! On peut
bien dire que c'est là une anomalie.

12. — On en trouve aussi dans la théorie du plus grand
commun diviseur. Deux quaternions entiers donnés, a et b,
ont un plus grand commun diviseur différent d'une unité
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quand leurs normes, N(a) et N(ô), ne sont pas deux nombres

premiers entre eux. Mais ici encore, il y a de curieuses

exceptions, des anomalies étonnantes qui paraissent tout à

fait inexplicables, déconcertantes même.
En prenant, par exemple, a — 2, b i + ix + ^ + h, on

a N(ß) N(i)~4 et l'on s'attend à ce que a et b possèdent
« un plus grand commun diviseur à droite », disons §, de

façon à ce qu'on ait simultanément

2 — p. 8 ; '1 ^ -f- -[- '3 — Pi •
^

>

où p etpi désigneraient certains quaternions entiers. (Pour
donner un exemple concret, nous prenons « Parithnomie à

droite ».) Les égalités

2 — (1 — ÙM'l ~f~ Ç) — P — ù).(l h' — P — "P h)

1 -|- it + /2 ~P h — (1 ~P O • P "P ù) ^ P "P h) • (t + Ù) — (t ~P P) • (t + '3)

montrent bien que les deux quaternions en question
possèdent trois « communs diviseurs à droite », à savoir :

^1 — 1 + h ' — 1 "P h ' ^3 — 1 + *3 •

Raison de plus, semble-t-il, pour qu'il existe « un plus
grand commun diviseur à droite », <î, lequel devrait être un
commun multiple des trois diviseurs <3^, $2, <î3, en sorte
qu'on ait ^ di.$i d2.S2 — d3.ds, où ^ d.2, ^désigneraient
certains quaternions entiers. Or, il n'en est rien.

On démontre très facilement, en prenant les normes, que
les trois dernières équations sont en contradiction avec
2 — p 1 + L + h + Pi-d' Voilà donc deux quaternions
entiers a et b de même norme, possédant trois communs
diviseurs différents (ces diviseurs sont même tous trois des
quaternions premiers), mais n'ayant, malgré cela, pas de plus
grand commun diviseur, au sens habituel de ce terme. On

peut bien dire, de nouveau, que c'est là une anomalie.
La raison profonde de ces anomalies a été trouvée et indiquée

pour la première fois par M. A. Harwitz à Zurich. Elle
tient à la définition même du quaternion « entier», comme
nous allons le montrer.
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II

13. — Envisageons un système de nombres hypercomplexes
à r coordonnées indépendantes, système constitué par une
infinité de « complexes » ou « éléments » tels que

l...r
x — x1e1 + x2e2 + + xrer ^^P^X

X

où les xy sont des nombres réels quelconques dits «

coordonnées du complexe x », et les e\ des symboles dits « unités
relatives du système de nombres hypercomplexes 1 ».

Supposons définies, dans ce système de nombres hyper-
complexes, les opérations rationnelles de l'addition et de la

multiplication, leurs opérations inverses : la soustraction
et la division, ainsi que l'égalité de deux complexes. On sait

que, dans ce cas, le produit e..ek de deux unités relatives
quelconques est une fonction linéaire, à coefficients réels,
des mêmes unités relatives ey. Par exemple, i et k désignant,
chacun, l'un quelconque des nombres 1, 2, 3, /', on a

1 ...r

ei-ek ïl ei+ Ï2e2 + + Yrer =2T^ '

X

Pour indiquer dans la notation que les constantes réelles

peuvent varier avec i et k, écrivons

ei'ek — tik\e i "h (ik'2 f>2 + ••• + Tikrer

ou, sous forme condensée,

1 ...r

ei-ek k '•2- ••• • • (5)

X

Ces relations (5), jointes aux définitions de l'addition et de

1 11 est souvent utile de distinguer entre « coordonnées » et « composantes >> d'un nombre
complexe. Par « coordonnées », on entend les nombres x±; x2;...; xr, tandis que les «

composantes » du nombre hypercomplexe x sont les produits xx e± ; x2c2; : xrer.
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l égalité, fixent le système considéré de nombres hyper-
complexes et le définissent complètement.

14. — La considération du nombre hypercomplexe rationnel

est fondamentale pour tout ce qui va suivre. Commençons

donc par poser la

Définition IV: Appelons complexe rationnel un tel nombre

hypercomplexe x dont toutes les r coordonnées x^ sont des

nombres rationnels quelconques, entiers ou fractionnaires.-
Un complexe

!.../•

x —2e^
x

sera dit non rationnel, si Lune au moins de ses r coordonnées

est un nombre réel irrationnel.
Dans la suite, il sera question exclusivement de complexes

rationnels.
L'ensemble de tous les complexes rationnels forme un

<( corps de nombres » ou « domaine de rationalité », c'est-à-
dire que les complexes rationnels se reproduisent par addition,

soustraction, multiplication et division. Autrement dit :

la somme, la différence, le produit et le quotient (pour autant
que la division est possible) de complexes rationnels est
toujours de nouveau un complexe rationnel. Nous désignerons
par le symbole j R j ce corps comprenant tous les complexes
rationnels.

15. — Pour faire l'arithmétique généralisée ou arithnomie
de ce corps de nombres j Pi j, il faut tout d'abord le partager
en deux ensembles, mettant d'une part : les complexes
rationnels «entiers», d'autre part: les complexes rationnels
« non entiers ». La définition suivante, que j'appelle « la
définition lipschitzienne », se présente le plus naturellement
à l'esprit :

Définition V ; Un complexe rationnel x est dit entier, si
toutes ses r coordonnées sont des nombres entiers
ordinaires; le complexe rationnel x sera dit non entier, si Tune
au moins de ses r coordonnées est un nombre fractionnaire.

En se basant sur cette définition du complexe entier, on
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peut construire toute une arithmétique du système considéré
de nombres hypercomplexes, arithmétique généralisée qui
présente beaucoup d'analogies, mais aussi bien des
contrastes, avec l'arithmétique ordinaire. Or, l'exemple des
quaternions rationnels prouve que cette définition lipschit-
zienne n'est pas toujours satisfaisante. Voici les considérations

qui peuvent conduire à une autre définition, souvent
préférable à la définition lipschitzienne du complexe entier.

16. — Les « nombres entiers » sont caractérisés par les
quatre propriétés fondamentales suivantes :

1° lis doivent se reproduire par addition, soustraction et
multiplication; en d'autres termes : la somme, la différence
et le produit de deux « entiers » quelconques doit toujours
être de nouveau un « entier ». On exprime cela en disant que
les nombres entiers doivent «former un domaine d'intégrité

».
2° Ce domaine d'intégrité doit contenir « le nombre 1 » et

« le nombre zéro », c'est-à-dire deux complexes jouant, dans
ce domaine, le même rôle que 1 et 0 dans l'arithmétique
ordinaire. Sans « le nombre 1 », on aurait un système de
nombres entiers dont aucun ne serait divisible par lui-même,
ce qui n'est pas normal; sans «le nombre zéro», la
soustraction ne serait pas toujours possible.

3° L'ensemble des « nombres entiers » doit former un
domaine d'intégrité à base finie; en d'autres termes, il doit
être possible de choisir, dans cet ensemble, un nombre fini
de complexes, disons ^ T /2, tn, jouissant de la propriété
suivante : si mi, mn désignent des nombres entiers
ordinaires, l'expression

mlt1 + m2t2 H- + mnta (6)

doit pouvoir reproduire, par des valeurs appropriées des
nombres entiers mabsolument tous les éléments de
l'ensemble en question ; et inversement : ce domaine d'intégrité
doit se composer exclusivement des éléments, mais de tous
les éléments, qu'on obtient en attribuant, dans l'expression
(6) ci-dessus, à mA, /??2, mn, de toutes les manières
possibles, les valeurs entières de — go à + go
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Dans ce cas, les complexes /2, tn peuvent engendrer,

par les seules opérations de Vaddition et de la
soustraction répétées un nombre ßni de fois, n'importe quel autre
élément du domaine d'intégrité. On dit que ces complexes
« forment une base » du domaine d'intégrité envisagé, et
l'on désigne celui-ci d'ordinaire par le symbole

[<v 's. • • 'J •

Si l'on remarque que pour passer de + t à —/, il suffit
de soustraire deux fois de suite -f- t de lui-même; puis, que

soustraire — t » est complètement équivalent à «

additionner t », on peut dire ceci : En partant des éléments de
la base, on peut reproduire chacun des éléments du domaine
en question au moyen d'un nombre fini de soustractions. Le
nom de « base » attribué à ces éléments est ainsi pleinement

justifié.
17. — Le fait de constituer un domaine d'intégrité contenant

le nombre 1 n'est pas suffisant, à lui tout seul, pour
caractériser des nombres « entiers ». On le voit en considérant

l'ensemble engendré par où m et n représentent des

nombres entiers quelconques. Cet ensemble que nous

désignons par constitue pourtant un domaine d'intégrité
contenant le nombre 1 ; il jouit des propriétés 1° et 2° ci-
dessus énumérées, mais il ne possède aucune base finie au
sens ci-dessus: on ne peut pas indiquer un nombre fini
d'expressions de la forme ~ telles qu'elles pourraient engendrer

toutes les autres par les seules opérations de l'addition
et de la soustraction, puisque ces deux opérations ne per-

1 1
mettent pas de passer de — à Aussi le domaine d'intégrité

i;i ne contient-il pas uniquement des nombres entiers.

18. — Pour abréger, nous emploierons une terminologie
proposée par M. /. König et poserons la

Définition VI: Nous appellerons «domaine holoïde » tout
ensemble de complexes quelconques jouissant des trois
propriétés fondamentales ci-dessus énumérées (art. 16).
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Donc, en vertu de cette définition, tout domaine holoïde

contient une infinité d'éléments, parmi lesquels le nombre 1

et le nombre zéro; de plus, on peut y effectuer, sans restriction

aucune, l'addition, la soustraction et la multiplication,
et cela sans jamais sortir du domaine en question; et enfin,
il possède une base finie.

Exemples : Les nombres entiers ordinaires forment un
domaine holoïde dont la base est 1; l'expression (6) se réduit
dans ce cas à mi 1 qui reproduit bien tous les nombres
entiers, lorsqu'on fait parcourir à 7??1 la série des nombres
entiers.

Les nombres complexes de Gauss à coordonnées entières
(voir la définition I) forment un domaine holoïde dont la
base est 1, i; en effet, l'expression (6) devient dans ce cas
m ^

1 -j- m2 • £, laquelle reproduit bien tous les complexes
entiers de Gauss, et exclusivement ceux-là, quand mx et m2

parcourent, indépendamment l'un de l'autre, la série des
nombres entiers ordinaires. On désigne ce domaine holoïde
parle symbole [1; i].

Les « quaternions entiers » de M. Lipschitz forment un
domaine holoïde de base 1, i\, L, i3, puisque tout quaternion
« entier d'après la définition lipschitzienne » peut se mettre
sous la forme ?n0. 1 -f- mx 4 -f- z??2. 4 + m3. /3 et que cette
expression donne toujours un quaternion à cordonnées
entières, quelles que soient les valeurs entières attribuées aux
?7iy. On désigne,c;e domaine holoïde par le symbole [1, ix, 4> /3].

Un corps de nombres, n'ayant pas une base finie au sens
indiqué plus haut, ne constitue lui-même pas un domaine
holoïde, bien que pouvant en contenir une infinité.

19. — Les trois propriétés ci-dessus énumérées et qui
caractérisent le domaine holoïde, ne sont pas suffisantes

pour caractériser les « nombres entiers ». 11 en faut une
quatrième. C'est de cette quatrième propriété que n'avait
pas tenu compte M. Lipschitz, c'est elle qu'a découverte
M. Hurwitz. La voici :

4° Le domaine holoïde formé par les « nombres entiers »

doit être maximal.
Définition Vil: Soit [JJ un domaine holoïde quelconque.
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Il sera dit maximal, s'il n'existe pas, dans le corps de nombres
considéré, un autre domaine holoïde contenant tous les
éléments du domaine en question [J-4] plus encore d'autres
éléments non contenus dans [JJ.

Or, M. Hurwitz a découvert que le domaine holoïde
[1, i\, i2, e8] formé par l'ensemble des quaternions à

coordonnées entières n'est pas maximal, qu'il est possible de

l'élargir en restant dans le même corps de nombres |r|; on

peut, en effet, agrandir de la manière suivante le domaine
holoïde [1, i{, z*2, /8] sans sortir du domaine de rationalité
|R| constitué par l'ensemble des quaternions rationnels:
soit pour abréger

Dans le corps |r| des quaternions rationnels, le domaine
holoïcle maximal a pour base p, ii, i2, i3. Désignons ce
domaine holoïde maximal par Je symbole [J], de sorte que [J]
sera constitué par l'ensemble des quaternions

m0p -j- ni 1 i1 -j- m2i2 -f- m3/3 (7)

où les 4 nombres ordinaires m^ prennent, indépendamment
les uns des autres, toutes les valeurs entières possibles.
Avec M. Hurwitz, nous poserons la définition suivante que
nous appellerons « la définition hurwitzienne du quaternion
entier » :

Deßnition VIII : Un quaternion rationnel est dit « entier »,
s'il est contenu dans ce domaine holoïde maximal [J]. Un
quaternion rationnel est dit « non entier », s'il n'est pas contenu

dans ce domaine holoïde maximal [J].
20. — Tout quaternion entier tel que t sera donc de la

forme (7), ou, en remplaçant p par sa valeur :

< + (m, + t)+ (-», + y*) + (», + ?)181
On trouvera tous les quaternions entiers, en prenant pour

les quatre nombres m0l mA, /??2, 77? 3, de toutes les manières
possibles, des valeurs entières quelconques.

Si mq est pair, toutes les coordonnées du quaternion t

L'Enseignement mathém., 18e année, 1916. 15
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seront des nombres entiers. Dans ce cas, t sera un quaternion

« entier» également d'après la définitiôn lipschitzieune
(y. définitions III et V).

Si, au contraire, m0 est impair, les coordonnées non nulles
de t seront des nombres rationnels non entiers, des fractions
de dénominateur commun 2. Dans ce cas, d'après la définition

lipschitzienue, t serait un quaternion « non entier »,
tandis qu'en réalité, en vertu de la définition hurwitzienne
que nous adoptons, t sera réputé «quaternion entier».
En particulier, les 16 quaternions —

1 ± h ± h q{,\ se_

raient tous des quaternions « non entiers » au sens de M. Lip-
schitz, sont en réalité des quaternions entiers, en vertu de
la définition hurwitzienne. La norme de chacun de ces 16

quaternions est égale à 1; ils constituent 16 unités dans le
domaine holoïcle envisagé. Celui-ci contient donc 24 unités
en tout, dont 8 seulement à coordonnées entières. (Voir les
définitions à l'art. 10.)

21. — Désignons par [J0] l'ensemble constitué par tous les
quaternions à coordonnées entières. On voit immédiatement
que [J0] est contenu entièrement dans fJ]. En effet, le
domaine [J], tout en faisant partie, lui aussi, du corps |r| des

quaternions rationnels, contient non seulement tous les
éléments de [J0], mais encore une infinité d'autres à coordonnées

fractionnaires. Ainsi, [J0] n'est pas un domaine holoïde
maximal.

En construisant l'arithmétique du domaine [J0], M. Lip-
schitz faisait donc l'arithnomie d'un domaine non maximal;
or, quand on fait cela, il faut s'attendre à priori à des irrégularités.

Qu'on me permette une analogie : Essayez de
construire l'arithmétique des nombres entiers ordinaires en vous
basant sur la définition suivante : « J'appelle nombre entier
tout nombre pair, et nombre non entier tous les autres. »

D'après cette définition, les nombres impairs seraient donc
des nombres «non entiers». En érigeant une arithmétique
basée sur cette définition-là, vous vous apercevrez vite de
l'existence d'anomalies déconcertantes. On devine même à

l'avance que les théorèmes classiques sur la divisibilité, par
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exemple, ne joueront pas toujours, si l'on fait reposer l'arith-
nomie sur une définition pareille. Ce n'est là, bien entendu,

qu'une analogie. (La différence capitale provient de ce que
l'ensemble de tous les nombres pairs ne contient pas le

nombre 1 et ne constitue pas, en conséquence, de domaine

holoïde, tandis que [J0] en est un.) Aussi n'ai-je voulu, en

employant cette image, que faire sentir en quelque sorte la

raison profonde pourquoi l'on doit s'attendre, à priori, à des

anomalies, quand on entreprend de construire l'arithnomie
d'un domaine holoïde non maximal.

On le vérifierait sans doute sur un cas concret, déjà dans
le domaine des nombres complexes de Gauss, en faisant,

par exemple, l'arithnomie du domaine holoïde

[1 360 i] m1 + 360;?i2 i (9)

où ml et m2 représentent des entiers quelconques. Gela
reviendrait à remplacer la définition de Gauss (définition 1)

par celle-ci : Un nombre complexe a0 + axi sera dit entier,
s'il est contenu dans le domaine (9). Tous les autres
complexes rationnels, même ceux à coordonnées entières (donc
tous ceux dont la partie imaginaire n'est pas divisible par
360), seraient réputés non entiers.

22. — Les nombres complexes de Gauss, a + bi, où les
coordonnées a et b sont des nombres entiers ordinaires,
constituent un domaine holoïde maximal; définition lip-
schitzienne et définition hurwitzienne sont équivalentes dans
ce système de nombres complexes; les deux conduisent au
même ensemble de complexes entiers ; voilà pourquoi il est
possible, en adoptant la définition lipschitzienne, d'y
construire une arithnomie d'une simplicité analogue à celle de

l'arithmétique classique. On peut se demander si Gauss, en
posant cette définition 1, a simplement eu de la chance, ou
s'il connaissait la raison profonde pourquoi il faut la poser?
Il est permis de croire que si Gauss avait été amené à faire
l'arithmétique généralisée des quaternions « entiers », il
aurait commencé par se baser sur la définition lipschit-
zienne III; puis cherchant la raison d'être des singulières
exceptions qu'il eut constatées, que Gauss aurait alors fait
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la découverte, dont la priorité revient à M. Hurwitz, que le
domaine holoïde [J0] n'est pas maximal, qu'il est en
conséquence préférable de fixer d'une autre manière la notion du
quaternion entier.

23. — En adoptant la définition hurwitzienne VIII du
quaternion entier, définition qui engendre le domaine [J] de
l'article 19, on peut ériger une arithnomie des quaternions
entiers exempte de ces exceptions singulières que présente
la théorie lipschitzienne qui n'envisage que le domaine [J0]
de l'article 21. Reprenons les exemples cités plus haut. Les
quaternions entiers a — 2 êt ô 1 + + L2 -f- i3 (v. art. 12;

possèdent, dans le domaine [J], comme plus grand commun
diviseur 2 (ils y sont même associés), alors que dans la
théorie lipschitzienne (domaine [J0]), ils n'en possèdent aucun.

Le théorème de décomposition (v. art. 11) reste applicable,
dans le domaine [J], à tout quaternion entier c, quelle que
soit sa norme, et peut s'énoncer ainsi : Soit c un quaternion
entier primitif donné, de norme

N(c) Pl.p2.p3. ps

où les pi sont les facteurs premiers, égaux ou inégaux entre
eux, de la norme de c, facteurs rangés dans un ordre tout à

fait arbitraire, mais déterminé. Il est alors toujours possible
de représenter le quaternion donné c comme produit de

quaternions premiers :

tels que N(7ti)=pi; N(tt2) p2 ; ; N(t:ç)=/>5, et cette
décomposition est univoque. Chacun des quaternions premiers
qui figurent dans le produit se détermine de proche en proche,
sans ambigiiité.

Dans sa théorie qui n'envisage que le domaine [J0], M. Lip-
schitz est obligé d'ajouter une exception : « Tout se passe
de même pour les quaternions entiers primitifs dont la norme
est divisible par 4, jusqu'à ce que l'ordre fixé pour les
facteurs de cette norme amène pour la première fois le nombre 2 ;

on peut alors choisir arbitrairement, comme facteur premier,
l'un quelconque des 24 quaternions premiers dont ia norme
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est égale à 2; ee choix une fois fait, les quaternions
premiers dont les normes sont les nombres premiers suivants,

pris dans l'ordre indiqué, se déterminent de proche en proche,
sans ambigiiité, jusqu'à la fin. »

Cette singulière exception tombe également quand on

passe du domaine [J0] au domaine holoïde maximal [J].
24. — Résumons les considérations précédentes en disant :

Les nombres hypercomplexes « entiers « doivent former
non seulement un domaine holoïde, mais un domaine holoïde
maximal.

Définition IX: Un complexe rationnel

1 ...r

X — T- e-s' » À A

X

sera dit entier, s'il est contenu dans le domaine holoïde
maximal en question. Le complexe rationnel x sera dit non
entier, s'il ne fait pas partie du domaine holoïde maximal en

question. (Définition hurwitzienne.)
Cette définition hurwitzienne du nombre hypercomplexe

entier peut avoir comme conséquence qu'on appellera ((entiers

» même certains complexes rationnels x à coordonnées
.xy fractionnaires. (Exemple : les quaternions.) Inversement :

il peut arriver aussi que certains nombres hypercomplexes
rationnels x ne soient pas des complexes « entiers », bien
que toutes leurs coordonnées x\ soient des nombres entiers
ordinaires.

III

25. — Pour construire l'arithmétique d'un corps |r| de
nombres hypercomplexes rationnels, il faut toujours
commencer par une opération préliminaire consistant à partager
ce corps |r| en deux ensembles, mettant d'un côté: les
complexes rationnels « entiers », de l'autre : les complexes
rationnels « non entiers ». Or, il peut se présenter la curieuse
circonstance que cette opération préliminaire ne soit pas
univoque. Nous l'avons découvert en étudiant une classe
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très étendue de systèmes de nombres hypercomplexes de la
forme

1....Ç

a—a.Cj+ a,_e2 + +- ases =2"XeX
X

caractérisée par le fait que le nombre s des coordonnées a y

est un carré parfait, s 1, 4, 9, 16, y2. Le cas le plus
simple est .9 4, vu que ,9=1 donne les nombres réels
ordinaires.

26. — Soient donc

Ct —f- ^2 ~~b ^3^3 ~t~ ^4^4 ^ ^ ^ ^1^1 ~b ^2 ~b ^3^3 ~b ^4^4

deux de ces nombres hypercomplexes. On définit l'égalité de
deux complexes par l'égalité des coordonnées correspondantes.

Ainsi, pour que a b, il faut et il suffit que les
4 égalités a^ (a ~= 1, 2, 3, 4) aient lieu simultanément.
On définit ensuite l'aclclition de deux de ces nombres
hypercomplexes par l'addition des coordonnées correspondantes;
il s'ensuit que son opération inverse : la soustraction, est
univoque, toujours possible et se fait par la soustraction des
coordonnées correspondantes; en formule :

a + b — (a1 db />3) + (a2 ib l>2) e2 + (o3 bb b) <?3 -f- (a4 ± b4) e4 (10)

Pour multiplier (ou diviser) un tel nombre hypercomplexe
par un nombre réel /*, il faut multiplier (ou diviser) chacune
des coordonnées par /', d'où la formule :

V CI nz TÇij pj —j— i'Ci2 f?, —|— pci3 P3 -|- tct4e4 (11)

La multiplication de ces nombres hypercomplexes entre
eux est définie par le tableau suivant :

1 1 *1 1 ** 1 *3 [ *4

iT e2 0
1l0|oT 0 0 ei e2

1̂
1

^3 e4 0 0

^4 0 0 e3 ^4
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Représentant par i et k l'un quelconque des nombres

1, 2, 3, 4, on trouve le produit e£. ek à l'intersection de la ligne
horizontale portant à gauche e. avec la colonne verticale portant

en haut ek.
Un tel nombre hypercomplexe est dit réel, lorsque ses

deux coordonnées moyennes sont nulles et, de plus, ses deux

coordonnées extrêmes égales entre elles. Tout nombre réel

r peut ainsi s'écrire: .v re4 + — + eù* On vérifie
sans peine que le symbole ei + e4 joue le rôle du « nombre 1 »,

de sorte qu'on peut poser, dans ce système de nombres

hypercomplexes : ex + e4 1. Moyennant ces définitions, on

peut dire que l'addition, la soustraction et la multiplication
de ces nombres hypercomplexes se font « d'après les règles
ordinaires de l'algèbre ». A noter cependant que la multiplication

n'est en général pas commutative dans ce système,
puisque, par exemple, eci.e3 ex, tandis que es.e2 e4. Il y
a donc lieu de distinguer ici, comme pour les quaternions,
une « arithnomie à gauche » et une a arithnomie à droite »

(v. article 7).
27. — Pour introduire la division comme opération inverse

de la multiplication, on peut procéder par analogie avec les
nombres complexes de Gauss et avec les quaternions. A tout
nombre hypercomplexe a alei + a^e2 + a3e3 + a4e4

correspond son conjugué : A' a4e4— a2e2— a3e3 + a{ e4.
Le produit d'un tel nombre hypercomplexe et de son

conjugué — ils sont commutables entre eux — est toujours réel
et s'appelle « la norme du nombre hypercomplexe a ». Cette
norme est ainsi définie par

N (a) — a A' A'. a — o2a3 (13)

On en déduit le théorème fondamental que la norme d'un
produit est égale au produit des normes des facteurs :

N(a.6) N(fl).N(6).
La norme d'un tel complexe a peut être nulle sans que

a 0 ; si N(a) 0, on dit que a est « un diviseur de zéro ».
Ce système de nombres hypercomplexes présente donc,
d'avec les nombres complexes de Gauss et les quaternions,
cette différence capitale qu'un produit de facteurs peut être
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nul sans qu'aucun des facteurs de ce produit ne soit nul.
Ainsi, e3.e4 0; eA.ei=0%- e* 0; etc.

Si a n'est pas diviseur de zéro, c'est-à-dire si N(a) ^ 0, on
entend, en analogie avec les nombres complexes ordinaires
et avec les quaternions, par « l'inverse de a » le nombre
hypercomplexe

a-1 -E- (14)
a N («]

qui satisfait aux relations a.cr1 ci"1, a — 1.

Les nombres hypercomplexes a et b étant donnés, avec
N (b) 5^ 0, on appellera, en analogie avec les quaternions, le
nombre hypercomplexe s^b~\a aie quotient a droite de
a par £ » ; c'est la solution de l'équation ci — b.x\ et le
nombre hypercomplexe y— ci. b~[ sera « le quotient à gauche
de ci par b » ; c'est la solution de l'équation ci y.b. Le

signe ordinaire de la division, a : b ou - n'aura de sens, à

moins de définitions spéciales, que si a et B' sont commu-
tables entre eux, B' représentant le conjugué de b.

Dans le domaine de ces nombres hypercomplexes,
chacune des deux divisions est donc toujours possible et uni-
voque, à condition que la norme du diviseur ne soit pas
nulle. Un quotient dont le diviseur est de norme nulle n'a
de sens que si le dividende est aussi de norme nulle, et un
quotient de deux diviseurs de zéro, quand il a un sens, peut
être indéterminé.

Les définitions précédentes suffisent pour établir parfaitement

les quatre opérations rationnelles dans le domaine de

ces nombres hypercomplexes.
28. — Ces nombres hypercomplexes peuvent se

représenter par des schémas carrés où ne figurent que les
coordonnées. Ainsi,

L'égalité ci — b, la somme a + ô, la différence a — b, se

figurent alors aisément, et l'on obtient pour le produit ci.b:

(>l 2 ~f~ a2 ^4

ff:i l>2 + a4bé
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On voit par là, soit dit en passant, que la multiplication
de ces nombres entre eux se fait d'après les mêmes règdes

que la composition des substitutions linéaires. A chacun de

ces complexes correspond une substitution linéaire bien
déterminée, et inversement. Le « nombre 1 » correspond à

i ; 0
la substitution identique: l j j; un nombre réel r

jr; 0
à : les unités relatives sont :

0 ; r y

j1 ; o 0 ; 11 (0 ; 01 (0 ; 01
i 0 ; 0 ' *2

0 ; 0 ' *3
1 ; 0 j ' ^ ~~

0 ; 1
'

et ainsi de suite. Chaque propriété dés substitutions linéaires
peut se traduire en un théorème sur ces nombres hyper-
complexes.

29. — Cette correspondance étroite montre aussi la voie
de la généralisation au cas où le nombre s des coordonnées
est un carré supérieur à 4, .9 9, 16, v2. Par exemple,
pour ces nombres hypercomplexes à 9 coordonnées
indépendantes, on aura

1...9

a — a1e1 -f- o2e2 -j- aze2 -j- -j- ctQeQ a^ e^
X

nombre hypercomplexe qu'on représentera schématiquement
par

Or, il est plus pratique de se servir de deux indices et
d'écrire, pour le même nombre hypercomplexe a,

1,2, 3 ail ' ai2 ' ai3

a —2 a'ik 6ik ~)021 ' '

i®k \
V a31 ' a32 ' ^33 /

L'unité relative e.k est représentée par le schéma carré dont
tous les éléments sont nuls sauf celui qui se trouve à

l'intersection de la fi4me ligne et de la kiime colonne, lequel est 1.
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La multiplication des unités relatives e.k est alors définie par
les relations :

Gik - eks eis ; eik •=0 p°ur 1 ^k (15)

Les lettres i, k, s, t représentent, chacune, l'un quelconque
des nombres 1, 2, 3.

représente un second nombre hypereomplexe du même
système, Végalité, Yaddition et la soustraction se définiront par
Légalité, l'addition et la soustraction des coordonnées
correspondantes, et le produit a.b sera défini par

Si

1, 2,3

Eik - ai\ bu + «a b2k + aaha2 "a <16'

On appellera réel un tel nombre hypereomplexe r quand
il aura la forme

r 0 0
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en particulier, le « nombre 1 » sera

227

1 — ei + e5 + — 2
1,2,3

exx —

1,0,0
0,1,0
0,0,1

En se basant sur les propriétés bien connues des
substitutions linéaires, on définira d'abord « le conjugué A! d'un
tel nombre hypercomplexe a » ; ce sera

où A ne désigne le sous-déterminant correspondant à ctik\
puis cela norme, N[ci], de ce complexe a» en posant:
N(«) cc.Af= Ar.a; cette norme est toujours un nombre
réel et égal au déterminant du système des coordonnées :

puis « l'inverse d'un complexe a de norme non nulle » en

posant l'équation de définition (14); enfin, un «quotient à

gauche» et un «quotient à droite» du complexe a par le
complexe b, où l'on suppose N(ù)^0, comme ci-dessus,
articles 7 et 27.

Une induction, facile pour qui connaît les substitutions
linéaires, montre comment procéder dans le cas où le
nombre s des coordonnées indépendantes est un carré supérieur

à 9, s 16, 25, v2.

30. — Remarquons que toutes ces définitions peuvent
subsister même dans le cas où les coordonnées du nombre
hypercomplexe en question sont elles-mêmes des nombres
complexes de Gauss ; alors, en posant comme de coutume
i — — 1, on a affaire (dans le cas de 4 unités relatives,
s 4) à un complexe tel que

«21 > «22 ' a'<

(«i + ei 4~ («2 e2 (a?, ù;3) -j- [a4 -f- ib4) e4
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On voit combien il peut devenir fastidieux, quand on s'occupe
de pareils complexes, de distinguer entre les deux espèces
différentes de complexes, car il est nécessaire d'éviter
soigneusement toute confusion entre : d'une part les
coordonnées qui sont des complexes de Gauss, et d'autre part le
complexe total constitué par l'ensemble de ces coordonnées.
Afin de simplifier la terminologie et de prévenir des
confusions possibles, nous avons introduit le néologisme de
tettarions pour désigner cette espèce de nombres hyper-
complexes. Ce terme de teltarion est tiré d'un mot grec qui
signifie carré et doit indiquer que le complexe en question
peut se représenter par un schéma carré. Suivant que le
nombre des lignes et des colonnes est 2, 3, 4, donc le
nombre correspondant des coordonnées s 4, 9, 16,

nous parlons de duotettarions, tritettarions, tétratettarions, ...T

en général de v-tettarions ou polytettarions.
Les duotettarions sont donc les nombres hypercomplexes

définis dans les articles 26-28 ; les tritettarions ceux traités
à l'article 29 ; etc.

Dans la suite, nous ne parlerons que des duotettarions ;

nous pourrons ainsi les désigner par « tettarions » tout court.
De plus, nous envisagerons exclusivement des duotettarions
rationnels, et le corps )r| constitué par leur ensemble
(v. article 14).

31. — Après cette digression sur les tettarions en général,
proposons-nous de construire l'a ri t lin o mie du corps JPij formé

par tous les duotettarions rationnels. Le premier pas devra
consister à définir le tettarion « entier ». A cet effet, il s'agit
de trouver le domaine holoïde maximal contenu dans ce

corps de nombres Jr| (v. les définitions VI et VII).
Pour bien faire ressortir le fait nouveau qui se produit ici,

nous allons procéder par analogie.
Répétons que nous adoptons toujours la définition hur-

witzienne du nombre entier (v. définition IX).
Dans le corps des nombres ordinaires comprenant

l'ensemble de tous les nombres rationnels, il existe un seul
domaine holoïde ; il est, par conséquent, maximal : c'est
l'ensemble des nombres entiers; nous le désignons par [1].
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Pour savoir si un nombre rationnel pris au hasard est entier

ou non entier, il suffit de déterminer s'il fait partie du

domaine [1], ou non. Aucune ambigûité n'est possible, puisqu'il

existe un seul domaine holoïde, donc aussi une seule

façon de séparer les nombres rationnels en « entiers » et
<( fractionnaires ».

32. — Envisageons, en second lieu, les nombres complexes
ordinaires, ou complexes de Gauss, a0 + aA i. Dans le corps
de nombres constitué par l'ensemble des complexes rationnels

de Gauss, il y a une infinité de domaines holoïdes dif-
rents ; leur base est : (1, pi), où p est un nombre entier
arbitrairement choisi, mais fixe. Parmi tous ces domaines holoïdes,
un seul est maximal ; c'est précisément celui dont Gauss et

plus tard M. Lipschitz ont fait l'arithnomie, à savoir le
domaine [1, i] ensemble de tous les mx -j- mp, où mi et m^

sont des entiers ordinaires.
Si l'on prend au hasard un nombre complexe a + ßi

rationnel quelconque, on pourra dire immédiatement et sans
équivoque, si ce complexe rationnel est «entier» ou «non
entier»; il suffira de déterminer s'il est contenu, ou non,
dans ce domaine [1 ; i\. Ici aussi, aucune ambigûité n'est
possible, parcequ'il existe un seul domaine holoïde maximal;
en d'autres termes : il n'y a qu'une façon de séparer les
nombres complexes rationnels de Gauss en complexes
« entiers» et complexes « non entiers ». A la question : «Le
complexe rationnel a + ßi est-il entier ?» on répondra d'une
manière absolue, soit par oui, soit par non ; aucune autre
alternative n'est possible.

33. —Envisageons, en troisième lieu, les quaternions. Le

corps des quaternions rationnels (v. définition 11) contient
une multiple infinité de domaines holoïdes différents. Mais
de tous ces domaines holoïdes contenant les unités relatives
ix, i%n i3, un seul est maximal; c'est le domaine [J] découvert

par M. Hurwitz (v. article 19). Choisissant arbitrairement
un quaternion rationnel z, on pourra décider sans
équivoque et d'une manière absolue, si z est « entier» ou «non
entier » ; il suffira de déterminer s'il fait partie de ce domaine
[.J], ou non. Ici encore, aucune ambigûité n'est possible,
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parcequ'il existe un seul domaine holoïde maximal, et partant
une seule façon de séparer les quaternions rationnels en
« entiers » et « non entiers ». A la question : « le quaternion
rationnel x est-il entier » on répondra également d'une
manière absolue, soit par oui, soit par non ; aucune autre
alternative ne sera possible.

34. — En quatrième lieu, envisageons les tettarions et
examinons le corps |t| des tettarions rationnels. 11 s'agit de

séparer ce corps j T J en deux ensembles, mettant dans le

premier : les tettarions « entiers » encore à définir, dans le
second: les tettarions « non entiers ». D'après ce qui précède,
cela revient à chercher quel est le domaine holoïde maximal
du corps Jt|. Or, voici le fait nouveau qui se produit ici :

Parmi tous les domaines holoïdes que contient le corps |t| *

une infinité sont maximaux, quoique très différents entre eux.
Nous avons, en effet, démontré ailleurs le théorème
suivant :

Le domaine holoïde maximal le plus général contenu dans
le corps j T j des tettarions rationnels possède la base que
voici :

es
i I 0, 0

t - j ~ dg(
t —S, t -( 1 ; °|. / ~s\g' 0

^
ï'ég2 8x8% \

2

8i\
" \ 0; 1)

4 (0, 0

où £ =h 1 ; e' h= 1 ; c, d, g, g^ g2, g3 représentant
des nombres entiers arbitrairement choisis, mais fixes, et

assujettis aux conditions :

c^O, d^ 0 g?± 0 g(gAg3 + ggf — gig. es

oil gA est un nombre entier quelconque.
On obtient donc un domaine holoïde maximal en faisant

parcourir, dans l'expression

m1t1 -f m2t2 + mztz -f m4/4

aux 4 nombres m-A et indépendamment les uns les autres, la
série des nombres entiers ordinaires, de — oc à -f- 00 après
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avoir fixé, conformément aux conditions ci-dessus, mais

d'ailleurs arbitrairement, les entiers s, sf, c, d, g", gx, g*2 >

§3et54.
35. — Parmi ces domaines holoïdes maximaux se trouve, par

exemple, le domaine /?<?3, où p est un nombre

entier non nul, du reste arbitrairement choisi, mais fixe. Ce

domaine holoïde maximal que nous désignons par [JP| est donc
constitué par l'ensemble des tettarions

miei H" e2 + pm3e3 -h /»4e4 (17)

Il contient une infinité de tettarions à coordonnées entières :

il suffit d'y choisir pour /??2 un multiple de p ; mais il ne
contient pas tous les tettarions à coordonnées entières ; ainsi,
ni é?3, ni 2e3, ni 3es, ni (p— l)e3, ni une infinité d'autres,
n'en font partie. Par contre, [J ] contient certains tettarions à

coordonnées fractionnaires, par exemple

ÎJ ?£? ^2 p~ 1

f Co »

P P P P

et une infinité d'autres.
Citons encore le domaine holoïde maximal [H2] formé par

l'ensemble des tettarions

— Y) ei "h '23 ^ — ifj e3 + ('"l — m3 + + 5) e4 (18)

où les 7??^ représentent, comme toujours, des nombres entiers
quelconques. Ce .domaine [H2], quoique comprenant (outre
des tettarions à coordonnées fractionnaires) une infinité de
tettarions à coordonnées entières, ne les contient cependant
pas tous ; par exemple, il ne contient pas ei ; par contre, ce
même tettarion ei fait partie de chacun des domaines [Jp], quel
que soit p.

Chacun des domaines holoïdes [J.] est cependant maximal ;
en d'autres termes : il n'existe pas, dans le corps de tettarions
|Tj, un autre domaine holoïde contenant tous les éléments
de [JJ plus encore d'autres non compris dans [JJ. Etil en est
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de même pour tous les autres domaines holoïdes maximaux.
Chacun d'eux constitue un ensemble de « nombres entiers »

avec toutes leurs propriétés caractéristiques ; c'est dire qu'on
peut ériger, dans chacun de ces domaines holoïdes
maximaux, une arithmétique en tous points semblable à l'arithmétique

kurwitzienne des quaternions entiers.
36. — Si l'on fait l'arithnomie du domaine [HJ par exemple,

tous les tettarions contenus dans [H2] seront réputés « tetta-
rions entiers », et tous les autres, donc aussi ex, seront
considérés comme tettarions «non entiers». Par contre, si l'on
fait l'arithnomie d'un domaine [Jp], ce seront tous les tettarions

faisant partie de [JT], donc aussi qui seront réputés
« entiers », à l'exclusion de tous les autres. Ainsi, le tetta-
rion el qui est pourtant à coordonnées entières devra être
envisagé soit comme « nombre entier», soit comme «nombre
non entier », suivant le domaine holoïde considéré. On ne

peut donc pas, quand on s'occupe de l'arithnomie des
tettarions, appliquer purement et simplement la définition IX du

tettarion entier en disant : « un tettarion rationnel

sera entier, s'il fait partie d'un domaine holoïde maximal» ;

on est obligé d'ajouter : « entier par rapport au domaine

[Jp] ^ 011 bien : « entier/2«/' rapport au domaine [H2 »], etc.
37. — Prenez maintenant au hasard un tettarion rationnel t

et posez la question: « est-il entier?» On ne pourra plus
vous répondre, en général, d'une manière absolue, soit par
oui, soit par non. Il pourra se faire, au contraire, qu'on doive

répondre « cela dépend », car il y a plusieurs façons de

séparer le corps des tettarions rationnels en « entiers » et
« non entiers » ; il y a même une infinité de manières d'opérer
cette séparation, et la réponse à la question ci-dessus doit
dépendre, ou du moins peut dépendre, de la façon dont on a

départagé le corps des tettarions rationnels en entiers et non
entiers.

38. — Certains tettarions rationnels sont contenus dans

A
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tous les domaines holoïdes maximaux ; tels les nombres
entiers ordinaires envisagés comme tettarions réels ; ceux-là

sont donc toujours et sûrement des tetta ri on s entiers ; on

pourrait les nommer « absolument entiers ». D'autres tetta-
rions rationnels ne sont contenus dans aucun domaine
holoïde maximal ; ceux-là sont donc toujours des tettarions
non entiers ; on pourrait les dénommer « absolument non
entiers » ou « absolument fractionnaires ». Enfin, il y a une
catégorie de tettarions rationnels contenus dans tel domaine
holoïde maximal [JJ. mais pas dans les autres ; ceux-là

peuvent être tantôt entiers, tantôt non entiers, suivant la

manière dont on sépare en deux le corps des tettarions rationnels.

On pourrait nommer « conditionnellement entiers » les
tettarions de cette troisième catégorie.

Au point de vue de l'arithnomie, le corps des nombres
rationnels ordinaires et celui des complexes rationnels de
Gauss se partagent, chacun, en deux groupes seulement,
dont l'un contient tous les <c nombres entiers» et l'autre
tous les « nombres non entiers». Par contre, le corps des
tettarions rationnels devrait plutôt se partager en trois
groupes: celui des nombres «absolument entiers », celui
des nombres «absolument fractionnaires», et enfin celui
des nombres « conditionnellement entiers ».

39. — Parmi les domaines holoïdes maximaux du corps
| T des tettarions rationnels se trouve le domaine [3 fi] constitué

par l'ensemble des tettarions à coordonnées entières :

[JJ — ensemble de tous les m1e1 -j- m2 e2 -f- m3 e3

où les /;?; représentent des nombres entiers ordinaires
d'ailleurs quelconques. En appliquant la définition Mpschitzienne
au cas des duotettarions, c'est-à-dire en posant la

Définition X: Un duotettarion t sera dit « entier», si ses
quatre coordonnées fi sont toutes des nombres entiers
ordinaires, en posant cette définition, dis-je, on obtient un
domaine holoïde maximal. Il s'en suit que l'arithnomie basée
sur cette définition X est «régulière», semblable en tous
points à la théorie hurwitzknne des quaternions entiers,

L'Enseignement mathém., 18e année ; 191G. 1G
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nous voulons dire : exempte de ces exceptions singulières
que présente la théorie lipschitzieune des quaternions entiers.

L'exemple des duotettarions prouve donc que les nombres
complexes de Gauss ne constituent pas le seul système de
nombres complexes où la définition lipschitzienne du
complexe entier soit satisfaisante (v. définition V).

Celui qui poserait un peu au hasard et sans en connaître
la raison profonde, en se laissant guider par l'induction ou

par l'analogie avec les nombres complexes ordinaires, cette
définition X du tel tari on entier, simplement parce qu'elle se

présente le plus naturellement à l'esprit, celui-là aurait de la

chance, en ce sens que le domaine holoïde ainsi délimité est
maximal, car bien souvent (l'exemple des quaternions, entre
autres, le prouve la définition lipschitzienne du complexe
entier (v. définition Y) engendre des domaines holoïdes non
maximaux et partant, une arithnomie «non régulière ».

Mais en posant la définition X simplement par induction et

pour des raisons d'analogie, sans en approfondir le pourquoi,

et l'arithnomie basée sur cette définition X étant par
hasard «régulière», c'est-à-dire exempte de ces exceptions
singulières qui donnent à réfléchir, on ne s'apercevrait pas
de ce qu'il y a d'intéressant dans le cas des tettarions, de ce

qui les distingue d'autres systèmes de nombres hypercom-
plexes, à savoir: que cette définition X n'est pas la seule
possible, puisqu'on peut séparer les tettarions rationnels de

plusieurs manières, même d'une infinité de manières, en
tettarions entiers et non entiers.

Exprimons cette différence en disant que, pour obtenir
une arithmétique « régulière »

1° dans le système des nombres complexes de Gauss, on
doit se baser sur la définition lipschitzienne ; c'est la seule
satisfaisante

2° dans le système des tettarions, on peut se baser sur la

définition lipschitzienne ; mais ce n'est pas la seule qui y soit
satisfaisante ;

3° dans le système des quaternions, il ne faut pas se
baser sur la définition lipschitzienne ; elle n'y est pas
satisfaisante.
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Résumant les considérations précédentes, nous dirons :

il existe des systèmes de nombres hypercomplexes où Ton

peut procéder de plusieurs façons pour séparer le corps des

complexes rationnels en « nombres entiers » et « nombres

non entiers ».

IV

40. — Dans les chapitres précédents, nous avons reconnu

que définir le complexe « entier » de façon satisfaisante
revient à déterminer le domaine holoïde maximal (éventuellement,

s'il y en a plusieurs, les domaines holoïdes maximaux)
du corps de nombres j R j constitué par l'ensemble des

éléments

i ...n

*
X

où toutes les coordonnées x\ sont des nombres rationnels
arbitraires. On pourrait se demander si, étant donné un
système quelconque de nombres hypercomplexes, on peut
toujours séparer ainsi le corps rJ des complexes rationnels en
deux groupes, l'un comprenant tous les complexes entiers,
l'autre tous les complexes non entiers.

De prime abord, on ne posera guère cette question ; on
est porté tout naturellement à croire qu'on peut toujours
procéder de façon satisfaisante à cette distinction essentielle
entre complexes entiers et non entiers, peut-être d'une seule
manière, comme pour les nombres complexes de Gauss,
peut-être de plusieurs manières, comme pour les tettarions;
mais en tout cas, si on se laisse guider uniquement par
l'analogie, on admettra implicitement et a priori que cela est
toujours possible. Or, il n'en est rien. D'une manière plus précise

: les recherches aboutissent au résultat surprenant
exprimé par le théorème que voici: Il existe des corps de
nombres hypercomplexes rationnels contenant une infinité de
domaines holoïdes, mais parmi lesquels aucun n'est maximal.
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41. — Exprimons ce fait d'une manière plus frappante. On
a toujours à sa disposition, cela va sans dire, la définition
lipschitzieune du nombre hypercomplexe entier (v. définition

V) ; c'est même là son grand avantage : d'être toujours
applicable et toujours univoque. Mais nous avons reconnu
que cette définition qui s'en tient uniquement à la nature
des coordonnées, sans considérer en aucune manière les
propriétés intrinsèques du système de nombres hypercomplexes
en question, doit être écartée comme non satisfaisante,
comme pouvant conduire à des arithnomies non régulières ;

nous avons montré qu'il faut avoir recours à la définition
hurxitzienne (v. définition IX). Or, celle-ci implique l'existence

d'un domaine holoïde maximal ; sans domaine holoïde
maximal, point de nombres entiers.

Le théorème énoncé tout à l'heure prouve la réalité des

trois possibilités suivantes : certains corps de nombres
contiennent lin seal système de « nombres entiers » ; la définition

du complexe entier y est absolue et unique. D'autres

corps de nombres contiennent plusieurs systèmes différents
de « nombres entiers » ; la définition du complexe entier y
est relative et plurivoque. Enfin, d'autres corps de nombres
encore ne contiennent aucun système de « nombres entiers »;
la définition du complexe entier y devient, jusqu'à un certain
degré, arbitraire; aussi faut-il s'attendre à ce que l'arith-
nomie correspondante en porte l'empreinte plus ou moins
profonde.

Nous allons citer un exemple simple de nombres hyper-
complexes doués de cette particularité.

42. — Envisageons des nombres hypercomplexes à trois
unités relatives, tels x^=xlei + .r2e.> -|- x3e3, les nombres ,ry,
dits coordonnées du complexe .r, étant, comme toujours, des

nombres réels arbitraires. Si a= a4e { + a2e2 + aze3
b — bxex -f- b2e2 -f- b309 sont deux quelconques de ces
complexes, on définit Végalité et Vaddition de ces deux
complexes par l'égalité et l'addition de leurs coordonnées
correspondantes. En d'autres termes, ci b signifie l'existence
simultanée des trois égalités b\ (/. 1, 2, 3) ; la
soustraction, opération inverse de l'addition, est alors toujours
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possible et univoque, et Ton a les formules :

a±b — (at ± b1)e1 + («2 ± h)e* + K ± ''3)*3

En additionnant r fois de suite un complexe à lui-même,
on trouve que

7-.ci — ra1e1 + ra%e% -f- ra3 e3 (19)

et Ton étendra cette règle, par définition, à la multiplication
par un«nombre réel r quelconque.

La multiplication de ces complexes entre eux est fixée

par le tableau suivant qui donne le produit e..ek à l'intersection

de la ligne horizontale portant à gauche c. et de la
colonne verticale portant en haut ek (?', k= 1,2, 3)

1 1

i e2 | <?o

el ei e2 0

1
^

1

e2 © 0

e3 0 0 e3

Il en résulte que la multiplication est toujours commutative,

a b h.a.
Nous appellerons un tel complexe réel, quand sa

coordonnée moyenne sera nulle et en même temps ses deux
coordonnées extrêmes égales entre elles. Inversement : tout
nombre réel r pourra être envisagé comme un tel complexe
de la forme r rex + re3 /'(c1 + e3). On vérifie sans peine
que le symbole ei + e3 joue le rôle du nombre 1, de sorte
qu'on peut poser ici :

1

et que la règle exprimée par l'égalité (19) n'est qu'un cas
particulier des définitions condensées dans le tableau (20).

43. — A tout complexe a ctxex -f- a^e* + a3e3 correspond

un conjugué unique et bien déterminé :

A' a1 a3 e1 — a2 a,, e2 + (Ye^
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Le produit d'un complexe a et de son conjugué A' est

toujours réel et s'appelle « la norme de a », en signes :

iST(a) a. A' °\a'À •

La norme d'un produit est égale au produit des normes
de ses facteurs.

Si la norme de a est nulle, ce complexe a est dit « un
diviseur de zéro »1. Gela se présente dès que l'une au moins
des coordonnées extrêmes est nulle, et sans qu'on ait, pour
cela, nécessairement a 0. Un produit de tels complexes
peut ainsi être nul sans qu'aucun facteur ne le soit (v. 27).

La division, comme opération inverse de la multiplication,
est définie dans ce système de nombres hypercomplexes par
la formule :

^
a a.W <ix ax f>2 a2b1 a.è

^a J — — xjf} — /— <\ — ^2 T *3

Au moyen de ces définitions, les 4 opérations rationnelles
de l'addition, de la soustraction, de la multiplication et de
la division (sauf, éventuellement, la division par un diviseur
de zéro) sont parfaitement et univoquement établies dans le
domaine de ces nombres hypercomplexes, et l'on peut dire
qu'elles s'effectuent « suivant les règles ordinaires de

l'algèbre», en tenant compte du tableau (20).
44. — Faisons remarquer, en passant, que ce système spécial

de nombres hypercomplexes à trois coordonnées est un
sous-système, ou cas particulier, des tritettarions (v. art. 29

et 30). On peut en effet représenter le complexe a — alei
-j- <72c2 + ((?>e:] par le schéma carré

G *2 0

0 al 0

0 0 «%

1 II ne faut pas confondre « diviseur de zéro » avec « racine de zéro ». Tout nombre hyper-
complexe dont l'une des puissances est nulle est dit racine de zéro (d'après G. Frobenius),
ou nombre pseudo-nul (d'après E. Cartan), quelquefois nombre nilpotent (d'après B. Peirce),
Un nombre pseudo-nul est toujours diviseur de zéro, mais la réciproque peut ne pas avoir
lieu. Par exemple, dans le système dont il est ici question, e2 est pseudo-nul, puisque e? 0,

tandis que e± est diviseur de zéro sans être racine de zéro.
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caractérisé par

alx — a22 ; an — a?A o2?i — a32 a2i 0

45. — Nous allons envisager le corps de nombres | K j

constitué par l'ensemble de tous les complexes rationnels
du système en cjuestion (v. article 14). Le premier pas à

faire pour construire l'arithmétique généralisée de ce corps
| K | consiste à y définir le complexe entier. Gela revient à

déterminer, comme nous l'avons montré plus haut, le

domaine holoïde maximal, éventuellement les domaines ho-

loïdes maximaux, de ce corps de nombres j K J. Pour cette
détermination, prenons comme point de départ le théorème
fondamental suivant :

Le domaine holoïde le plus général contenu dans le corps
de nombres j K j a comme base

P §Pn\ j
iP e1 H- e9 j

(B)

(P — iîgxg2 ex + yr2 ]

où y est un nombre rationnel non nul du reste arbitraire,
etg,gi, g2 des nombres entiers quelconques assujettis aux
seules conditions g^P 0, g.{ p0.

L'ensemble de tous les complexes

mx. (P -f- m2 iP -{- 7n?).
b(3)

où les nombres ml, z??2, z??3 prennent, de toutes les manières
possibles, les valeurs entières de —x à + x alors que
g, gi, g\, y conservent la même valeur arbitrairement choisie,

mais fixe, cet ensemble, dis-je, constitue donc toujours
un domaine holoïde; nous le désignons par [h]. Inversement

: dans tout domaine holoïde faisant partie du corps j K J

il est possible de choisir une base de la forme (B). Les
différents domaines holoïdes de ce corps de nombres ne dif-
fè rent entre eux que par le choix des nombres g, gi. g.2, y
servant à former la base (B). Il s'agit de déterminer les
conditions pour qu'un tel domaine holoïde [h] soit maximal.
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46. — On démontre facilement qu'une condition nécessaire

pour que [A] soit maximal est que g gi — 1 ; g\2 ~ ; et
qu'un domaine holoïde du corps de nombres |lvj ne saurait
être maximal s'il ne possède une base telle que

e1
a(:2)

Té>2
rt(3) e3 (Bx)

Désignons par [ffi] le domaine holoïde correspondant à

cette base (BJ ; il sera constitué par l'ensemble de tous les
complexes

ni1 ßj -f- m-f- m?J- e3

où y ^ 0 est un nombre rationnel arbitrairement choisi,
mais fixe, tandis que les ut y représentent, comme d'habitude,
des nombres entiers ordinaires variant de — co à + gc On

voit, en effet, que [H.], puisqu'il contient ei, e3 et yc2, contient
aussi les éléments de la base (B), donc aussi cette base elle-
même,. donc aussi tous les complexes qu'on peut dériver
de cette base (B), en d'autres termes : tous les complexes
dont se compose [A] et, par conséquent, [A] lui-même. Mais
[HJ contient, en outre, des complexes ne faisant pas partie
de [A], par exemple c3, dès que g 1 ou g\ > 1. Donc enfin,
[A] ne saurait en tout cas être maximal s'il ne coïncide avec

[HJ — + WoY.p2 + e3J

C'est là une condition nécessaire, mais pas encore suffisante,
comme on va le voir.

47. — Mettons y, qui est un nombre rationnel non nul,

sous forme de fraction irréductible en posant: y ~ Un

domaine holoïde du corps j K j ayant une base de la forme
(B4) ne pourra être maximal si le nombre entier /• > 1. On

s'en convainc en supposant y - et prenant comme base

Déduisons de cette base B.ù le domaine holoïde

[U2] "h+ —" • e2 +
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et comparons-le au domaine [H J. On vérifie immédiatement

que pour /• 1, ces deux domaines holoïdes coïncident,
c'est-à-dire contiennent exactement les mêmes complexes,
mais que pour r > 1, le domaine holoïde [H J, contenant

qui ne fait pas partie de [11J, contient tous les éléments

cle [H J plus encore d'autres non renfermés dans [HJ. On en

conclut qu'un domaine holoïde du corps j K j, pour être
maximal, doit posséder une base de la forme (B2), où p est
un nombre entier non nul, du reste arbitraire. Nous allons
montrer que cette condition, nécessaire, n'est pas suffisante.

48. — Si p i, on a le domaine holoïde

[L] [m^e^ -\- m2p2 "h ma e31

constitué par tous les complexes à coordonnées entières; ce
n'est pas autre chose que le domaine lipschitzien (v. définition

V). Or, ici, ce domaine [L] n'est pas maximal (pas plus
qu'il ne l'est dans le cas des quaternions). Pour s'en
convaincre, il suffit de constater qu'on peut l'agrandir, sans
sortir du corps de nombres J K j, en adjoignant à [L] le

complexe qui n'y est pas contenu. On obtient alors l'ensemble

élargi
p*: miei + ~:je2 + ">

plus étendu que [L] et qui est également un domaine holoïde.
Donc, si l'on veut un domaine holoïde maximal de base (EL),
il faut en tout cas choisir/; > 1.

49. — Les faits prouvés ci-dessus portent à croire que

[HJ ensemble des complexes m1e1 -j- —- e.> -j- m? e?t

est un domaine holoïde maximal. Mais il n'en est rien. On
peut en effet, sans sortir du corps de nombres j K j élargir
encore le domaine holoïde [HJ en lui adjoignant le
complexe |§. Ce complexe ne fait pas partie de [HJ, puisque
l'équation

— M?} c1 -f- —- -j- m0 e
p- 11 P "
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entraînerait, en vertu delà définition de l'égalité des com-
1 l\ l 1 •

plexes, m3 0, —- —: d ou m„ - ce qui est en
p r P

contradiction avec l'hypothèse expresse p 1 el z/?2 un
nombre entier.

Il s'ensuit que le domaine [H3] ayant pour base

bm e,l>m ^e., (Ba)

et constitué par l'ensemble de tous les complexes

''h ei + ^ ^2 + "'3 e3 '

contient aussi p~~ - donc aussi la base (BJ, donc aussi
p2 p

v 27

tous les éléments dérivai)les de cette base, donc aussi [HJ.
En d'autres termes : [H3] contient tous les éléments de [il_>]

plus encore d'autres ne faisant pas partie de [il.,]. Or, [HJ est
de nouveau un domaine holoïde ; on en conclut que [Hne
saurait être maximal.

En posant p2 — g et répétant le même raisonnement sur le

domaine [H3] dérivé de la base ^ c3J qui n'est autre

que la base (B3) écrite différemment, on verrait que [ff3] n'est

pas non plus maximal.
Puisque p est un nombre naturel supérieur à 1 et d'ailleurs

absolument arbitraire, on voit bien que dans Le corps de

nombres j K j il n'y a pas de domaine holoide maximal.
50.—Remarque. Pour obtenir un domaine maximal, on

pourrait penser qu'il suffit d'attribuer aussi à p différentes
valeurs. Mais il faudrait faire prendre à p toutes les valeurs
entières de—oo à + oo ; et alors, l'ensemble |j| formé par

tous les complexes miei + 4- m3e3, où les m^

représentent des entiers arbitraires (mA ^ 0), est bien un domaine
d'intégrité contenant le nombre 1; mais il ne possède pas de
base finie au sens de l'article 16; en d'autres termes : il n'est

pas possible de choisir dans jjJ un nombre fini de
complexes pouvant reproduire, par les seules opérations de l'ad-
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dition et de la soustraction, tous les éléments de l'ensemble

en question. Donc, jjJ n'est pas un domaine holoïde et ne

saurait être envisagé comme composé exclusivement de

nombres entiers (v. article 17).

Y

51. — Bien que le corps de nombres |k| ne contienne

aucun domaine holoïde maximal, on peut néanmoins tenter
d'y construire une arithmétique généralisée. Comme fondement

de cette arithnomie, on essaiera la

Définition XI : un complexe rationnel

m2
Cl 1)1^ Gj —j— G^ "I- '"3 ^3

est réputé entier, si mi, m3 représentent des nombres
entiers ordinaires, pouvant prendre toutes les valeurs de

— go à -f- co étant un nombre entier non nul, arbitrairement

choisi, mais fixe.
L'ensemble

[H] jLej + '^eg +

est bien un domaine holoïde, et il renfermera exclusivement
des complexes entiers, en vertu de la définition XI; tous
les autres complexes du corps j&j, c'est-à-dire ceux ne
faisant pas partie de [H], seront réputés non entiers.

Les « nombres entiers » dont nous allons faire la théorie
constituent un domaine holoïde non maximal, de sorte qu'il
faut s'attendre a priori à ce que cette arithnomie ne soit pas
régulière, mais présente des singularités étonnantes,
comparée à l'arithmétique classique.

52. — Pour abréger l'écriture, nous représenterons nos
complexes entiers en écrivant uniquement les coordonnées.
Nous figurerons ces complexes, sans écrire les unités
relatives e^ ni les signes -f en mettant simplement les
coordonnées, séparées par des vigules, entre parenthèses; et ce
seront ces parenthèses qui indiqueront symboliquement la
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liaison censée exister entre les coordonnées, liaison qui
fait que les 3 nombres constituent un seul et même tout.

Ainsi, a — a[ei + (~e.2 -(- a?> e3 s'écrira simplement
S

où g 0 est un nombre entier fixe. Le

complexe a sera donc entier, si les trois nombres a2 et
a3 le sont ; et a sera non entier, si l'un au moins de ces trois
nombres a^ est fractionnaire.

Tout nombre réel r pourra être envisagé comme un de ces
complexes de la forme /• (/•, 0, r) ; en particulier, le nombre
1 (1,0,1).

53. — Définition de la divisibilité. Un complexe entier

a (^ai est dit « divisible par le complexe entier

h — ^bi ^, b^j » s'il existe un complexe entier c (eA c3^

satisfaisant à l'équation a — b c. Nous dirons aussi que,
dans ce cas, « b est un diviseur de a » et que « a contient 6».
Si b est de norme nulle, l'équation a b c n'a de solution
en complexes entiers que si a est aussi de norme nulle. En
particulier, b étant donné, l'égalité 0 b c est vérifiée par
une infinité de complexes entiers c B' A, où h est un
complexe entier quelconque et B' le conjugué de b. De là

vient le nom de « diviseur de zéro ».

54.— Le complexe entier s est dit une unité, s'il entre
comme diviseur dans tout complexe entier (v. article 10). Il
existe dans le domaine [H] dont nous nous occupons une
infinité d'unités, à savoir les complexes

« "+~ t, dz - * db

k étant un nombre entier quelconque. Remarquons que

^1,^, 1^ pour toute valeur entière, positive,
nulle ou négative, de k. En considérant comme unités
fondamentales s| (—1, 0, 1) ; (i, 0, —1) ; s3 1, ~, ^ 7

on peut mettre n'importe quelle unité s sous forme d'un produit

de ces 3 unités fondamentales : s e" zf z\ où n, m
et k sont des entiers appropriés.
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55. — Deux complexes entiers sont dits associés, s'ils ne

diffèrent l'un de l'autre que par un facteur unité s (v. article
10). A tout complexe entier« sont ainsi associés une infinité
de complexes «e, où e représente line unité quelconque. On

sait que dans toutes les recherches relatives à la divisibilité,
des complexes associés sont équivalents et peuvent se

remplacer l'un l'autre, comme c'est déjà le cas dans la théorie
des nombres ordinaires. Dans le groupe formé par
l'ensemble des complexes associés au même complexe entier- a,
donc associés entre eux, il suffira d'en choisir un, convenablement

défini et cpii remplacera tous les autres. On appelle
ce représentant : un complexe primaire ; clans les théorèmes
de divisibilité et de décomposition en facteurs, il suffit
d'envisager les complexes primaires.

Dans le domaine des nombres hypercomplexes dont nous
nous occupons ici, on peut d'abord supposer non négatives
les trois coordonnées d'un complexe primaire «, puisqifau
lieu de x, on peut au besoin considérer —;r, ou £rr, ou s^x;
a étant supposé de norme non nulle, envisageons son associé

« Q> A«,) •('•H® (öi'°3)= (v 7•

On voit que le nombre entier A peut être choisi de manière
que d% < at et qu'alors, c/2 est déterminé de façon univoque.
Ceci conduit à la définition suivante : un complexe entier
a Çat ~, a^j non diviseur de zéro est dit primaire, si ses

coordonnées satisfont aux inégalités simultanées 0 < a^ ;

0 ^ «2 < ax ; 0 < a3.

Donc, si x— (x-i, '^2, ,r3^ est un complexe entier primaire
de norme non nulle, .t\2 ne peut avoir que Tune des valeurs
0, 1, 2, 3, x{ —4. Parmi tous les complexes entiers associés

entre eux se trouve toujours un, mais un seul, qui est
primaire.

56. — Quant aux diviseurs de zéro à première coordonnée

nulle, tous de la forme ^0 ^, ci^J, ils constituent un groupe
particulier, un sous-système à deux coordonnées contenu
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entièrement dans le système à trois coordonnées que nous
envisageons. Leur étude devrait se faire à part, et comme ce
n'est pas le but de ce travail, nous les excluons des recherches
subséquentes.

Quant aux diviseurs de zéro dont la troisième coordonnée
est nulle sans que la première le soit, tous de la forme
(y^

1 •> 0^ ils constituent également un sous-système
particulier à deux unités relatives, clemandant une étude spéciale.
On peut y maintenir, pour le complexe primaire, la définition

donnée ci-dessus (art. 55), avec cette seule différence
que a3 0. Nous les excluons aussi des recherches
ultérieures dans ce travail.

57. — En analogie avec la théorie classique des nombres,

nous définirons : un complexe entier ö ^ y, a^j qui
n'est pas une unité ni un diviseur de zéro, est dit irréductible,

ou premier, si dans toutes les décompositions possibles
a b c de a en deux facteurs, l'un de ces derniers est
toujours une unité. Ces complexes entiers irréductibles joueront

ici le rôle des nombres premiers de l'arithmétique
ordinaire.

Dans le domaine que nous étudions, il existe trois catégories
de complexes irréductibles, à savoir :

L° Les complexes de la forme a (1, 0, /;) e.K + pe3,
où p est un nombre premier naturel. Leur norme N(a) ~ p
est un nombre premier. Les complexes entiers, non
primaires, de la forme ^ ~ p^j leur sont associés et n'en

diffèrent donc pas essentiellement.
2° Les complexes de la forme ß (p, 0, 1) pex + e3.

où p représente un nombre premier naturel. Leur norme
N(/3) /J2 est le carré d'un nombre premier.

3° Les complexes de la forme y (pn, 1 j où p est un

nombre premier ordinaire, l'exposant a un nombre naturel
quelconque et a% un nombre entier positif inférieur à p11 et
non divisible par p

0 a2 pn et a2 0 (mod p)
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Leur norme N (y) p3'1est une puissance paire quelconque
d'un nombre premier naturel p.

Si l'on voulait décomposer y en facteurs, on devrait avoir :

t (/.f.»).(,«.f..)=(/*". bcti,,)
d'où résulterait : k + m n, et

a2 — pmx -f- pk y — pm («*-' + 1

en supposant k ^ m. Si m > 0, la coordonnée r/2 serait
divisible par /?, contrairement à l'hypothèse. Cette contradiction
ne peut être levée qu'en prenant m 0; mais alors, l'un des
deux facteurs est toujours une unité et, par conséquent, y un
complexe irréductible.

Remarquons qu'il existe un seul complexe premier
primaire a de norme p, à savoir (i, 0, p) ; il représente tous les

complexes entiers ^t, ^car ils lui sont tous associés ;

par contre, il existe p complexes premiers primaires ß de
même norme p2, essentiellement différents entre eux, c'est-
à-dire non associés* à savoir :

(p.0,1); (p, l, lj'; (p, lj; ; (p, P-~ l)
ils représentent tous les complexes Çp, 1^ de même

norme p2.
Les nombres premiers naturels tels que p ne sont pas

irréductibles dans ce domaine, puisque

p [p 0, p) (i, 0 p),{p 0 i] „

58. — Pour décomposer en facteurs premiers un complexe
entier donné quelconque, as on a :

^ -C ^ (*t< "C lV (i, 0, Q r

Il suffit donc de considérer deux catégories de complexes
entiers : ceux de la forme (1,0, m) ex + et ceux de la

forme ^ 1^ dont la dernière coordonnée est 1.
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Désignant par pi. p2 p les facteurs premiers de m de

sorte que m pi p., p.A p on voit que

1
- 0 nt\ —: 1 0 px 1 0 '

*1 0 /%i • • • •
1 0 p

Il reste à considérer les complexes entiers de la forme

(ep, Si Ton pose cp /\ r.2 ru, nous pourrons
écrire la décomposition suivante :

(*O-0 ("? 'M- H-ov o
où les /•) sont des nombres premiers ou des puissances de

nombres premiers. Les entiers x], x2 x,} s'obtiennent
sans difficulté, de proche en proche.

La décomposition en complexes premiers d'un complexe
entier quelconque donné a est donc toujours possible.

59. — Cette décomposition d'un complexe entier donné en
facteurs irréductibles n'est pas nécessairement univoque. Par

275
exemple, le complexe entier <7 625c, + e.2 c3 peut

se décomposer, et de plusieurs manières, soit en un produit

de deux, soit en un produit de trois facteurs premiers:

625e1 + 2~e2 + e3 ('25 e1 -f -e2 + e3 ('25e1 -f - e2 -f

3 \ C 8
2oe1 + - c2 + e3 [2oe1 + - e2 -f- e3

2oe1 + - ^ + «a I 25ei + -^2

i5fj -f- e?)2 ^25 ex -f- ^e2 -f e3

^1 + + e3 ^ (25e1 + ~-e2

15ex + e3 5 ex -fr - e2 + e3 ^ (^25 ^ -f- ~ e2 -f e3

<5ei + + Z P2 + e3 ' 25L + + e3
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Toutes ces décompositions ne contiennent que des facteurs
irréductibles et sont essentiellement différentes entre elles.

En général, p désignant un nombre premier naturel, la

décomposition du complexe entier p*ex + + e3 est plu-

rivoque, dès que a > 1, puisqu'on a

plus forte raison, la décomposition de

Pn+k ei -T ^2 -T %
0

en facteurs irréductibles est-elle plurivoque, quand m > 1.

60. — On sait qu'une constatation analogue faite dans un
autre domaine (dans un système de nombres complexes à

deux coordonnées indépendantes, appartenant à un corps
dérivé d'une racine de l'unité) a amené le mathématicien
E. E. Kummer à créer ses nombres idéaux. Voyant que la

décomposition d'un complexe entier en facteurs premiers
était plurivoque, il imagina, pour faire disparaître cette
anomalie, de considérer ces facteurs premiers eux-mêmes non
plus comme irréductibles, mais comme décomposables encore
en d'autres éléments ; or, comme ces derniers, les éléments
vraiment irréductibles, 11e se trouvent en réalité pas dans le
système qu'il envisageait, Kummer les a créés de toutes
pièces, par la pensée, en posant des définitions appropriées.
A ces entités logiques créées par pure convention et pour
des besoins de simplification. Kummer appliqua le nom de
nombres; et pour les distinguer des nombres ou complexes
réels dont était composé effectivement le système qu'il
étudiait, Kummer les appela « nombres idéaux » (le mot de
<( nombres imaginaires » ayant déjà une signification fort
différente). De cette façon, Kummer a considérablement élargi
le domaine de nombres qu'il étudiait, en lui adjoignant une
infinité d'éléments nouveaux dits « nombres idéaux», parmi

L'Enseignement mathém., 18e année ; 191G 17
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lesquels se trouvent les nombres vraiment irréductibles,
c'est-à-dire indécomposables. Kummer a, naturellement, posé
d'une façon très judicieuse les conventions auxquelles étaient
censés obéir ses « nombres idéaux», de sorte qu'il réussit à

démontrer que, dans ce domaine agrandi, on peut ériger
une arithnomie régulière, semblable en tous points à celle
construite par Gauss dans le système des nombres a + bi.

Des rapprochements suggestifs ont été faits entre les
nombres idéaux de cette arithnomie et certains radicaux ou
éléments chimiques dont l'existence a été postulée par la
théorie bien avant d'être confirmée par l'expérience; tout
comme ces radicaux de la chimie, les facteurs idéaux de

Kummer n'apparaissent jamais à l'état isolé, mais figurent
(c à l'état de combinaison » dans les complexes entiers (v.
« Journal f. d. reine u. angew. Mathematik» fondé par Grelley
vol. 35, p. 360).

61. — Les théorèmes de décomposition valables dans le
domaine des quaternions entiers et des tettarions entiers
(v. article 23) pourraient peut-être faire apparaître sous un
jour nouveau cette pluralité de possibilités dans la
décomposition en facteurs premiers. Soit un tettarion entière dont
la norme N(c) comprenne quatre facteurs premiers dont
deux égaux entre eux, et posons :

N(c) p1.p2-Pi-Pz

Ayant arrêté cet ordre de succession des facteurs p, on

peut décomposer le tettarion donné c supposé primitif (c'est-
à-dire tel que le plus grand commun diviseur de ses
coordonnées soit 1) en un produit de quatre tettarions premiers
primaires :

c — 7Zf ,r.2 .„3 >»4

OÙ

N [-J Pl;N (-,) p,; N (~3| ; N (r4) ps

et cette décomposition est unique. Si l'on fixe un autre ordre
de succession, qu'on pose par exemple

N(C) P2-
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on aura une autre décomposition du tettarion donné c en un

produit de quatre tetlarions premiers primaires :

et cette décomposition sera de nouveau unique, c'est-à-dire
déterminée sans arnbigiïité.

Les tettarions premiers p^ seront différents, en général,
des tettarions premiers tt^ ; ainsi ^ ^ ïïo, quoique N^)
— N (tt2) ; de même 7^ ^6 p.v, quoique N (tt^ N {pA) pi ;

etc.
A chaque décomposition de N (c) en facteurs premiers, ou

plutôt à chaque ordre de succession que l'on fixe, arbitrairement

du reste, pour ces facteurs premiers (il y a douze

permutations possibles dans cet exemple particulier) correspond

une décomposition unique et bien déterminée de c en
tettarions premiers primaires, mais ces diverses décompositions

de c (au nombre de douze dans l'exemple particulier)
ne contiennent pas les mêmes facteurs premiers. Si le produit

final est néanmoins toujours le même, c'est-à-dire si

c'est parce qu'un produit dépend non seulement de ses
facteurs, mais aussi de leur ordre de succession.

Ce théorème reste vrai pour les tritettarions (nous l'avons
démontré dans un autre mémoire) ; en d'autres termes : ce
théorème reste vrai si c est un complexe à neuf coordonnées
(v. article 29) représentable par

* Pi • h Ps •

OU
n (pi) P2 ; N (p3) Pi ' N (p.9 Ps >

N (pJ Pt <

c

Or, le système de complexes à trois coordonnées que nous
venons d'étudier est un cas particulier des tritettarions
(v. article 44), Donc, le théorème de décomposition en lac-
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leurs premiers énoncé ci-dessus doit rester applicable,
semble-t-il, quelles que soient les coordonnées cik< pourvu
que X(c) ^ 0. Or, en prenant en particulier

on obtient précisément le complexe entier a (^ai y. a^j

appartenant au domaine que nous étudions depuis barticle 51,
en faisant g 1 ; on doit donc toujours avoir plusieurs
possibilités de décomposition :

Mais maintenant, la multiplication est commutative ; le

produit 7Tj.77-2• 773.774 c{ui est égal a c ne dépend plus de Tordre de

succession des facteurs, ni le produit pt ni les autres
produits analogues. Il en résulte du même coup que la

décomposition de c en facteurs premiers n'est plus univoque, puis-
qu'en général, les o, sont différents des différents aussi

'A a

des o*. etc.
A

62. — De plus, ces réflexions semblent indiquer que la

multiplicité de décomposition tient à la commutativité de la

multiplication et provient d'elle, tandis que l'unicité de

décomposition tient à la non-commutativité de la multiplication.

Ces considérations nous ont amené à rechercher si.
dans tous les systèmes de nombres hypercomplexes, la

décomposition d'un complexe entier donné en facteurs
premiers est plurivoque ou unique, selon que la multiplication,
dans le système en question, est commutative, ou ne l'est pas.

Quelques faits paraissent militer en faveur de cette thèse :

c'est d'abord un théorème fondamental qui repose sur
l'importante notion de système simple introduite par MM. E. Car-
tan et Th. Molien ; ce théorème dit que tous les systèmes
« simples » de nombres hypercomplexes à multiplication
associative, où l'égalité et l'addition de deux complexes sont
définis par l'égalité et l'addition de leurs coordonnées
correspondantes, constituent des sous-systèmes, donc des cas

particuliers, de certains systèmes de tettarions. C'est ensuite
le fait qu'un système de polv tettarions I u2 coordonnées
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entre lesquelles existent n relations n'est autre chose, en

réalité, qu'un système de nombres hypercomplexes à (g2—n)
unités relatives. Il semble même que les polytettarions ou

^-tettarions (g 2, 3, 4, 5, contiennent, comme cas

particuliers, tous les systèmes possibles de nombres hypercomplexes

à multiplication associative, c'est-à-dire où la relation
(a. b) .e a. (b. c) est toujours satisfaite; il semble, dis-je,
qu'il suffise d'établir des liaisons appropriées entre les
coordonnées d'un système de ^-tettarions pour obtenir, à l'écriture

près, tel système qu'on voudra de nombres hypercomplexes

à multiplication associative. Par exemple, les nombres
complexes de Gauss sont un cas particulier des duotettarions ;

les quaternions sont un sous-système particulier des tetra-
tet ta rions, et ainsi de suite. Des propositions ci-dessus ressort

en tout cas l'importance très grande des tettarions dans
la théorie générale des systèmes de nombres hypercomplexes.

63. — Revenons au domaine [H] formé par l'ensemble des

complexes entiers x xiei + ~ e2 -f- x3e3 ~ x3^j où

les Xy sont des nombres entiers variant de —co à + co et g"

un nombre entier fixe (v. 51). Que devient, dans ce domaine [H],
la théorie du plus grand commun diviseur Voici ce que l'on
peut démontrer sans grande difficulté : deux complexes

entiers donnés, a a3^ et 6
-o-, b,

possèdent a en général » un plus grand commun diviseur, unique
et bien déterminé si l'on ne considère que les entiers
primaires (v. 55) ; de plus, il existe un procédé analogue à

l'algorithme d'Euclide permettant de déterminer ce plus grand
commun diviseur par un nombre fini d'opérations rationnelles.

Mais ce théorème « général » présente ici (comme dans le
cas des quaternions entiers lipschitziens, v. articles 9 et 12),
des exceptions déconcertantes. Elles sont même si
nombreuses qu'on peut se demander si le théorème énoncé ci-
dessus n'est pas plutôt un théorème exceptionnel (nous
le qualifions de « général », parce que son analogue est
vrai, sans exception, dans l'arithmétique classique). D'abord,
dans certains cas, l'algorithme d'Euclide ne conduit pas au
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but : à mi-chemin, il cesse d'être applicable; cela arrive,
par exemple, lorsque ai et r/3, coordonnées extrêmes de a,
sont des multiples de N(b) et qu'en même temps a2 n'est pas
divisible par N(0). Ensuite et surtout, un plus grand commun

diviseur au sens habituel de ce terme n'existe pas
toujours. En fait de démonstration, donnons un exemple numérique

facilement généralisable.
Les complexes entiers

25ex -f- e2 -f- e3 j et b —
(<25e1 -f- —e2 -f-

associés. Les égalités
ont même norme : N(a) N (b) 625, sans cependant être

es égalités

a — ^5^ + — e2 -}-

ci I
rr

e2 "h d~ e2 eî

4
— i t'j 4- e,) ^5ej -f- - e2 -j- e.

— (5^ -f- e3l « ^5^ -f- — e2 -f- e3^

— ^5cj - e2 -f- e3^ -j- — e2 -j- e3j
montrent que ces complexes a et b possèdent quatre
communs diviseurs, tous quatre entiers et non associés, donc
essentiellement différents entre eux, à savoir:

2
dç zz. —|- e3 ; d2 -]— — e2 -f-

§

dt — 5et -f -- e2 + e3 ; d3 5e1 + » e2 + e3
ö o

Si a et b possédaient un p>lus grand commun diviseur d,
i • • n v a f.d s

on devrait avoir : d une part ou / et h seraient cer-*
b — h.d '

tains complexes entiers, d'autre part

d — dQ. i— d^— d2,82 — 63. d3
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les ^ représentant certains complexes entiers, puisque le

plus grand commun diviseur^, devant contenir comme
facteurs tous les autres communs diviseurs, devrait être
divisible par cl0, clA, et cl3. Comme N(ö) N(d).N(/) 625,

il n'y a que les 5 possibilités suivantes : N(cl) 1, ou 5,

ou =25, ou 125, ou 625. Mais N(d) 625 est exclu,
car il s'ensuivrait que a et b seraient associés, ce qui n'est

pas le cas. Les égalités

N [d) N(</0).N(50) N(^UN(5d =; N(^2).N(o2) N(rf3).N(83)

excluent les hypothèses N{d) 1 et N(cL 5, puisque
N (cl0) N [cl^j N (d^) N (d3) 25 ; si N(rf) 25, il
s'ensuivrait que, les étant des unités, d0, clA, cU et cl3 seraient

associés, ce qui n'est pas le cas. Il ne reste ainsi plus à

examiner que la dernière hypothèse, savoir : N(c/) 125; il
s'ensuivrait N(/) 5; donc f étant un complexe entier,

serait nécessairement de la forme f— (1, 5). De l'égalité
' K A

a f. cl, on tirerait, en écrivant cl l clt, - clA :

(«•7- <)' d'où

ce qui est impossible en nombres entiers. Donc enfin, Phy-
pothèse d'un plus grand commun diviseur cl de a et b conduit

nécessairement à une contradiction. Et voilà deux
complexes entiers a et b ayant quatre diviseurs communs bien
différents entre eux, mais ne possédant, néanmoins, aucun
plus grand commun diviseur, au sens qu'a ce terme dans
l'arithmétique ordinaire.

Dès lors, il n'est plus vrai qu'un complexe premier qui
divise un produit de deux facteurs divise nécessairement
l'un de ces facteurs. Par exemple, les égalités ci-dessus

4
prouvent que le complexe entier 5ei -fi -fi e3 fiui est irré¬

el

ductible dans ce domaine et qui ne divise ni cl^, ni rf3, divise
cependant le produit d±.dz a. Enfin, quoique les com-

2 °
plexes entiers e/2 5e, + -;e2 + et d3 - 5e, -f- ^e2 + e3,
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tous deux irréductibles dans ce domaine, soient premiers
entre eux (c'est-à-dire admettent comme plus grand commun
diviseur 1), leurs cinquièmes puissances,

- 0/10. 6 250 7.
9 375

d — 3 1^06? -j— Cm —(— c0 6l d° — 3 12o'j, -J— 60 -J— 02 + &
' £ * ä 2 1 et ''

r> o

ne le sont point et admettent le diviseur commun 3 125ej -f- es.
Ainsi se trouve confirmée la présomption émise à la fin

de l'article 51, à savoir que l'arithnomie du corps de nombres
j K j basée sur la définition XI ne serait probablement pas
« régulière », parce que la dite définition du complexe entier
engendre un domaine holoïde [H] non maximal.

64. — Toutes les déductions précédentes restent valables,
si l'on remplace ^ par un nombre rationnel^ non nul, du reste
arbitraire. Faisons remarquer que plus le nombre entier g
contient de diviseurs, plus le domaine holoïde [H]
correspondant enveloppera de complexes rationnels. On peut donc
agrandir indéfiniment le contenu du domaine [H], ou, pour
employer une image empruntée à la physique, y «comprimer))
des complexes rationnels de plus en plus nombreux. Si l'on
choisit, au contraire, pour y un nombre entier jn, on pourra
diminuer indéfiniment l'ensemble des complexes rationnels
faisant partie de [H], en prenant pour m un nombre de plus
en plus grand; on a donc la possibilité (pour employer la
même image que tout à l'heure) de «faire le vide)) de plus
en plus complètement dans l'ensemble [H]. Mais, qu'on
augmente ou qu'on diminue le contenu de cet ensemble,
l'arithnomie dont nous avons esquissé ci-dessus la partie
élémentaire ne changera pas essentiellement, le domaine
holoïde non maximal [H] restera toujours non maximal.

Pour faire disparaître les singularités dont nous avons
signalé quelques-unes, il faut avoir recours à des procédés
plus profonds.

65. — En principe, deux voies bien différentes s'offrent
au mathématicien. La première consiste à maintenir lés
mêmes définitions : de la divisibilité, du commun diviseur,
du nombre premier, etc., mais à élargir Vensemble [H] que
l'on étudie. On peut y arriver de deux façons: 1° en définis-
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sant différemment le nombre hypercomplexe rationnel
«entier» dans le corps de tous les complexes rationnels;
cette manière de faire est due à M. A. Hurwitz qui 1 appliqua

pour la première fois au système des quaternions; 2° en

créant, par des définitions judicieuses, des entités logiques
soumises à des lois appropriées, entités que l'on appellera,

par extension, des «nombres» et que l'on adjoindra à [H];
cette manière de procéder est due à Kummer (v. article 60).

La deuxième voie consiste à suivre une marche en quelque
sorte inverse de la précédente: on maintient tel quel le
domaine [H] que l'on étudie, on ne l'élargit point, mais on
change les définitions de la divisibilité, du commun diviseur,
du «nombre premier», etc. Le changement le plus radical
provient de ce que, dans les nouvelles définitions, l'on
n'envisage guère un nombre ou un complexe isolément, mais

plutôt des ensembles composés d'une infinité de complexes,
et que l'on opère avec ces ensembles de complexes au lieu
d'opérer avec des complexes isolés. Cette voie fut ouverte
par J.-W. Richard Redekind. — R. Dedekind désigne par
des lettres gothiques minuscules : a, b, c, 6, e... ces ensembles
particuliers auxquels il donna le nom d"idéaux, nom
critiquable peut-être, mais qui a acquis droit de cité dans la

théorie moderne des nombres. L'idée géniale du célèbre
mathématicien revient à ceci : prendre comme sujet direct
d'étude, au lieu de l'entier considéré a, l'ensemble de ses

multiples g.a\ cet ensemble forme a l'idéal principal de
l'entier «». A ces idéaux principaux, Dedekind a joint des
idéaux secondaires ; ce sont de nouvelles familles de nombres
déduites des précédentes par voie d'addition. La définition
générale d'un idéal peut s'énoncer ainsi :

Définition XII: Un idéal a est un ensemble formé d'une
infinité de nombres entiers ordinaires ou de nombres hyper-
complexes entiers, dits les éléments de l'idéal a, ensemble
jouissant des deux propriétés suivantes: 1° les éléments de
l'idéal se reproduisent par addition et soustraction; 2° si x
est un élément quelconque de l'idéal a, le produit g.x, où g
représente un complexe entier quelconque, est aussi contenu

dans cet idéal a.
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En vertu de cette définition, un idéal a contenant les deux
éléments a et b différents entre eux, contient nécessairement
aussi a -f- ô, a — b, g. a, g. b, où g est un complexe entier
quelconque pouvant lui-même faire partie, ou non, de l'idéal
en question. On démontre alors que tout idéal possède une
base finie (v. articles 16 et 17).

On définit ce qu'il faut entendre par le prod nit et par le
quotient de deux idéaux a et b, ce qu'est un idéal « premier »,

un idéal « composé », un diviseur d'idéal, le plus grand
commun diviseur de deux idéaux, et ainsi de suite.

Ceci montre que l'arithnomie du domaine [H] que l'on
veut étudier devient un calcul avec des idéaux, au lieu
d'être un calcul avec des nombres ordinaires ou avec des

complexes entiers. Mais ces idéaux au sens de Dedekind (et
contrairement aux « nombres idéaux » de Kummer) ne sont
plus des abstractions; ce sont des ensembles tout aussi
réels, tout aussi effectifs, que les nombres hvpercomplexes
eux-mêmes dont ils sont constitués. Tel est le principe de
la méthode de Dedekind, permettant d'étudier le domaine
holoïde [H] sans modifier ce domaine.

La méthode employée par E. E. Kummer est tout autre.
Elle modifie très profondément le domaine holoïde [H] à

étudier, puisqu'elle lui adjoint une infinité de « nombres
idéaux » qui, au fond, ne s'y trouvent pas du tout. Ces nombres
idéaux rappellent un peu les points imaginaires et les droites
imaginaires des géomètres quand ils disent, par exemple,
que deux circonférences dont l'une est entièrement intérieure
à l'autre se coupent, néanmoins, en deux (voire même en

quatre) points imaginaires et que ces mêmes circonférences
ont quatre tangentes communes, mais imaginaires. Les
nombres idéaux de la méthode de Kummer, comme les figures
imaginaires de la géométrie, touchent à ce qu'on pourrait
appeler la « m é ta ma thématique » (par analogie à

((métaphysique ») et restent impénétrables à beaucoup d'esprits. La
méthode de Kummer est du reste d'une application moins
facile que la théorie des idéaux, car on ne voit pas toujours
du premier coup d'oeil quelles sont les définitions qu'il faut

poser pour créer de façon appropriée les «nombres idéaux ».
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Les deux voies, si différentes en principe, celle de E. E.
Kummer et celle de R. Dedekincl, peuvent conduire au même

résultat : faire tomber les singularités que présente l'arith-
nomie de certains domaines holoïdes.

66. — Résumons en disant: la définition lipschitzienne du
nombre hypereomplexe entier a l'avantage d'être toujours
applicable et toujours univoque (v. définition Y) ; mais elle
est en quelque sorte superficielle, en ce sens qu'en l'adoptant,

on ne tient compte que de la nature des coordonnées,
sans aucun égard aux règles qui définissent le système envisagé

de nombres hypercomplexes. Malgré l'avantage d'être
toujours applicable et univoque, elle doit être rejetée comme
pouvant conduire à des arithnomies non régulières.

La manière hurwitzienne de définir le nombre hypereomplexe

entier est plus profonde (v. définition IX, art. 24), en
ce sens qu'en l'adoptant, on tient compte non seulement de
la nature des coordonnées, mais des propriétés intrinsèques
du système envisagé de nombres hypercomplexes, puisqu'on
doit rechercher un domaine holoïde maximal et qu'il n'est
pas possible de le déterminer sans se servir des règles qui
définissent le système en question. Aussi la définition hur-
witzienne conduit-elle à des arithnomies régulières là où la
définition lipschitzienne reste en défaut.

Par contre, la définition hurwitzienne a l'inconvénient de

ne pas être toujours univoque, et surtout celui de ne pas
pouvoir s'appliquer à tous les cas, puisqu'il existe des corps
de nombres sans domaine holoïde maximal. Pour étudier
ces systèmes de nombres, on se sert avec avantage de la
méthode cles idéaux. Elle consiste à modifier les définitions
de façon à ne plus avoir, dans la théorie de la divisibilité,
à calculer avec des nombres entiers isolés, mais avec des
idéaux. Cette méthode permet d'écarter les obstacles qui
pendant longtemps ont obstrué l'entrée d'une immense
région : l'arithnomie des nombres complexes généraux.

Neuchâtel, octobre 1915.
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