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~ SUR L’ARITHMETIQUE
DES NOMBRES HYPERCOMPLEXES

‘PAR

L.-G. DuPasquier (Neuchatel).

SOMMAIRE :

I. Le nombre complexe « entier » d’aprés Gauss et le quaternion « entier »
d’aprés M. Lipschitz.

IT. Propriétés caractéristiques des nombres entiers; le domaine holoide
maximal ; définition lipschitzienne et définition hurwitzienne du
nombre hypercomplexe « entier ».

III. La définition hurwitzienne dans le cas des tettarions.

IV. Un exemple particulier de corps de numbres sans domaine holoide
maximal.

V. Quelques singularités de l'arithmétique généralisée dans ce domaine
holoide non maximal.

Méthodes propres a faire tomber ces singularités; « nombres
idéaux » de Kummer et théorie des « idéaux » de Dedekind.

1. — En construisant une théorie des nombres ou arith-
el dont les élé 1 t 1 br
nomie! dont les éléments sont non seulement les nombres
entiers ordinaires, mais les nombres entiers dits imagi-
naires, ou complexes, de la forme a, + a,7, ou a, et a,
représentent des nombres réels quelconques, tandis que
est un symbole défini par I'équation

9
“

2 =—1, ce qui fait écrire i=y—1,

! Le néologisme d’arithnomie est proposé par M. A. AuBrRY a Dijon; c’est une abré-
viation d’«arithmonomie » qui est synonyme d’« arithmologie », de « théorie des nombres »,
ou d’« arithmétique généralisée». (En grec, « arithmos » = nombre ; « nomos» = loi; d'oi
« arithmonomie » ; Uarithnomie signifie donc : la science des lois qui régissent les nombres.)

L’Enscignement mathém., 18¢ année; 1916. 14
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en créant cette arithmétique généralisée, dis-je, Gauss a fait
ceuvre de génie, car cette création hardie ouvrait a la théorie
des nombres des horizons tout nouveaux et un champ de
recherches d'une étendue insoupconnée.

Cette arithmétique généralisée due a Gauss repose sur
une définition qui semble se présenter d’elle-méme a l'esprit
et que voiclt:

Définition I': Soit @ =— a, + a,¢ un nombre complexe. ou
a, et a, représentent deux nombres réels dits coordonnéees
du nombre complexe «. Nous appellerons @ «un nombre
complexe entier», si ses deux coordonnées, «, et «,, sont
des nombres entiers ordinaires positifs, nuls ou négatifs :
nous appellerons « «un nombre complexe non -entier», si
I'une au moins de ses deux coordonnées est fractionnaire ou
irrationnelle.

Par abréviation, nous dirons souvent, dans la suite, entier
complexe au lieu de « nombre complexe entier ».

2. — L'arithmétique généralisée érigée par Gauss dans le
domaine de ces nombres complexes et basée sur la défini-
tion | ci-dessus, présente des analogies frappantes avec
Parithmétique ordinaire. On v retrouve, entre autres, les
nombres complexes entiers {rréductibles jouant le méme
role que les nombres premiers dans 'arithmétique classique.
Nous les appellerons souvent, pour abréger, nombres pre-
miers complexes. On sait que ce sont: [°les nombres pre-
miers ordinaires de la forme p = 4n + 3, a savoir

3 7 11, 19, 23, 3l 43, 47, 39,

L] ’

dont la norme est p?; 2° le nombre 1| 4 ¢ dont la norme est
égale a 2; 3° les nombres complexes entiers r 4 sz dont la

norme, 7?4+ s*, est un nombre premier ordinaire p de la

forme 4n + 1, par exemple

| -2, 2 40, 243(, 342, 144, 441, 245, 52,
160, 1 —6i, %45, 544,

On retrouve ensuite, dans l'arithmétique généralisée de

Gauss, la décomposition, toujours possible et toujours uni-
voque, de tout entier complexe donné en ses facteurs pre-
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miers. On y retrouve encore le plus grand commun diviseur
et le plus petit commun multiple de deux (ou, plus généra-
lement, de n) entiers complexes donnés; I'analogue de l'algo-
rithme d’Euclide permettant de déterminer ce plus grand
commun diviseur par un nombre fini d’opérations ration-
nelles. On y trouve aussi toute la théorie des congruences;
on y retrouve I'analogue du théoréme de Fermat, 'analogue
du théoréme de Wilson, etc.

3. — En 1886, M. Lipschitz publiait le résultat de ses
recherches sur la transformation, par des substitutions
réelles, d’'une somme de deux carrés en elle-méme?!. En
partant d’un point de vue trésjoriginal et tout a fait per-
sonnel, M. Lipschitz découvrait & nouveau le calcul des
nombres complexes de la forme «, + «,7, ou 2= — 1. 1l
reconstruisait alors 'arithmétique généralisée ou arithnomie
de ces nombres complexes, comme Gauss I'avait déja fait
avant lui, en prenant aussi comme éléments les nombres
complexes entiers tels qu’ils résultent de la définition I ci-
dessus. Quoique son point de départ soit tout autre que celui
de Gauss, M. Lipschitz arrive au méme résultat: a la méme
arithnomie, en se basant sur la méme définition.

4. — Pour préparer la généralisation a d’autres systémes
de nombres complexes, nous introduirons dés maintenant
un nouveau symbole e; en posant e, = 1; écrivant alors e, a
la place de ¢, de sorte que

2 ey " P
el___—l___——e0 ,

on voit que les nombres complexes de Gauss peuvent s’écrire

sous la forme
0;

1
<
a = a,e, + a, e, = Z a ey
A

ou les e, sont des symboles dits «unités relatives du sys-

v Untersuchungen itber die Summen von Quadraten. Bonn, 1886. Voir la traduction francaise
publiée par J. Molk dans le « Journal de mathématiques pures et appliquées» fondé par
Liouville, 1Ve série, tome 2¢ (année 1886), p. 373-439 : Recherches sur la transformation , par
des substitutions reelles, d’une somme de deux ow de trois carreés en elle-méme.
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téme de nombres complexes », symboles obéissant, par défi-
nition, aux relations

Nous dirons que les nombres complexes de Gauss forment
«un systeme de nombres complexes 4 2 coordonnées indé-
pendantes », ou «a 2 unités relatives », systéme entiére-
ment défini par les conventions sur 1'égalité, 'addition et
par les relations (1) qui réglent la multiplication. On peut
ranger celles-ci en un tableau de la maniére suivante :

¢ et k& représentant 'un des nombres 0 ou 1, le produit e,.e,
se trouve dans la ligne (horizontale) ayant a gauche e, et
dans la colonne (verticale) portant en haut e, .

5. — Cherchant a étendre ses résultats a la transforma-
tion, par des substitutions réelles, d’'une somme de trois
carrés en elleeméme, M. Lipschitz, partant du méme point
de vue original, retrouva le calcul des quaternions découvert
avant lui, en 1843, par W. R. Hamilton.

Voici, a 'intention des lecteurs non versés dans la théorie
des quaternions, les principes fondamentaux de ce calcul
exposés dans un langage purement arithmétique.

On sait que les gquaternions sont des nombres hyper-
complexes a 4 coordonnées indépendantes, tel par exemple

a=a, + a1, + ayi, + azi, ,

ou a,, a,, a,, a, représentent qualre nombres réels dits les
coordonnées' du quatérnion a, et i, 7,, 73, trois symboles

1 Nous distinguons entre « coordonnées» et « composantes» d’'un nombre complexe (ou
hypercomplexe). Par composantes du quaternion a, nous entendons les produits a, i ; ayt,;

1’
ayi,. Comparez la note suivante.
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dits les unités relatives, obéissant aux relations suivantes:

2 .2 2 .
1'1%_-‘12:13:-—1 (2)

, 1

Ig-ly = ¥, gl = — lylg = 0

Deux quaternions sont dits égaur, si les 4 coordonnées de
'un sont égales, .respectivement, aux coordonnées corres-
pondantes de l'autre.

Désignons par & le quaternion

b= b, + byi, + byi, + byi, ;

I'égalité entre quaternions @ == b est alors équivalente aux
quatre égalités simultanées

ak:b)\ A=0,1,2,3) .

L’addition, la soustraction et la multiplication des guater-
nions se font d’apres les régles ordinaires de 'algébre, les
symboles 7; se composant conformément aux relations (2).
La principale différence entre l'algébre classique el celle
des quaternions provient de ce que la multiplication des
quaternions n’est pas commutative en général; en effet,
a.b % b.a, comme on le voit en calculant directement ces
deux produits, s1 @ et b désignent, comme ci-dessus, deux
quaternions quelconques. Donc, la valeur d’un produit de
quaternions dépend, en général, de l'ordre de succession
des facteurs de ce produit. Il s'ensuit que la division n’est
en général pas univoque dans ce domaine; il faut distinguer
entre une « division a gauche » et une « division a droite »,
suivant que, les quaternions « et b étant donnés, on cherche
le quaternion

Y =00+t b ol + 03l telque  a=p.b,
ou le quaternion
X=X, 4 X0 - a5l x40, tel que &= h.x .

6. — Par analogie avec la théorie des nombres compléxes
de Gauss, on pose les définitions suivantes :

Le quaternion a est dit réel, si ses trois derniéres coor-
données, a,, a,. a,, sont nulles.
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A tout quaternion @ correspond un quaternion

l

r . .
a _(lo—(llll——(l2l2-—a3

dit conjugué de a. Le produit d’'un quaternion quelconque «
et de son conjugué a’ est toujours réel et s’appelle «la norme
du quaternion @ ». La norme de «, égale du reste a la norme
de a’, est donc définie par I’équation ‘

- . 2 2 2 2
N (a) :a,a’:a’,a:ao+ a + a, + a, .

Ce nombre réel n’est nul que dans le cas ot @« = 0. Si
a = 0, on entend par «linverse de a» le quaternion a—!
ainsi défini :

a"lzi
a

il satisfait aux relations a.a=!' — a—t.a = 1.

On vérifie sans peine que le conjugué du produit de plu-
sieurs quaternions donnés est égal au produit des conjugués
des facteurs pris dans l'ordre renversé; en formule :

(a.b) = b".a" .

Il s’ensuit le théoréme fondamental que la norme d'un pro-
duit de quaternions est égale au produit des normes des

facteurs :
N(a.b) = N(a).N(D) .

7. — Puisqu’en intervertissant l'ordre des facteurs, on
change le produit, il exislte en général deux quotients diffé-
rents du quaternion donné a par le quaternion donné b ou
’on suppose b = 0, a savoir :

1° le quaternion b—'.a qui est «le quotient a droite de «a
par b»; c’est la solution x de I'équation @ = b..x;

2° le quaternion a.b—"' qui est «le quotient a gauche de a
par b»; c’estla solution ¥ de I'équation @ = y.5b. On ne peut
donc pas, en général, employer pour la division le signe

. . (l el . _ . % . .
ordinaire @:b ou ;. Sauf définition spéciale, ces signes

n'ont de sens que si les deux quaternions « et b' sont com-
mulables, c’est-a-dire si @.b' = 0'. a, ce qui n’est pas le cas
en général.
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Dans le domaine des quaternions, il y a donc lieu de dis-
tinguer deux arithmétiques se développant parallelement
'une a 'autre, mais différentes I'une de 'autre : une «arith-
métique a gauche » et une «arithmétique a droite ». Elles se
pénétrent du reste souvent l'une l'autre, engendrant des
analogies et des contrastes frappants avec l'arithmétique
classique.

8. — Pour nous conformer aux notations générales utiles
plus tard, nous introduirons de nouveau les symboles ¢, dits
unités relatives, en posant

=1, A= 4 s 8y = 1 , e, Iy -

Tout quaternion x s’écrit alors
0..3

X == Ly By X538 + Fyy - T8y = 2 Xy €y
A

Nous dirons que les quaternions forment « un systéeme de
nombres hypercomplexes a 4 coordonnées indépendantes »,
ou «a 4 unités relatives », systeme qui sera défini par les
conventions se rapporlant a I'égalité, a l'addition et par les
relations suivantes qui réglent la multiplication:

2 2 2 2
€y = €y ; e, =e¢,=¢€ == — ¢, 3)
81.92:——92_61:83 " 6’2.(’3:_- 63.02261 5 03.(’1:—— (’1.83202

Ces relations se trouvent condensées dans le tableau sui-
vant :

‘ € l al ‘ e, | e
€ € €y €9 €3 ;
€ € - ’60 €3 — 0
ol o |—al—al o
—;:: €3 €s i — & — €

Représentant par ¢ et par # 'un des nombres 0, 1, 2, 3, on
trouvera la valeur du produite;.e, al'intersection de la ligne
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(horizontale) portant & gauche e, et de la colonne (verticale)
portant en haut e, .

- Définition Il : Un quaternion
U

42

B
I
~ | \/J:w

est dit rationnel, si chacune de ses 4 coordonnées a, est un

nombre rationnel quelconque, entier ou fractionnaire.

L’ensemble de tous les quaternions rationnels forme alors
un « corps de quaternions» ou « domaine de rationalité » ;
c'est-a-dire que les quaternions rationnels se reproduisent
par addition, soustraction, multiplication et division; en
d’autres termes encore : la somme, la différence, les produits
et les quotients de deux quaternions rationnels sont toujours
de nouveau des quaternions rationnels.
~G'est exclusivement de quaternions rationnels que nous
parlerons dans la suite.

9. — Apreés cette digression sur les quaternions, revenons
au memoire de M. Lipschitz cité plus haut.

Ayant retrouvé, par une voie toute personnelle le calcul
des quaternions, M. Lipschitz érige une nouvelle arithmé-
tique généralisée dont les éléments sont les quaternions en-
tiers. Cette arithnomie des quaternions, érigée par M. Lip-
schitz, repose sur une définition qui se présente d’elle-méme
a l'esprit et qui semble une extension naturelle de la défini-
tion I ci-dessus, donnée déja par Gauss pour les nombres
complexes ordinaires.

Nous appellerons lipschitzienne cette définition du qua-
ternion entier, par opposition a la définition Ahurwilzienne
que nous introduirons plus bas et que nous démontrerons
étre préférable. Voici la définition «lipschitzienne » du qua-
ternion entier: ~

Définitron IIl: Un quaternion rationnel a = «, 4+ a,z,
+ a,i, + a;i; est dit entier, si ses coordonnées «; (ou
1 =20, 1, 2, 3) sont toutes quatre des nombres entiers ordi-
naires, positifs, nuls ou négatifs.

Le quaternion rationnel a sera dit non entier, si I'une au
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moins de ses quatre coordonnées est un nombre fraction-
naire. : ,

10. — L’arithnomie des quaternions telle que l'a érigée
M. Lipschitz présente des exceptions étonnantes aux regles
générales; on dirait presque des anomalies. Nous allons en
citer deux exemples. A cet effet, il est nécessaire de poser
encore quelques définitions.

Le quaternion entier a est dit « divisible a droite [resp. @
gauche] par le quaternion entier 0 », s'il existe un quaternion
entier c¢ vérifiant I'égalité @ = c¢.b [vesp. a = b.c]. Dans ce
cas, on dit-aussi que « b est un diviseur a droite [resp. a
gauchel de a », ou encore: que « b est contenu, ou entre
dans @, comme diviseur a droite [resp. a gauche]». D'aprés
cela, le quaternion entier et non nul & sera un diviseur a
droite de @, si @.b7"' est un quaternion entier.

Pour que le quaternion entier ¢ soit contenu comme divi-
seur a droite dans n'importe quel quaternion entier, il faut
que «' soit entier; alorse est aussi contenu comme diviseur
4 gauche dans tout quaternion entier. Un tel quaternion e
est dit «une wunité». La condition nécessaire el suffisante
pour que e soit une unité est que N(e)=— 1. Il existe, dans le
domaine des quaternions entiers au sens de M. Lipschitz,
8 unités qui sont &= 1, =7, 4+=1,, == i;.

Deux qualernions enliers sont dits associés a droite (resp
a gauche), s'ils ne different 'un de 'autre que par un fac-
teur unité a droite (resp. a gauche); ainsi, a désignant un
quaternion entier, +a, *+a.i,, +a.l,, = a.i, sont «associés
a droite», et = a, 4= i,.a, = i,.a, + i,.a sont « associés a
gauche ». Dans les recherches sur la divisibilité, des qua-
ternions associés sont équivalents, c’esl-a-dire qu’ils peuvent
se remplacer I'un 'autre (comme c’est le cas dans la théorie
classique des nombres et dans l'arithnomie des « complexes
entiers » de Gauss).

On définit le quaternion primaire de facon a ce qu'il soit
toujours déterminé univoquement dans le groupe des 8 qua--
ternions associés entre eux; dans les théorémes de divisi-
bilité, on peut alors se borner a la considération des qua-
ternions primaires.
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Enfin, un quaternion entier a est primitif (ou proprement
dil), si ses 4 coordonnées @, n’ont pas d’autre commun divi-
seur que 1; dans le cas contraire, @ est un quaternion non
primitif (ou improprement dil); exemple : 9 + 37, + 6, + ni,
est primitif dés que sa derniére coordonnée, n, n’est pas divi-
sible par 3, mais non primitif, si n est multiple de 3.

11. — Malgré la non-commutativité de la multiplication,
on réussit a définir le quaternion entier irréductible, ou qua-
ternton premier, 'analogue du nombre premier de Darith-
métique classique. Pour qu’'un quaternion entier p soit pre-
mier, il faut et il suffit que sa norme N(p) soitt un nombre
premier ordinaire. 11 existe en tout p 4+ 1 quaternions pre-
miers, tous de méme norme p, essentiellement différents
entre eux, c’est-a-dire non associés, par exemple tous pri-
maires. M. Lipschitz démontre ensuite qu’on peut toujours
mettre un quaternion entier primitif donné, ¢, sous forme
d’un produit de quaternions premiers, en imposant a ces
quaternions de se suivre, de droite a gauche, dans un ordre
tel que leurs normes suivent un ordre fixé arbitrairement
pour les facteurs premiers de lanorme du quaternion donné c.
Une fois qu’on a fixé cet ordre, chacun des quaternions pre-
miers qui figurent dans le produit est déterminé, de proche
en proche, sans ambiguité, a condition toutefois que N{c)
soit un nombre impair ou le double d’un nombre impair.

Ainsi, ladécomposition du quaternion entier primitifdonné
¢ est univoque deés que, ayant décomposé sa norme N(c) en
ses facteurs premiers, par exemple N(¢c)=p.r.s..., on a
arrété ’ordre de succession de ces facteurs premiers p, r, s ...
qui peuvent naturellement étre égaux ou inégaux entre eux.

Mais il y a une curieuse exception : ¢’est quand la norme
du quaternion donné c¢ est divisible par 4; dans ce cus, la
décomposition de ¢, quand bien méme on a arrété l'ordre
de succession des facteurs premiers p, r, s, ..., n'est plus
univoque, mais possible de 24 maniéeres différentes! On peut
bien dire que c’est la une anomalie.

12. — On en trouve aussi dans la théorie du plus grand
commun diviseur. Deux quaternions entiers donnés, a et 0,
ont un plus grand commun diviseur différent d’'une unité
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quand leurs normes, N(a) et N(b), ne sont pas deux nombres
premiers entre eux. Mais ici encore, il y a de curieuses
exceptions, des anomalies étonnantes qui paraissent tout a
fait inexplicables, déconcertantes méme. :

En prenant, par exemple, a =2, b=141, 4+ i, + I3, ON
a N(a)=N(b)=4 et I'on s’attend a ce que a et b possédent
«un plus grand commun diviseur a droite », disons ¢, de
facon a ce qu'on ait simultanément

2:]).8; l+i1+1'2+i3:p1.5,

ou p et p, désigneraient certains quaternions entiers. (Pour
donner un exemple concret, nous prenons « I'arithnomie a
droite ».) Les égalités

2= (1 — ). (1 4+ i) = (1 — i) 1 4 iy = (1 — i) . (L =+ i)
1 p iy oy iy = (A ) (g == (i) (L) = (1 i) (1 47y

montrent bien que les deux quaternions en question pos-
sédent trois « commuus diviseurs a droite », a savoir :

o, =1 44 , 0, =1 4+ 1, , 6, =1 41, .

Raison de plus, semble-t-il, pour qu’il existe «un plus
grand commun diviseur a droite ». d, lequel devrait étre un
commun multiple des trois diviseurs d,, J,, J,, en sorte
qu’on ait 0 =d,.d, = d,.0,—=d,.d,, ou d,, d,, d, désigneraient
certains quaternions entiers. Or, il n’en est rien.

On démontre trés facilement, en prenant les normes, que
les trois dernieres équations sont en contradiclion avec
2=pd. 1+, + 7, + {,=p,.d. Voila donc deux quaternions
entiers a et b de méme norme, possédant trois communs divi-
seurs différents (ces diviseurs sont méme tous trois des qua-
ternions premiers), mais n’ayant, malgré cela, pas de plus
grand commun diviseur, au sens habituel de ce terme. On
peut bien dire, de nouveau, que ¢’est la une anomalie.

La raison profonde de ces anomalies a été trouvée et indi-
quée pour la premiére fois par M. 4. Hurwitz a Zurich. Elle
tient a la définition méme du quaternion « entier », comme
nous allons le montrer.
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13. — Envisageons un systéme de nombres hypercomplexes

a r coordonnées indépendantes, systéme constitué par une
infinité de « complexes » ou « éléments » tels que

Aol
x:xlel+x282—i—...+xrer:2x)\el (&)
A

ou les xy sont des nombres réels quelconques dits « coor-
données du complexe x », et les e; des symboles dits «unités
relatives du systeme de nombres hypercomplexes?! ».
Supposons définies, dans ce systeme de nombres hyper-
complexes, les opérations rationnelles de 'addition et de la
multiplication, leurs opérations inverses: la soustraction
et la division, ainsi que I'égalité de deux complexes. On sait
que, dans ce cas, le produit e,.e, de deux unités relatives
. quelconques est une fonction linéaire, a coeflicients réels,
des mémes unités relatives e, . Par exemple, 7 et & désignant,
chacun, I'un quelconque des nombres 1, 2,3, ... , r, on a

i PR o
ei'ek:Ylel+Y262+...+Y"er: Y)\ek
A

Pour indiquer dans la notation que les constantes réelles
75 peuvent varier avec ¢ et k, écrivons

. 5 iz

€;-p = Yir1€1 & Yiae t oo T+ Yyl

ou, sous forme condensée,

1...r
ei.ekzzyikxe)\ i, h=1,2, ...,1). (5)
)

Ces relations (5), jointes aux définitions de I'addition et de

1 ]1 est souvent utile de distinguer entre « coordonnées » et « composantes » d’un nombre
complexe. Par « coordonnées », on entend les nombres z,; x,;...; x,., tandis que les « com-

posantes » du nombre hypercomplexe x sont les produits x,e; x,e,: . .; X, €p.
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I'égalité, fixent le systéme considéré de nombres hyper-
complexes et le définissent complétement. '
14. — La considération du nombre hypercomplexe ration-
nel est fondamentale pour tout ce qui va suivre. Commen-
cons donc par poser la
Définition 1V : Appelons complexe rationnel un tel nombre
hypercomplexe x dont toutes les » coordonnées x, sout des

nombres rationnels quelconques, entiers ou fractionnaires:
Un com plexe

& 1...r
X :E x)\ 67\
A

sera dit non rationnel, si 'une au moins de ses r coordon-
nées est un nombre réel irrationnel.

Dans la suite, il sera question exclusivement de complexes
rationnels. |

L’ensemble de tous les complexes rationnels forme un
« corps de nombres » ou « domaine de rationalité », c’est-a-
dire que les complexes rationnels se reproduisent par addi-
tion, soustraction, multiplication et division. Autrement dit:
la somme, la différence, le produit et le quotient (pour autant
que la division est possible) de complexes rationnels est tou-
jours de nouveau un complexe rationnel. Nous désignerons
par le symbole { R} ce corps comprenant tous les complexes
rationnels.

15. — Pour faire 'arithmétique généralisée ou arithnomie
de ce corps de nombres | R, il faut tout d’abord le partager
en deux ensembles, mettant d’une part: les complexes ra-
tionnels « entiers.», d’autre part: les complexes rationnels
«non entiers ». La définition suivante, que jappelle «la
définition lipschitzienne », se présente le plus naturellement
a l'esprit:

Définition V: Un complexe rationnel x est dit entier, si
toutes ses r coordonnées sont des nombres entiers ordi-
naires; le complexe rationnel x sera dit non entier, si I'une
au moins de ses r coordonnées est un nombre fractionnaire.

En se basant sur cette définition du complexe entier, on
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peut construire toute une arithmétique du systéme considéré
de nombres hypercomplexes, arithmétique généralisée qui
présente beaucoup d’analogies, mais aussi bien des con-
trastes, avec l'arithmétique ordinaire. Or, l'exemple des
quaternions rationnels prouve que cette définition lipschit-
ztenne n'est pas toujours satisfaisante. Voici les considé-
rations qui peuvent conduire a4 une autre définition, souvent
préférable a la définition lipschitzienne du complexe entier.

16. — Les « nombres enliers » sont caractérisés par les
quatre propriétés fondamentales suivantes :

1° Iis doivent se reproduire par addition, soustraction et
multiplication; en d’autres termes : la somme, la différence
et le produit de deux « entiers » quelconques doit toujours
etre de nouveau un « entier ». On exprime cela en disant que
les nombres entiers doivent «former wn domaine d’inté-
g/'ité ».

2° Ce domaine d’'intégrité doit contenir « le nombre 1 » et
« le nombre zéro », c’est-a-dire deux complexes jouant, dans
ce domaine, le méme role que 1 et 0 dans l'arithmétique
ordinaire. Sans «le nombre 1», on aurait un systeme de
nombres entiers dont aucun ne serait divisible par lui-méme,
ce qui n’est pas normal; sans «le nombre zéro », la sous-
traction ne serait pas toujours possible.

3° L’ensemble des « nombres entiers » doit former un
domaine d’intégrité a base finie; en d'autres termes, il doit
étre possible de choisir, dans cet ensemble, un nombre fint
de complexes, disons #,, ¢, ... , Z,, jouissant de la propriété
suivante : si m,, m,. ..., m, désignent des nombres entiers
ordinaires, 'expression

my ¢, + myty + ... =+ m“ntn (6)

doit pouvoir reproduire, par des valeurs appropriées des
nombres entiers m,;, absolument tous les éléments de l'en-
semble en question; et inversement : ce domaine d’intégrité
doit se composer exclusivement des éléments, mais de fous
les éléments, qu’'on obtient en altribuant, dans ’expression
(6) ci-dessus, a m,, my, ... , m,., de toutes les manieres pos-
sibles, les valeurs entiéeres de — o a + .

T R




NOMBRES HYPERCOMPLEXES 215

Dans ce cas, les complexes ¢, ¢,, ... , &, peuvent engen-
drer, par les seules opérations de laddition et de la sous-
traction répétées un nombre fini de fois, n'importe quel autre
élément du domaine d’'intégrité. On dit que ces complexes
« forment wune base» du domaine d’intégrité envisage, et
'on désigne celui-ci d’ordinaire par le symbole

[tl" t2’ R tn] :

Si I'on remarque que pour passer de 4 ¢ a — ¢, il suflit
de soustraire deux fois de suite + ¢ de lui-méme; puis, que
« soustraire — ¢ » est complétement équivalent a «addi-
tionner ¢ », on peul dire ceci: En partant des éléments de
la base, on peut reproduire chacun des éléments du domaine
en question au moyen d'un nombre fini de soustractions. Le
nom de « base » attribué a ces éléments ¢, est ainsi pleinc-
ment justifié. *' |

17. — Le fait de constituer un domaine d'intégrité conte-
nant le nombre 1 n'est pas suffisant, & lui tout seul, pour
caractériser des nombres « entiers ». On le voit en considé-

, m . ,
vant 'ensemble engendré par g0 O m et nreprésentent des

nombres entiers quelconques. Cel ensemble que nous dési-
gnons par ['2’—;] constitue pourtant un domaine d’intégrité
contenant le nombre 1; il jouit des propriétés 1° et 2° ci-
dessus énumérées, mais il ne possede aucune base finie au
sens ci-dessus: on ne peul pas indiquer un nombre fini d’ex-

# N m N
pressions de la forme 7 telles quelles pourraient engen-

drer toutes les autres par les seules opérations de 'addition
et de la soustraction, puisque ces deux opérations ne per-

1. X i .,
mettent pas de passer de 0 a Aussi le domaine d’inté-

2[!-*—‘1 ’
.., m . . . .
gmte é?[ ne contient-il pas u mquement des nombres entiers.

18. — Pour abréger, nous emploierons une terminologie
proposée par M. J. Konig et poserons la

Définition VI: Nous appellerons « domaine holoide » tout
ensemble de complexes quelconques jouissant des trois pro-
priétés fondamentales ci-dessus énumérées (art. 16).



216 L.-G. DUPASQUIER

Donc; en vertu de cette définition, tout domaine holoide
contient une infinité d’éléments, parmi lesquels le nombre 1
et le nombre zéro; de plus, on peuty effectuer, sans restric-
tion aucune, 'addition, la soustraction et la multiplication,
et cela sans jamais sortir du domaine en question; et enfin,
il posséde une base finie.

Exemples: Les nombres entiers ordinaires forment un
domaine holoide dont la base est 1; I'expression (6) se réduit
dans ce cas a m,.l qui reproduit bien tous les nombres
entiers, lorsqu’on fait parcourir a m, la série des nombres
entiers.

Les nombres complexes de Gauss & coordonnées entiéres
(voir la définition I) forment un domaine holoide dont la
base est 1, 7; en effet, 'expression (6) devient dans ce cas
m, .1+ m,.i, laquelle reproduit bien tous les complexes
entiers de Gauss, et exclusivement ceux-la, quand m, et m,
parcourent, indépendamment 'un de l'autre, la série des
nombres entiers ordinaires. On désigne ce domaine holoide
par le symbole [1; £].

Les « quaternions entiers » de M. Lipschitz forment un
domaine holoide de base 1, 7,, i,, 75, puisque tout quaternion
« entier d’aprés la définition lipschitzienne » peut se mettre
sous la forme m,. 1+ m,.i + m,.i, + m,.7, et que cette
expression donne toujours un quaternion a cordonnées en-
tieres, quelles que soient les valeurs entiéres attribuées aux
m, . On désigne ce domaine holoide par le symbole [1, 7,, 7,. 7,].

Un corps de nombres, n'ayant pas une base finie au sens
indiqué plus haut, ne constitue lui-méme pas un domaine
holoide, bien que"-i‘)ouvant en contenir une infinité.

19. — Les trois propriétés ci-dessus énumérées et qui
caractérisent le domaine -holoide, ne sont pas suffisantes
pour caractériser les « nombres entiers». Il en faut une
quatriéme. C'est de cette quairiéme propriété que n'avait
pas tenu compte M. Lipschiiz, c’est elle qu’a découverte
M. Hurwitz. La voici:

4° Le domaine holoide formé par les « nombres entiers »
doit étre maximal.

. Définition VII: Soit [J,] un domaine holoide quelconque.
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1l sera dit maximal, s’il n’existe pas, dans le corps de nombres
considéré, un autre domaine holoide contenant tous les élé-
ments du domaine en question [J,] plus encore d’autres élé-
ments non contenus dans [J,]. |

Orv, M. Hurwitz a découvert que le domaine holoide
[1,7,,7,,i,] formé par I'ensemble des quaternions a coor-
données entiéres n’est pas maximal, qu’il est possible de
I'élargir en restant dans le méme corps de nombres {R{; on
peut, en effet, agrandir de la maniére suivante le domaine
holoide [1, i, Z,, 7;] sans sortir du domaine de rationalité
{R| constitué par I'ensemble des quaternions rationnels :
soit pour abréger

1 ) . .
p:§(1+11+12—l—13);

Dans le corps {RY des quaternions rationnels, le domaine
holoide maximal a pour base p, i, 15, 1;. Désignons ce do-
maine holoide maximal par le symbole [J], de sorte que [J]
sera constitué par I'ensemble des quaternions

myo + m i, + myi, + myi, (7)

ou les 4 nombres ordinaires m; prennent, indépendamment
les uns des autres, toutes les valeurs entiéres possibles.
Avec M. Hurwitz, nous poserons la définition suivante que
nous appellerons «la définition Zurwitzienne du quaternion
entier » : A
Définition VIl : Un quaternion rationnel est dit « entier »,
s'il est contenu dans ce domaine holoide maximal [J]. Un
quaternion rationnel est dit « non entier », s'il n’est pas con-
tenu dans ce domaine holoide maximal [J].
~20. — Tout quaternion entier tel que ¢ sera douc de la
forme (7), ou, en remplacant p par sa valeur:

’"0

t=50 4 (o )i+ (e + )i (5 )i

On trouvera tous les quaternions entiers, en prenant pour

les quatre nombres m,, m,, m,, m;, de toutes les maniéres
possibles, des valeurs entiéres quelconques.

Si m, est pair, toutes les coordonnées du quaternion ¢

L’Enseignement mathém., 18¢ année, 1916. 5
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seront des nombres entiers. Dans ce cas, ¢ sera un quater-
nion « entier » également d’apres la:définition lipschitzienne
(v. définitions 111 et V).

~ Si, au contraire, m, est impair, les coordonnées non nulles
de ¢ seront des nombres rationnels non entiers, des fractions
de dénominateur commun 2. Dans ce cas, d’aprés la défini-
tion lipschitzienne, t serait un quaternion « non entier »,
tandis qu'en réalité, en vertu de la définition hurwitzienne
que nous adoptons, ¢ sera réputé « quaternion entier ».
+ iyt

En particulier, les 16 quaternions 5 f qui se-

raient tous des quaternions « non entiers » au sens de M. Lip-
schitz, sont en réalité des quaternions entiers, en vertu de
la définition hurwitzienne. La norme de chacun de ces 16
quaternions est égale a 1; ils constituent 16 unités dans le
domaine holoide envisagé. Celui-ci contient donc 24 unités
en tout, dont 8 seulement a coordonnées entieres. (Voir les
définitions a l'art. 10.)

21. — Désignons par [J,] I'ensemble constitué par tous les
(uaternions a coordonnées entiéres. On voit immédiatement
que [J,] est contenu entierement dans [J]. En effet, le do-
maine [J]. tout en faisant partie, lui aussi, du corps R} des
(uaternions rationnels, contient non seulement tous les élé-
ments de [J ], mais encore une infinité d’autres a coordon-
nées fractionnaires. Ainsi, [J ] n’est pas un domaine holoide
maximal.

En construisant l'arithmétique du domaine [J;], M. Lip-
schitz faisait donc l'arithnomie d'un domaine non maximal;
or, quand on fait cela, il faut s’attendre a priori a des irrégu-
larités. Qu’on me permette une analogie : Essayez de cons-
truire Parithmétique des nombres entiers ordinaires en vous
basant sur la définition suivante : « J'appelle nombre entier
tout nombre pair, et nombre non entier tous les autres. »
D’apres cette définition, les nombres impairs seraient donc
des nombres «non entiers ». En érigeant une arithmétique
basée sur cetle définition-la, vous vous apercevrez vite de
I’existence d anomalies déconcertantes. On devine méme a
Pavance que les théorémes classiques sur la divisibilité, par
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exemple, ne joueront pas toujours, si 'on fait.reposer I'arith-
nomie sur une définition pareille. Ce n'est la, bien entendu,
qu'une analogie. (La différence capitale provient de ce que
'ensemble de tous les nombres pairs ne contient pas le
nombre 1 et ne constitue pas, en conséquence, de domaine
holoide, tandis que [J,] en est un.) Aussi n’ai-je voulu, en
employant cette image, que faire sentir en quelque sorte la
raison profonde pourquoi I'on doit s’attendre, a priori, a des
anomalies, quand on entreprend de construire l'arithnomie
d’un domaine holoide non maximal.

On le vérifierait sans doute sur un cas concret, déja dans
le domaine des nombres complexes de Gauss, en faisant,
par exemple, I'arithnomie du domaine holoide

[1, 360i] = m, + 360m,: , (9)

ot m, et m, représentent des entiers quelconques. Cela
reviendrait a remplacer la définition de Gauss (définition I)
par celle-ci: Un nombre complexe @, + a,¢ sera dit entzer,
s'1l est contenu dans le domaine (9). Tous les autres com-
plexes rationnels, méme ceux a coordonnées entiéres (donc
tous ceux dont la partie imaginaire n’est pas divisible par
360), seraient réputés non entiers.

22. — Les nombres complexes de Gauss, a + bi, ou les
coordonnées a et b sont des nombres entiers ordinaires,
constituent un domaine holoide maximal; définition lip-
schitzienne et définition hurwitzienne sont équivalentes dans
ce systtme de nombres complexes; les deux conduisent au
méme ensemble de complexes entiers; voila pourquoi il est
possible, en adoptant la définition lipschitzienne, d’y con-
struire une arithnomie d'une simplicité analogue a celle de
I'arithmétique classique. On peut se demander si Gauss, en
posant cette définition I, a simplement eu de la chance, ou
s'il connaissait la raison profonde pourquoi il faut la poser?
[l est permis de croire que si Gauss avait été amené a faire
Parithmétique généralisée des quaternions « entiers », il
aurait commencé par se baser sur la définition lipschit-
zienne 11I; puis cherchant la raison d’étre des singuliéres
exceptions qu’il elt constatées, que Gauss aurait alors fait
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la découverte, dont la priorité revient a M. Hurwitz, que le
domaine holoide [J,] n'est pas maximal, qu’il est en consé-
quence préférable de fixer d’'une autre maniére la notion du
quaternion entier.

23. — En adoptant la définition Aurwitzienne VIII du qua-
ternion entier, définition qui engendre le domaine [J] de
larticle 19, on peut ériger une arithnomie des quaternions
entiers exempte de ces exceptions singuliéres que présente
la théorie lipschitzienne qui n’envisage que le domaine [J,]
de 'article 21. Reprenons les exemples cités plus haut. Les
quaternions enliers ¢« =2 et b=—=1 -+ 7, + 7, + 7, (v. art. 12)
possédent, dans le domaine [J], comme plus grand commun
diviseur 2 (ils y sont méme associés), alors que dans la
théorie lipschitzienne (domaine [J,]), ils n’en possédent aucun.

Le théoréme de décomposition (v. art. 11) reste applicable,
dans le domaine [J], a tout quaternion entier ¢, quelle que
solt sa norme, et peut s’énoncer ainsi: Soit ¢ nn quaternion
entier primitif donné, de norme

Nieg| =Pyafoc Py == P

ou les p; sont les facteurs premiers, égaux ou inégaux entre
eux, de la norme de ¢, facteurs rangés dans un ordre tout a
fait arbitraire, mais déterminé. Il est alors toujours possible
de représenter le quaternion donné ¢ comme produit de
(uaternions premiers :

C = 70 TRy« 7% w~

1.“2-1-3~ e -S

tels que N(m)=p,; N(m)=p,: ...: N(z)=p,, et cette dé-
composition est univoque. Chacun des quaternions premiers
qui figurent dans le produit se détermine de proche en proche,
sans ambiguiité.

Dans sa théorie qui n'envisage que le domaine [J,], M. Lip-
schitz est obligé d’ajouter une exception: « Tout se passe
de méme pour les quaternions entiers primitifs dontla norme
est divisible par 4, jusqu'a ce que l'ordre fixé pour les fac-
teurs de cette norme ameéne pour la premiére foisle nombre 2
on peut alors choisir arbitrairement. commne facleur premier,
I’'un quelconque des 24 quaternions premiers dont la norme
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est égale a 2; ce choix une fois fait, les quaternions pre-
miers dont les normes sont les nombres premiers suivants,
pris dans 'ordre indiqué, se déterminent de proche en proche,
sans ambigiité, jtfisqu’e‘l la fin. »

Cette singuliére exception tombe également quand on
passe du domaine [J,] au domaine holoide maximal [J].

24. — Résumons les considérations precedentes en disant:

Les nombres hypercomplexes « entiers » doivent former
non seulement un domaine holoide, mais un domaine holoide
maximal.

Définition IX : Un complexe rationnel

) PO
e =S,
A

sera dit entier, s’il est contenu dans le domaine holoide
maximal en question. Le complexe rationnel x sera dit non
entier, s'il ne fait pas partie du domaine holoide maximal en
question. (Définition hurwitzienne.) |

Cette définition hurwitzienne du nombre hypercomplexe
entier peut avoir comme conséquence qu'on.appellera « en-
tiers » méme certains complexes rationnels x a coordonnées
2y, fractionnaires. (Exemple : les quaternions.) Inversement :
il peut arriver aussi que certains nombres hypercomplexes
rationnels x ne soient pas des complexes « entiers », bien
que toutes leurs coordonnées x; soient des nombres entiers
ordinaires.

[11

25. — Pour construire Parithmétique d’un corps {R{ de
nombres hypercomplexes rationnels, il faut toujours com-
mencer par une opération préliminaire consistant a partager
ce corps ng en deux ensembles, mettant d’'un coté : les
complexes rationnels « entiers », de I'autre : les complexes
rationnels « non entiers ». Or, 1l peut se présenter la curieuse
circonstance que celte opération préliminaire ne soit pas
univoque. Nous l’avons découvert en étudiant une classe
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trés étendue de systemes de nombres hypercomplexes de la
forme

l...s
a=ae + ae, + ... + a.e = Ea)\e)\
A

caractérisée par le fait que le nombre s des coordonnées a,
est un carré parfait, s =1, 4,9, 16, ..., v®. Le cas le plus
simple est s —4, vu que s—1 donne les nombres réels
ordinaires.

26. — Soient donc

a=ae + a,e, + a,e, + a,e, et b= >be + bye, + bye, 4+ b,e,

deux de ces nombres hypercomplexes. On définit I’égalité de
deux complexes par 1'égalité des coordonnées correspon-
dantes. Ainsi, pour que a =5, il faut et il suffit que les
4 égalités ay = by, (A =1, 2, 3, 4) aient lieu simultanément.
On définit ensuite laddition de deux de ces nombres hyper-
complexes par 'addition des coordonnées correspondantes;
il s’ensuit que son opération inverse : la soustraction, est
univoque, toujours possible et se fait par la soustraction des
coordonnées correspondantes; en formule :

atb=\(a,b)e + (a,b)e, 4 (a, b)) ey + (a, = by)e, . (10)

Pour multiplier (ou diviser) un tel nombre hypercomplexe
par un nombre réel r, il faut multiplier (ou diviser) chacune
des coordonnées par r, d'ou la formule :

r.a=rae —+ ra,e, + raye, + ra,e, . (11)

La multiplication de ces nombres hypercomplexes entre
eux esl définie par le tableau suivant :

el el e
e, é, e, 0 0
€y O‘ 0 e, e, (12)
_;3- 2 €y 0 0
_;4— 0 0 ey e,

b e X

e R A s S LR
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Représentant par i et & l'un quelconque des nombres
1,2, 3, 4, on trouve le produite,.e, a lintersection de laligne
horizontale portant a gauche e, avec la colonne verticale por-
tant en haut ¢,.

Un tel nombre hypercomplexe est dit réel, lorsque ses
deux coordonnées moyennes sont nulles et, de plus, ses deux
coordonnées extrémes égales entre elles. Tout nombre réel
7 peut ainsi s’éérire: r==re, + re,=r(e, +¢). On vérifie
sans peine que le symbole e, + ¢, joue lerole du «nombre 1»,
de sorte qu'on peut poser, dans ce systéme de nmombres
hypercomplexes : e, + e, = 1. Moyennant ces délinitions, on
peut dire que l'addition, la soustraction et la multiplication
de ces nombres hypercomplexes se font « d’aprés les régles
ordinaires de I'algébre ». A noter cependant que la multipli-
cation n’est en général pas commutative dans ce systeme,
puisque, par exemple, e,.e; =e,, tandis que ¢,.¢, =e¢,. Iy
a donc lieu de distinguer ici, comme pour les (uaternions,
une «arithnomie 4 gauche » et une «arithnomie a droite »
(v. article 7).

27. — Pour introduire la division comme opération inverse
de la multiplication, on peut procéder par analogie avec les
nombres complexes de Gauss et avec les quaternions. A tout
nombre hypercomplexe ¢ =a,e, + a,e, + aze; + a,e, cor-
respond son conjugué: A'=a,e,— a,e, — a,e; + a,e,.

Le produit d’un tel nombre hypercomplexe et de son con-
jugué — ils sont commutables entre eux — est toujours réel
et s’appelle « la norme du nombre hypercomplexe a ». Cette
norme est ainsi définie par

N(ag) =a. A" =A.a=aa, — aya, . (13)

On en déduit le théoréeme fondamental que la norme d’un
produit est égale an produit des normes des facteurs:
N(a.b) = N(a).N().

La norme d’un tel complexe « peut étre nulle sans que
a=0; si N(a) =0, on dit que @ est « un diviseur de zéro ».
Ce systéme de nombres hypercomplexes présente donc, .
d’avec les nombres complexes de Gauss et les quaternions,
cette différence capitale qu'un produit de facteurs peut étre
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nul sans qu’aucun des facteurs de ce produit ne soit nul.
Ainsi, e;.e, =03 e,., =0 ¢ == ; ele,

Si @ n’est pas diviseur de zéro, c’est-a-dire si N(a) == 0, on
entend, en analogie avec les nombres complexes ordinaires
et avec les quaternions, par «l'inverse de a» le nombre

h‘ypercomplexe
AI

-1 — ;_:_ ‘ S 14
@ a N(a) (14

»

qul satisfait aux relations a.a™' = a¢'. a = 1.

Les nombres hypercomplexes @ et 6 étant donnés, avec
N(0) 0, on appellera, en analogie avec les quaternions, le
nombre hypercomplexe x — 67". @ « le quotient a droite de
a par b»; c’est la solution de I'équation a=10.x; et le
nombre hypercomplexe y =« . 6= sera « le quotient @ gauche
de @ par b»; c'est la solulion de l'équation « =17 .0. Le

. . . e . a \
signe ordinaire de la division, @ : b ou y , n’aura de sens, a

moins de définitions spéciales, que si « et B’ sont commu-
tables entre eux, B’ représentant le conjugué de b.

Dans le domaine de ces nombres hypercomplexes, cha-
cune des deux divisions est donc toujours possible et uni-
voque, a condition que la norme du diviseur ne soit pas
nulle. Un quotient dont le diviseur est de norme nulle n’a
de sens que si le dividende est aussi de norme nulle, et un
quotient de deux diviseurs de zéro, quand il a un sens, peut
étre indéterminé.

Les définitions précédentes suffisent pour établir parfaite-
ment les quatre opérations rationnelles dans le domaine de
ces nombres hypercomplexes. |

28. — Ces nombres hypercomplexes peuvent se repré-
senter par des schémas carrés ou ne figurent que les coor-
données. Ainsi,

a —

L'égalité « =0, la somme a + b, la différence a — b, se
figurent alors aisément, et I'on obtient pour le produit «.b:

% a, b, + a,b, a by + a, b,
« i —

azb, 4+ a, b, agby 4+ a,b,
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On voit par la, soit dit en passant, que la multiplication
de ces nombres entre eux se fait d'apres les mémes regles
que la composition des substitutions linéaires. A chacun de
ces complexes correspond une substitution linéaire bien
déterminée, et inversement. Le « nombre 1 » correspond a
1, 0

0. 4 (3 un nombre réel r

la substitution identique : 1:%

a " S; les unités relatives sont :
;r
(1;0 0; 1 0; 0 0; 0
61: 3 62: s 83: C 4: ’
10;0 0; 0 1;0 0; 1)

et ainsi de suite. Chaque propriété des substitutions linéaires
peut se traduire en un théoreme sur ces nombres hyper-
complexes.

29. — Cette correspondance étroite montre aussi la voie
de la généralisation au cas ou le nombre s des coordonnées
est un carré supérieur a 4, s=29, 16, ..., v% Par exemple,
pour ces nombres hypercomplexes a 9 coordonnées indé-
pendantes, on aura

a=ae + a,e, + aze, + ... 4 age, = Ealek ,
PN

nombre hypercomplexe qu’on représentera schématiquement
par
S @y Gy Oy
a —

a

5 6

8 N
a;, ag, a,

Or, il est plus pratique de se servir de deux indices et
d’écrire, pour le méme nombre hypercomplexe «,

all ¥ al" ? a’l3

B E Iazk € — { o1 » Qog» Qg

a a a

31 32 33

L'unité relative e, est représentée par le schéma carré dont
tous les éléments sont nuls sauf celui qui se trouve a l'in-
tersection de la ¢ ligne et de la & colonne, lequel est 1.
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La multiplication des unités relatives ¢, est alors définie par
les relations :

e Cps = €55 5 e -, =0 pour t =k (15)

Les lettres ¢, %, s, t représentent, chacune, 'un quelconque
des nombres 1, 2, 3.

Si
by, by, by,
b _2 by e == byy + bay s by
by s by s by,

représente un second nombre hypereomplexe du méme sys-
téeme, 'égalité, U'addition et la soustraction se définiront par
I'égalité, 'addition et la soustraction des coordonnées cor-
respondantes, et le produit @.b sera défini par

Scn, En 1 Ep 2
@ b= == 2 k€ _8c21, Cop 5 023,\\
€310 €399 Cg3
\ ] , ’
ou l'on a posé pour abréger:
1,2,3

ey = ay byt @by + a3by = 2 @33 b
A

€9 = dyy by + @13 byy + 505 S PN bys

e,
A

1,23
Cir =— & b]]t -4 ;o b)/c + at3 3k — fv ai)\ b)\k (16)

l

On appellera réel un tel nombre hypercomplexe » quand

il aura la forme
r, 0, 0
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en particulier, le « nombre 1 » sera

12,3 1,0, 0
1—=¢e, 4+ ¢ + ¢, = ey = 0,1, 0
. 0 0, 1

’

En se basant sur les propriétés bien connues des substi-
tutions linéaires, on définira d’abord «le conjugué A" d’un
tel nombre hypercomplexe a »; ce sera

g An » T A21 * A31
AIZ?'—A12~ A‘z‘z’ —‘A32
A13 T A23 ’ A33

o A, désigne le sous-déterminant correspondant a «a,,;
puis «la norme, N(a), de ce complexe a» en posant:

N(a) = a.A'= A’.a; cette norme est toujours un nombre
réel et égal au déterminant du systéme des coordonnées :
Ayp 5 dyg 0 Gy3
N{a) = | ay;, g9, Gy | ;
a31 » a32 ! a33 l

puis « I'Znverse d’'un complexe a de norme non nulle » en
posant ’équation de définition (14); enfin, un « quotient a
gauche » et un « quotient a droite » du complexe a par le
complexe &, ou 'on suppose N(0)~0, comme ci-dessus,
articles 7 et 27.

Une induction, facile pour qui connait les substitutions
linéaires, montre comment procéder dans le cas ou le
nombre s des coordonnées indépendantes est un carré supé-
rieur a 9, s =16, 25, ..., v2

30. — Remarquons que loutes ces définitions peuvent
subsister méme dans le cas ou les coordonnées du nombre
hypercomplexe en question sont elles-mémes des nombres
complexes de Gauss; alors, en posant comme de coutume
i =V —1, on a affaire (dans le cas de 4 unités relatives,
s = 4) a un complexe tel que

(a, + ib)) e, + (a, + b)) ey, + (a, + iby) e, + (a, + ib,) 8 -
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On voit combien il peut devenir fastidieux, quand on s’occupe
de pareils complexes, de distinguer entre les deux espéces
différentes de complexes, car il est nécessaire d’'éviter soi-
gneusement toute confusion entre: d’'une part les coor-
données qui sont des complexes de Gauss, et d'autre part le
complexe total constitué par I'ensemble de ces coordonnées.
Afin de simplifier la terminologie et de prévenir des con-
fusions possibles, nous avons introduit le néologisme de
tettartons pour désigner cette espece de nombres hyper-
complexes. Ce terme de tetlarion est tiré d’un mot grec qui
signifie carré et doit indiquer que le complexe en question
peut se représenter par un schéma carré. Suivant que le
nombre des lignes et des colonnes est 2, 3, 4, ..., donc le
nombre correspondant des coordonnées s =4, 9, 16, ...,
nous parlons de duotettarions, tritettarions, tétratettarions, ...,
en général de y-tettarions ou polytettarions.

Les duotettarions sont donc les nombres hypercomplexes
définis dans les articles 26-28 ; les tritettarions ceux traités
a l'article 29 ; etc.

Dans la suite, nous ne parlerons que des duotetlarions ;
nous pourrons ainsi les désigner par « tettarions » tout court.
De plus, nous envisagerons exclusivementdes duotettarions
rationnels, et le corps %R% constitué par leur ensemble
(v. article 14).

31. — Aprés cette digression sur les tettarions en général,
proposons-nous de construire Parithnomie du corps ;R% formé
par tous les duotettarions rationnels. Le premier pas devra
consister a définir le tettarion « entier ». A cet effet, il s'agit
de trouver le domaine holoide maximal contenu dans ce
corps de nombres $R§ (v. les définitions VI et VII).

Pour bien faire ressortir le fait nouveau qui se produil ici,
nous allons procéder par analogie. ‘

Répétons que nous adoptons toujours la définition lLur-
witzienne du nombre entier (v. définition IX).

Dans le corps des nombres ordinaires comprenant ’en-
semble de tous les nombres rationnels, il existe un seul
domaine holoide; il est, par conséquent, maximal : c’est
'ensemble des nombres entiers ; nous le désignons par [1].
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Pour savoir si un nombre ralionnel pris au hasard est entier
ou non entier, il suflit de déterminer s’il fait partie du
domaine [1], ou non. Aucune ambigiiité n’est possible, puis-
quil existe un seul domaine holoide, donc aussi.une seule
facon de séparer les nombres rationnels en «entiers» et
« fractionnaires ». |

32. — Envisageons, en second lieu, les nombres complexes
ordinaires, ou complexes de Gauss, a, + a,i. Dans le corps
de nombres constitué par 'ensemble des complexes ration-
nels de Gauss, il y a une infinité de domaines holoides dif-
renls ; leur base est: (1, pi), ot p est un nombre entier arbi-
trairement choisi, mais fixe. Parmitous ces domaines holoides,
un seul est maximal; c'est précisément celui dont Gauss et
plus tard M. Lipschitz ont fait Dlarithnomie, a savoir le
domaine [1, ] = ensemble de tous les m, + m,z, ou m, etm,
sont des entiers ordinaires.

Si 'on prend au hasard un nombre complexe o + 3¢
rationnel quelconque, on pourra dire immédiatement et sans
équivoque, si ce complexe rationnel est «enlier» ou «non
entier »; 1l suffira de déterminer s’il est contenu, ou non,
dans ce domaine [1;¢]. Iei aussi, aucune ambigiiité n’est
possible, parcequ’il existe un seul domaine holoide maximal;
en d’autres termes : il n'y a qu'une facon de séparer les
nombres complexes rationnels de Gauss en complexes
« entiers » et complexes « non entiers ». A la question : «Le
complexe rationnel « 4+ (3¢ est-1l entier ?» on répondra d’une
maniere absolue, soit par oui, soit par non; aucune autre
alternative n'est possible. |

33. — Envisageons, en troisiéme lieu, les quaternions. Le
corps des quaternions rationnels (v. définition [1) contient
une multiple infinité de domaines holoides différents. Mais
de tous ces domaines holoides contenant les unités relatives
L, Uy, Uy, un seul est maximal; c’'est le domaine [J] décou-
vert par M. Hurwitz (v. avticle 19). Choisissant arbitrairement
un quaternion rationnel x, on pourra décider sans équi-
voque et d’'une maniere absolue, si » est « entier» ou «non
enticr»; il suffira de déterminer s'il fait partie de ce domaine
[J], ou non. Ici encore, aucune ambigiité n'est possible,
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parcequ’il existe un seul domaine holoide maximal, et partant
une seule facon de séparer les quaternions rationnels en
« entiers » et «non entiers». A la question: «le quaternion
rationnel x est-il entier? » on répondra également d’une
maniére absolue, soit par oui, soit par non; aucune autre
alternative ne sera possible.

34. — En quatriéme lieu, envisageons les tettarions et exa-

minons le corps ;T; des tettarions rationnels. 1l s’agit de

séparer ce corps §T§ en deux ensembles, mettant dans le
premier: les tettarions « entiers» encore a définir, dans le
second : les tettarions « non entiers ». D’apres ce quiprécede,
cela revient & chercher quel est le domaine holoide maximal
du corps ;Té Or, voici le fait nouveau qui se produit ici:
Parmi tous les domaines holoides que contient le corps %Tg .
une infinité sont maximauzx, quoique tres différents entre eux.
Nous avons, en effet, démontré ailleurs le théoreme sui-
vant :

Le domaine holoide maximal le plus général contenu dans
le corps ?T% des tettarions rationnels posséde la base que
voici :

/ 8182 £e
g3_— ’ - , 0
1 8 (1; 0 g, 0
i =% , s Ty =g g ; 13:? y Iy =
Sdg, 8,8 ZT’ s 0; 1 0, 0
cg ' 8
oue==41; & ==x1; ¢, d, g, 9, S2,» §s representant

des nombres entiers arbitrairement choisis, mais fixes, et
assujettis aux conditions:

14

c#0, d20, g0, 2(88 +89) — &g =c¢ ,

ou g, est un nombre entier quelconque.
On obtient donc un domaine holoide maximal en faisant
parcourir, dans l'expression

myt, 4 myty + myt, + myt,

aux 4 nombres m; et indépendamment les uns les autres, la
série des nombres entiers ordinaires, de — e« a 4+ o , apres
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avoir fixé, conformément aux conditions ci-dessus, mais
. - . . 4 y
d’ailleurs arbitrairement, les entiers e, ¢', ¢, @, &, &1 8>

g, et g,.
35.— Parmi ces domaines h0101des maximaux se trouve, par

exemple, le domaine |e,, 2, pe,, e ou p est un nombre
p ’ ‘1 p 3 4]

entier non nul, du reste arbitrairement choisi, mais fixe. Ge
domaine holoide maximal que nous désignons par [Jp] estdonc
constitué par I’ensemble des tettarions

m, e, + e‘) + pmge, + e, . (17)

Il contient une infinité de tettarions a coordonnées entiéres :
il suffit d'y choisir pour m, un multiple de p; mais il ne con-
tient pas tous les tettarions a coordonnées entieres; ainsi,
ni e;, ni 2e,, ni 3¢, ..., ni (p — 1)e;, ni uneinfinité d'autres,
n’en font partie. Par contre, [J ] contient certains tettarions a
coordonnées fractionnaires, par exemple

et une infinité d’autres.
Citons encore le domaine holoide maximal [H,] formé par
I’ensemble des tettarions

("’1 — %) e, —{— M2 ey + <m3 — "—21—2> e; + (m —m, 4 2m, 4 m‘,> e, (18)

ou les m, représentent, comme toujours, des nombres entiers
quelconques. Ce domaine [H,], quoique comprenant (outre
des tettarions a4 coordonnées fractionnaires) une infinité de
tettarions a coordonnées entieres, ne les contient cependant
pas tous; par exemple, il ne contient pas e, ; par contre, ce
méme tettarion e, fait partie de chacun des domaines|[J |, quel
que soit p.

Chacun des domaines holoides [J ] est cependant maximal;
en d’autres termes : il n’existe pas, dans le corps de tettamons
%T% , un autre domaine holoide contenant tous les éléments
de[J ] plus encore d’autres non compris dans [J]. Etil en est
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de méme pour tous les autres domaines holoides maximaux.
Chacun d’eux constitue un ensemble de « nombres entiers »
avec toutes leurs propriétés caractéristiques ; c’est dire qu'on
peut ériger, dans chacun de ces domaines holoides maxi-
maux, une arithmétique en tous points semblable a 'arithmé-
tique hurwitzienne des quaternions entiers.

36. -- Si l'on fait'arithnomie du domaine [H,] par exemple,
tous les tettarions contenus dans [H,] seront réputés « tetta-
rions entiers », et tous les autres, donc aussi e,, seront con-
sidérés comme tettarions « non entiers ». Par contre, si1 'on
fait I'arithnomie d’un domaine [J ], ce seront tous les tetta-
rions faisant partie de [J ]. donc aussie,, qui seront réputés
« entiers », a le\gluslon de tous les autres. Ainsi, le tetta-
rion e, qui est pourtant a coordonnées entieres devra étre
envisagé soit comme « nombre entier », soit comme «nombre
non entier », suivant le domaine holoide considéré. On ne
peut donc pas, quand on s’occupe de l'arithnomie des tetla-

rions, appliquer purement et simplement la définition IX du
tettarion entier en disant : « un tettarion rationnel

:t\ s

sera entier, s'il fait partie d'un domaine holoide maximal» ;
on est obligé d’ajouter : « entier par rapport au domaine
[J]», ou blen « entier par rapport au domaine [H, »], etc.

3'7 — Prenez maintenant au hasard un tettarion rationnel ¢
et posez la question: « est-il entier?» On ne pourra plus
vous répondre, en général, d'une maniere absolue, soit par
oui, soit par non. Il pourra se faire, au contraire, qu'on doive
répondre « cela dépend », car il y a plusieurs facons de
séparer le corps des tettarions rationnels en « entiers » et
« non entiers » ; il ya méme une infinité de maniéres d’opérer
cette séparation, et la réponse a la question ci-dessus doit
dépendre, ou du moins peut dépendre, de la facon dont ona
départagé le corps des tetlarions rationnels en entiers et non
entiers.

38. — Certains tettarions rationnels sont contenus dans
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tous les domaines holoides maximaux ; tels les nombres
entiers ordinaires envisagés comme tettarions réels ; ceux-la
sont donc toujours et stirement des tettarions entiers; on
pourrait les nommer «absolument entiers ». D’autres tetta-
rions rationnels ne sont contenus dans aucun domaine
holoide maximal ; ceux-la sont donc toujours des teltarions
non entiers; on pourrait les dénommer « absolument non
entiers » ou « absolument fractionnaires ». Enfin, il y a une
catégorie de tettarions rationnels contenus dans tel domaine
holoide maximal [Jp]‘ mais pas dans les autres ; ceux-la
peuvent étre tantdt enizers, tantot non entiers, suivant la
maniére donton sépare en deux le corps des tettarions ration-
nels. On pourrait nommer « conditionnellement entiers » les
tettarions de cette troisieme catégorie. “

Au point de vue de l'arithnomie, le corps des nombres
rationnels ordinaires et celui des complexes rationnels de
Gauss se partagent, chacun, en deux groupes seulement,
dont 'un contient tous les «nombres entiers» et 'aulre
tous les « nombres non entiers ». Par contre, le corps des
tettarions rationnels devrait plulot se. partager en trois
groupes : celui des nombres «absolument entiers», celui
des nombres « absolument fractionnaires», et enfin celui
des nombres « conditionnellement entiers ».

39. — Parmi les domaines holoides maximaux du corps
3T$ des tettarions rationnels se trouve le domaine [J,] cons-
titué par 'ensemble des tettarions a coordonnées entieres:

[J,] = ensemble de tous les mye; 4 mye, + mye, + mye, |

ou les m; représentent des nombres entiers ordinaires d’ail-
leurs quelconques. En appliquant la définition lipschitzienne
au cas des duotettarions, c’est-a-dire en posant la

Définition X: Un duotettarion ¢ sera dit « enlier », si ses
(quatre coordonnées /;, sont toutes des nombres entiers ordi-
naires, en posant celte définition, dis-je, on obtient un do-
maine holoide maximal. Il s’en suit que l'arithnomie hasée
sur cette définition X est «réguliére », semblable en tous
points a la théorie hurwitzienne des qualernions entiers,

L’Enseignement mathém., 18¢ année ; 1916, 16
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nous voulons dire: exempte de ces exceptions singuliéres
(que présente la théorie lipschitzienne des quaternions entiers.

L'exemple des duotettarions prouve donc que les nombres
complexes de Gauss ne constituent pas le seul systéme de
nombres complexes ou la définition lipschitzienne du com-
plexe entier soit satisfaisante (v. définition V).

Celui qui poseraitun peu au hasard et sans en connaitre
la raison profonde, en se laissant guider par l'induction ou
par I'analogie avec les nombres complexes ordinaires, cette
définition X du teltarion entier, simplement parce qu’'elle se
présente le plus naturellement a l'esprit, celui-la aurait de la
chance, en ce sens que le domaine holoide ainsi délimité est
maximal, car bien souvent (I'exemple des quaternions, entre
autres, le prouve, la définition lipschitzienne du complexe
entier (v. définition V) engendre des domaines holoides non
maximaux et partant, une arithnomie « non réguliere ».

Mais en posant la définition X simplement par induction et
pour des raisons d’analogie, sans en approfondir le pour-
quoi, et l'arithnomie basée sur cette définition X étant par
hasard «réguliere », c¢’est-a-dire exempte de ces exceptions
singulieres qui donnent a réfléchir, on ne s’apercevrait pas
de ce quil vy a d'intéressant dans le cas des tettarions, de ce
qui les distingue d'autres systémes de nombres hypercom-
plexes, a savoir: que cette définition X n’est pas la seule
possible, puisqu’on peut séparer les tettarions rationnels de
plusieurs manieres, méme d'une infinité de maniéres, en
tettarions entiers et non entiers.

Exprimons cette différence en disant que, pour obtenir
une arithmétique « réguliere »

1° dans le systeme des nombres complexes de Gauss, on
doit se baser sur la définition lipschitzienne ; c’est la seule
satisfaisante ,

2° dans le systeme des tettarions, on peut se baser surla
définition lipschitzienne; mais ce n’est pas la seule qui y soit
satisfaisante ;

3° dans le systéme des quaternions, il ne faut pas se
baser sur la définition lipschitzienne; elle n'y est pas satis-
faisante.
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Résumant les considérations précédentes, nous dirons :
il existe des systémes de nombres hypercomplexes ou l'on
peut procéder de plusieurs fagcons pour séparer le corps des
complexes rationnels en « nombres entiers » et « nombres
non entiers ».

1Y

40. — Dans les chapitres précédents, nous avons reconnu
que définir le complexe « entier » de facon satisfaisante
revient a déterminer le domaine holoide maximal (éventuelle-

ment, s'il y en a plusieurs, les domaines holoides maximaux)

du corps de nombres %R€ constitué par 'ensemble des élé-

ments

X = Elew

ott toutes les coordonnées .y sont des nombres rationnels
arbitraires. On pourrait se demander si, étant donné un sys-
téeme quelconque de nombres hypercomplexes, on peut tou-
jours séparer ainsi le corps 3 —“\é des complexes rationnels en
deux groupes, 'un comprenant tous les complexes entiers
I'autre tous les complexes non entiers.

De prime abord, on ne posera guere cette question ; on
est porté tout naturellement a croire qu'on peut toujours
procéder de facon satisfaisante a cette distinction essentielle
entre complexes entiers et non entiers, peut-étre d'une seule
maniére, comme pour les nombres complexes de Gauss,
peut-élre de plusieurs maniéeres, comme pour les tettarions;
mais en tout cas, si onse laisse guider uniquement par I'ana-
logie, on admettra implicitement et « priori que cela est tou-
jours possible. Or, il n'en est rien. D'une maniére plus pré-
cise : les recherches aboutissent au résultat surprenant
exprimé par le théoreme que voici: /I exisie des corps de
nombres hypercomplexes rationnels contenant une infinité de
domacnes holoides, mais parmi lesquels aucun n’est maximal.
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41. — Exprimons ce fait d’'une maniére plus frappante. On
a toujours a sa disposition, cela va sans dire, la définition
lipschitzienne du nombre hypercomplexe entier (v. défini-
tion V); c’est méme la son grand avantage : d’étre toujours
applicable et toujours univoque. Mais nous avons reconnu
que cette définition qui s’en tient uniquement a la nature
des coordonnées, sans considérer en aucune maniére les pro-
priétés intrinséques du systeme de nombres hypercomplexes
en queslion, doit étre écartée comme non satisfaisante,
comme pouvant conduire a4 des arithnomies non régulieres;
nous avons montré qu'il faut avoir recours a la définition
hurwitzeenne (v. définition IX). Or, celle-ci implique 'exis-
tence d'un domaine holoide maximal ; sans domaine holoide
maximal, point de nombres entiers.

Le théoréme énoncé tout a I'heure prouve la réalité des
trois possibilités suivantes: certains corps de nombres con-
tiennent un seul systeme de « nombres entiers » ; la défini-
tion du complexe entier y est absolue et unique. D’autres
corps de nombres contiennent plusieurs systemes différents
de «nombres entiers»; la définition du complexe entier y
est relative et plurivoque. Enfin, d’autres corps de nombres
encore ne contiennent aucun systeme de « nombres entiers »;
la définition du complexe entier y devient, jusqu’a un certain
degré, arbilraire; aussi faut-il s’attendre a ce que l'arith-
nomie correspondante en porte '’empreinte plus ou moins
profonde.

Nous allons citer un exemple simple de nombres hyper-
complexes doués de cetle particularité.

42. — Envisageons des nombres hypercomplexes a trois
unités relatives, tels x — r,e, + rye, + r5e,, les nombres a, ,
dits coordonnées du complexe x, étant, comme toujours, des
nombres réels arbitraires. S1 a = a,¢, + a,e, + ase, et
b=—=0,e, + bye, + e, sont deux quelconques de ces com-
plexes, on définit légalite et addition de ces deux com-
plexes par I'égalité et l'addition de leurs coordonnées cor-
respondantes. En d’autres termes, @ = 0 signifie l'existence
simultanée des trois égalités a3 = b, (b =1, 2, 3); la sous-
lraction, opération inverse de l'addition, est alors toujours
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possible et univoque, et I'on a les formules :
a = b= (a, = b))e, + (a, =+ by e, + (a4 o= byey

En additionnant r fois de suite un complexe a lui-méme,

on trouve que
(19)

r.a = rae, 4 rae, + ra;e,
et 'on étendra cette régle, par définilion, a la multiplication
par un-nombre réel r quelconque.

La multiplication de ces complexes entre eux est fixée
par le tableau suivant qui donne le produit e,.e, a I'intersec-
tion de la ligne horizontale portant a gauche e; et de la co-
lonne verticale portant en haut e, (z, k=1, 2, 3)

I

€y e, &, 0
T 20
ey £y 0 0 (20)
e, 0 0 e,

Il en résulte que la multiplication est toujours commuta-
tive, a.b = 0. a.

Nous appellerons un tel complexe réel, quand sa coor-
donnée moyenne sera nulle et en méme temps ses deux
coordonnées exirémes égales entre elles. Inversement: tout
nombre réel » pourra étre envisagé comme un tel complexe
de la forme r = re, 4+ re; = r(e, 4+ ;). On vérifie sans peine
que le symbole e, 4 ¢; joue le role du nombre 1, de sorte
(qu'on peut poser ici:

e, + e, =1

et que la regle exprimée par l'égalité (19) n’est qu'un cas
particulier des définitions condensées dans le tableau (20).

43. — A tout complexe a — a,e, + a,¢, + ase, corres-
pond un conjugué unique et bien déterminé :

VA— ' 2
A= a6, — ayaze, + ae, .
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Le produit d’'un complexe « et de son conjugué A’ est fou-
jours réel et s’appelle « la norme de a », en signes:

N(a) = a. A" = (lf(l3 :

La norme d'un produit est égale au produit des normes
de ses facteurs.

Si la norme de a est nulle, ce complexe a est dit «un
diviseur de zéro » 1. Cela se présente dés que 'une au moins
des coordonnées extrémes est nulle, et sans quon ait, pour
cela, nécessairement « = 0. Un produit de tels complexes
peut ainsi étre nul sans qu’aucun facteur ne le soit (v. 27).

La division, comme opération inverse de la multiplication,
est définie dans ce systeme de nombres hypercomplexes par
la formule:

/
" _(i_a.B_n_l( _all)Q—n‘Z_/)_1 +ci§€
— =N e 1 ) 9 3
b N () b, {)i »

Au moyen de ces définitions, les 4 opérations rationnelles
de l'addition, de la soustraction, de la multiplication et de
la division (sauf, éventuellement, la division par un diviseur
de zéro) sont parfaitement et univoquement établies dans le
domaine de ces nombres hypercomplexes, et I'on peut dire
qu’elles s’effectuent «suivant les regles ordinaires de 1'al-
gébre », en tenant compte du tableau (20).

44. — Faisons remarquer, en passant, que ce systéme spé-
cial de nombres hypercomplexes a trois coordonnées est un
sous-systeme, ou cas particulier, des tritettarions (v. art. 29
et 30). On peut en_effet représenter le complexe a = a,e,
+ «@,e, + @ e, par le schéma carré

La, ay 0)
> 0 a 0
/ 0 0 «a

1 11 ne faut pas confondre « diviseur de zéro » avec « racine de zéro». Tout nombre hyper-
complexe dont 'une des puissances est nulle est dit racine de zéro (d’aprés G. Frobenius),
ou nombre pseudo-nul (d’aprés E. Cartan), quelquefois nombre nilpotent (d’aprés B. Peirce).
Un nombre pseudo-nul est toujours diviseur de zéro, mais la réciproque peut ne pas avoir
lieu. Par exemple, dans le systéme dont il est ici question, ¢, est pseudo-nul, puisque e: = {,

tandis que e, est diviseur de zéro sans étre racine de zéro.
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caractérisé par

a.. —— « Auq == Uy T= Qgy == (lgg = (g, = 0.

11 29 *

45. — Nous allons envisager le corps de nombres %Kg
constitué par l'ensemble de tous les complexes rationnels
du systéme en question (v. article 14). Le premier pas a
faire pour construire l'arithmétique généralisée de ce corps
; K€ consiste 4 y définir le complexe entier. Cela revient a
déterminer, comme nous l’avons montré plus haut, le do-
maine holoide maximal, éventuellement les domaines ho-
loides maximaux, de ce corps de nombres % K é . Pour cette
déterminalion, prenons comme poinl de départ le théoreme
fondamental suivant:

Le domaine holoide le plus général contenu dans le corps
de nombres % K% a comme base

v = e, + e, ( (B)
/(3> Tt o O or ’] )
= 281 &l T+ 10

ou y est un nombre rationnel non nul du reste arbitraire,
et g, g,. g, des nombres entiers quelconques assujettis aux
seules conditions g3 0, g, 0.

L’ensemble de tous les complexes

m, b L mQ.b(?) -+ mg.l)(g)

1°

ou les nombres m,, m,, m, prennent, de toutes les manieres
possibles, les valeurs entieres de — o a + «, alors que
<, &1y 8» y conservent la méme valeur arbitrairement choi-
sie, mais fixe, cet ensemble, dis-je, constitue donc toujours
un domaine holoide; nous le désignons par [/]. Inverse-
ment: dans tout domaine holoide faisant partie du corps § K é :
il est possible de choisir une base de la forme (B). Les dif-
férents domaines holoides de ce corps de nombres ne dif-
ferent entre eux que par le choix des nombres g, g,. g, 7
servant a former la base (B). Il s’agit de déterminer les con-
ditions pour qu'un tel domaine holoide [/] soil maximal.
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46. — On démontre facilement qu’une condition nécessaire
pour que [/Z] soit maximal est que g=—=g, = 1; g, =0 et
qu'un domaine holoide du corps de nombres %K ne saurait
étre maximal s’il ne posséde une base telle que

1 (2 3
(L( ) = e , a ) — % , (Lm = B (Bl)

Désignons par [H;] le domaine holoide correspondant a
cette base (B,); il sera constitué par I’ensemble de tous les

complexes
Wy By - BT B, - By By

ou 7= 0 est un nombre rationnel arbitrairement choisi,
mais fixe, tandis que les m; représentent, comme d’habitude,
des nombres entiers ordinaires variant de —« a 4+ . On
voit, en effet, que [H;]. puisqu’il contient e, e, et y¢,, contient
aussi les éléments de la base (B), donc aussi cette base elle-
méme,. donc aussi tous les complexes qu'on peut dériver
de cette base (B), en d’autres termes: tous les complexes
dont se compose [/] et, par conséquent, [/] lui-méme. Mais
[H,] contient, en outre, des complexes ne faisant pas partie
de [/]. par exemple e,, dés que g > 1 ou g, > L. Donc enfin,
[/1] ne saurait en tout cas étre maximal s’il ne coincide avec

(H,] = [my.e, + myy.e, + my.e,] .

C'est la une condition nécessaire, mais pas encore suflisante,
comme on va le voir.
47, — Mettons 7 qui est un nombre rationnel non nul,

. . , . r
sous forme de fraction irréductible en posant: y=—. Un

domaine holoide du corps 3K ayant une hase de la forme
(By) ne pourra étre maximal si le nombre entier > 1. On

. 1
s'en convainc en supposant y = ] et prenant comme base

= —e, , ¢V =e, . (B,)

P4

Déduisons de cette base (B,) le domaine holoide

[Hy] = [ml.e1 -~ "[—1)2 . 8y - 7;23.03]
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et comparons-le au domaine [H,]. On vérifie immédiatement
que pour r =1, ces deux domaines holoides coincident,
¢’est-a-dire contiennent exactement les mémes complexes,
mais que pour r > 1, le domaine holoide [H,], contenant

~.e, qui ne fait pas partie de [H,]. contient tous les éléments

de [H,] plus encore d’autres non renfermés dans [H,]. On en

conclut qu'un domaine holoide du corps §K§, pour étre

maximal, doit posséder une base de la forme (B,), ou p est

un nombre entier non nul, du reste arbitraire. Nous allons

montrer que cette condition, nécessaire, n’est pas suflisante.
48. — Si p = 1, on a le domaine holoide

[L] = [m, e, + myeq 4+ m,e,]

constitué par tous les complexes a coordonnées entieres; ce
n'est pas autre chose que le domaine lipschitzien (v. défini-
tion V). Or, ici, ce domaine [L.] n’est pas maximal (pas plus
quil ne l'est dans le cas des quaternions). Pour s’en con-
vaincre, il suffit de constater qu’on peut l'agrandir, sans

sortir du corps de nombres % K % , en adjoignant a [L.] le com-

e . .
plexe 2 quin’y est pas contenu. On obtient alors 'ensemble

élargi
m.

2
5 o -+ m, €3J

L

[Jo] = [/nl()1 -+

plus étendu que [L] et qui est également un domaine holoide.
Done, si 'on veut un domaine holoide maximal de base (B,),
il faut en tout cas choisir p > 1.

49. — Les faits prouvés ci-dessus portent & croire que

m,
[Hy] = ensemble des complexes m, e, + —Fe, + mye,

est un domaine holoide maximal. Mais il n'en est rien. On

peut en effet, sans sorlir du corps de nombres %K; , élargir

encore le domaine holoide [H,] en lui adjoignant le com-
e . . .
plexe p—?; Ce complexe ne fait pas partie de [H,]. puisque
I'équation
€, m

/)—9 — Wi, & —];eg -+ m,e,




242 L.-G. DUPASQUIER

entrainerait, en vertu de la définition” de 1'égalité des com-

m, 1 y s 1 .
plexes, m;, —m, =0, =2 = b d'ou m, = . ce qui est en
contradiction avec I’hypothése expresse p > 1 el my, — un

nombre entier.
Il s’ensuit que le domaine [H,] ayant pour base

1 : ;
A e, , M — — B b — e, (B

et constitué par I'ensemble de tous les complexes

ny
m e, - [7_2 &, - g ey

Pe e

. . pe, o . §
contient aussi = . donc aussi la base (B,), donc aussi

tous les éléments dérivables de cette base, donc aussi [H,].
En d’autres termes: [H,] contient tous les éléments de [H,]
plus encore d’autres ne faisant pas partie de [H,]. Or, [H,] est
de nouveau un domaine holoide; on en conclut que [H,] ne
saurait étre maximal.

En posant p? =g et répétant le méme raisonnement sur le
domaine [H,| dérivé de la base [‘1 % 63] qui n’est autre

o
que la base (B;) écrite différemment, on verrait que [H,] n'est
pas non plus maximal.

Puisque p est un nombre naturel supérieur a 1 et d’ailleurs
absolument arbitraire, on voit bien que dans le corps de
nombres ;K% , Ul 'y a pas de domaine holoide maximal.

50. — Remarque. Pour obtenir un domaine maximal, on
pourrait penser qu'il suflit d’attribuer aussi a p différentes
valeurs. Mais il faudrait faire prendre a p toutes les valeurs

entieres de — o a + o ; et alors, I'ensemble ?Jg formé par

: m., . ,

tous les complexes mye, + ~2e, + mye;, ou les my repré-
4

sentent des entiers arbitraires (m, = 0), est bien un domaine
d’'intégrité contenant le nombre 1; mais il ne posséde pas de
base finie au sens de 'article 16; en d'autres termes: il n'est
pas possible de choisir dans 3J§ un nombre fini de com-
plexes pouvant reproduire, par les seules opérations de 'ad-
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dition et de la soustraction, tous les éléments de 'ensemble
en question. Donc, gJ% n’est pas un domaine holoide et ne
saurait étre envisagé comme composé exclusivement de
nombres entiers (v. article 17).

V

51. — Bien que le corps de nombres %K% ne contienne
aucun domaine holoide maximal, on peut néanmoins tenter
d’y construire une arithmétique généralisée. Comme fonde-
ment de cette arithnomie, on essaiera la

Définition XI: un complexe rationnel

m,

a = m;e + — & -+ mye,
est réputé entier, si m,, m,, m, représentent des nombres

entiers ordinaires, pouvant prendre toutes les valeurs de
— o a + o, g étant un nombre entier non nul, arbitraire-
ment choisi, mais fixe.

L’ensemble
[H] = [’”1(’1 -— ”—lf e, -+ my, €3J
o
est bien un domaine holoide, et il renfermera exclusivement
des complexes entiers, en vertu de la définition XI; tous
les autres complexes du corps ;KE , ¢'est-a-dire ceux ne fai-
sant pas partie de [H]. seront réputés non entiers.

Les «nombres entiers » dont nous allons faire la théorie
constituent un domaine holoide non maximal, de sorte qu’il
faut s’attendre a priori a ce que cette arithnomie ne soit pas
réguliére, mais présente des singularités étonnantes, com-
parée a l'arithmétique classique.

52. — Pour abréger l'écriture, nous représenterons nos
complexes entiers en écrivant uniquement les coordonnées.
Nous figurerons ces complexes, sans écrire les unités rela-
tives e, ni les signes +, en mettant simplement les coor-
données, séparées par des vigules, entre parenthéses; et ce
seront ces parenthéses qui indiqueront symboliquement la
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liaison censée exister entre les coordonnées, liaison qui
fait que les 3 nombres constituent un seul et méme tout.

Uy

Ainsl, a = a,e, + e, + a,e; s'écrira simplement

O

a, ’ . .
a=\a,, =X, (13>, ou g7 0 est un nombre entier fixe. Le
ted

complexe a sera donc entier, si les trois nombres «,, a, et
a, le sont; et @ sera non entier, si 'un au moins de ces trois
nombres @, est fractionnaire.

Tout nombre réel » pourra étre envisagé comme un de ces
complexes de la forme r—=(r, 0, r); en particulier, le nombre
L=, 0, 1.

53. — Définition de la divisibilité. Un complexe entier

. f & & & .
g = <(z,, = (13> est dit « divisible par le complexe entier
tel

~

— b. ‘ 2 . : .
b — </)1 2y 03> », s'il existe un complexe entier c = <(’1 s 2 03>
el el

satisfaisant a I’équation ¢« —= b . ¢. Nous dirons aussi que,
dans ce cas, « b est un diviseur de @ » et que ««a contient b».
Si b est de norme nulle, I'équation « = & . ¢ n’a de solution
en complexes entiers que si « est aussi de norme nulle. En
particulier, b étant donné, 1'égalité 0 — b . ¢ est vérifiée par
une infinité de complexes entiers ¢ =B’ . &, ou / est un
complexe entier quelconque et B’ le conjugué de 6. De la
vient le nom de « diviseur de zéro ».

54. — Le complexe entier e est dit une wunité, s’il entre
comme diviseur dans tout complexe entier (v. article 10). Il
existe dans le domaine [H] dont nous nous occupons une
infinité d'unités, a savoir les complexes

2
s:(_—’r_—_’l,i—&—,il>

p
k étant un nombre entier quelconque. Remarquons que
(1, é, ’l> — (’l, ;—lf—, 1>k pour toute valeur entiere, positive,
nulle ou négative, de . En considérant comme unités fonda-
mentales ¢, = (—1. 0, 1); ¢y = (1,0, —1); s, = <1, L 1) ,

g
on peut mettre n’'importe quelle unité ¢ sous forme d’un pro-
duit de ces 3 unités fondamentales: e =¢". <™. ", ou n, m

. g, . €
1 2 38
et & sont des entiers appropriés.
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55. — Deux complexes entiers sont dits associés, s'ils ne

different 'un de I'autre que par un facleur unité e (v. article
10). A toutcompleYe entier @ sont ains associés une infinité
de complexes ac, ol ¢ représente une unité quelconque. On
sait que dans toutes les recherches relatives a la divisibilité,
des complexes associés sont équivalents et peuvent se rem-
placer 'un l'autre, comme c’est déja le cas dans la théorie
des nombres ordinaires. Dans le groupe formé par l'en-
semble des complexes associés au méme complexe entier @,
donc associés entre eux, il suffira d’en choisir un, convena-
blement défini et qui remplacera tous les autres. On appelle
ce représentant : un complexe primaire ; dans les théoremes
de divisibilité et de décomposition en facteurs, il suflfit d’en-
visager les complexes primaires.

Dans le domaine des nombres hypercomplexes dont nous
nous occupons ici, on peut d'abord supposer non négatives
les trois coordonnées d’'un complexe primaire «, puisqu’au
lieun de 2, on peut au besoin considérer
a étant supposé de norme non nulle, envisageons son associé

k 79 k ay + ha, a
a. ¢ —=la,,—=,a,) (1, -,4)= (a , ——2 a,)=|a,, , a
1 ) ) 1 , 3
3 o 4 o o i 3
5 8 5

On voit que le nombre entier & peut étre choisi de maniere

' , . , .
que a, < a, et qu’alors, @, est déterminé de facon univoque.
Ceci conduit a la définition suivante: un complexe entier

X, OU g, OU &}

~
~

%2 |y

a T e , . . “ .
a — <a1 , =, a3> non diviseur de zéro est dit primaire, si ses
) o

coordonnées satisfont aux inégalités simultanées 0 < a, ;

0=, < a3 0 < a,.

<.I’1 ]

de norme non nulle, «, ne peut avoir que 'une des valeurs
0,1, 2,3, ..., 2, —1. Parmni tous les compiexes enliers asso-
ciés entre eux se trouve toujours un, mais un seul, qui est

>€

9

Donce, si & = : 13> est un complexe entier primaire

. el

primaire.

56. — Quant aux diviseurs de zéro a premiére coordonnée
a . .
nulle, tous de la forme <O, =, -(c3>, ils constituent un groupe
o]

particulier, un sous-systéme a deux coordonnées contenu
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entierement dans le systéme a trois coordonnées que nous
envisageons. Leur étude devrait se faire a part, et comme ce
n’est pas le but de ce travail, nous les excluons des recherches
subséquentes.

Quant aux diviseurs de zéro dont la troisieme coordonnée
est nulle sans que la premiere le soit, tous de la forme

<,?j.1 ; ‘2027, O> , 1ls constituent également un sous-systeme parti-
o

culier a deux unités relatives, demandantune étude spéciale.
On peut y maintenir, pour le complexe primaire, la défini-
tion donnée ci-dessus (art. 55), avec cette seule différence
que a, — 0. Nous les excluons aussi des recherches ulté-
rieures dans ce travail.

57. — En analogie avec la théorie classique des nombres,

;o . N «a. .
nous définirons : un complexe entier a = ((zl, 7’ (/3> qui

o

n'est pas une unité ni un diviseur de zéro, e\,st dit rréduc-
tible, ou premier, si dans toutes les décompositions possibles
a =0 .cde a en deux facteurs, I'un de ces derniers est tou-
jours une unité. Ces complexes entiers irréductibles joue-
rontici le role des nombres premiers de I'arithmétique ordi-
naire.

Dans le domaine que nous étudions, il existe trois catégories
de complexes irréductibles, a savoir:

1° Les complexes de la forme a = (1, 0, p) = ¢, + pe,,
ou p est un nombre premier naturel. Leur norme Niu) = p
est un nombre premier. Les complexes enliers, non pri-

. S a ., [
maires, de la forme (1, = p> leur sont associés et n’en dif-
=]
ferent donc pas essenticllement.
2° Les complexes de la forme 8 = (p, 0. 1) = pe, 4 e¢,.
ou p représente un nombre premier naturel. Leur norme
N(B) — p? est le carré d’'un nombre premier.

rJ
; a, ) .
3° Les complexes de laforme y = </;”, =, 'I), ou p estun
o

nombre premier ordinaire, 'exposant n un nombre naturel
quelconque et @, un nombre entier positif inférieur a p» et
non divisible par p,

0 < a, < pn et ay 2= 0 (mod p)
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Leur norme N(y) = p** est une puissance paire quelconque

d’un nombre premier naturel p.
Si I'on voulait décomposer y en lacteurs, on devrait avoir:

: . k..o mo_,
== ([)k’ , -1) ) (F”Z’ %" 1) - (P/H—m, pl ’t p_* ’ 1)

d’ou résulterait: & 4+ m = n, et

Uol%‘

ay = p"x + piy = p"(x + ypt
en supposant & > m. Si m > 0, la coordonnée «, serait divi-
sible par p, contrairement a I'hypotheése. Cette contradiction
ne peut étre levée qu’en prenant m = 0; mais alors, 'un des
deux facteurs est toujours une unité et, pér conséquent, y un
complexe irréductible.

Remarquons qu’il existe un seul complexe premier pri-
maire o de norme p, a savoir (1, 0, p); il représente tous les

¥ X . . .,
complexes entiers (1, = car ils luil sont tous associés:
3 ot 9 ’

D " -

par contre, il existe p complexes premiers primaires (3 de
meéme norme p?, essentiellement différents entre eux, c’est-
a-dire non associés, a savoir: ‘

\. 9 -
,‘1);<p,;,’1>;...;<p,[) 1,’1>
5 1

ils représentent tous les complexes <p, — 1> de meéme
el

(p. 0, 1); <P»

g | =

norme pe.
Les nombres premiers naturels tels que p ne sont pas
irréductibles dans ce domaine, puisque

p=ip, 0, p)=1(1,0,p)(p,0,1).

98. — Pour décomposer en facteurs premiers un complexe
entier donné quelconque, @, on a:

a a

(L:<(Ll,<—2, a9>:<u1,—2, 1).([,0,(1?) .
o 2 o L
5 S

Il suffit donc de considérer deux catégories de complexes
entiers : ceux de la forme (1, 0, m) = e, + me, et ceux de la

2

Al (l MY ’
forme <(/1, =, 1) dont la derniére coordonnée est 1.
o]
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Désignant par p,. p,, ..., p, les facteurs premiers de m, de
sorte que m = py . p, . py ... p . on voit que

(L0 n = (1, 0, ppath. 0, por (Lo 00 pyr o (L, 00 po

Il reste a considérer les complexes entiers de la forme

a, .
(ax. -, ‘l>. Sil'on poseay =1, .1, . ... 1

el

.+ ous pourrons

écrire la décomposition suivante :

a. x a \ Ay
<al'“2=1>:(”1'—*1>'<’°-7"‘v l> .‘.(I:J., _‘_,’l>
o ) o = o &

o \ o o b

ou les 1, sont des nombres premiers ou des puissances de
nombres premiers. Les entiers xr,, x,. ... ..r, s'obtiennent
sans difliculté, de proche en proche. |

La décomposition en complexes premiers dun complexe
entier quelconque donné a est donc toujours possible.

59. — Celite décomposition d'un complexe entier donné en
facteurs irréductibles n’est pas nécessairenze/zt univogue Par

.

o’

exemple, le complexe entier « = 625e, —}— = e7 + e, peul

D

se décomposer, et de plusieurs manieres, soit en un pro-
duit de deux, soit en un produit de trois facteurs premiers

79 9
boe—{— €—+—€3:<25(31+—€q—+—0> <25 ;e‘_,—{—eg>

TN TN
ro r
(WAS QN
»—:.b H(b
+ o+

el ey g | W
‘(: "u

\_/ \_/

TN P
r\) N

:‘b
g | ~1 To | o
oo 4
+ 4
:’0 )
N N~

1
o
o
_I~
)
O
e
TN
ho
Ot
H"b
_}_
§°
+
"b
\,/

. 1 . 6
= 08 + 7). <ae1 T =y T+ eg> : <20e1 + —e + eg>
tod o
. - 2 1
= (de; 4+ e, <O€1 =€, + €3> ’ <20p1 + —e + €3>
o ta}
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Toutes ces dé(rompositions ne contiennent que des facteurs
irréductibles et sont essentiellement différentes entre elles.

En général, p désignant un nombre premier naturel. la

, v ® . a
décomposition du complexe entier p’e, + —(—71282 + e, est plu-
o

rivoque, dés que « > 1, puisqu’on a

/ 1 — 1
<P?’ (%P, '1> :(1), 0,1). (p. f—f;, 1>::<p, o 1) . (1), a —— | 1)
tal 5 o .
_ L — !
B ) == b))
z P 8 §

A plus forte raison, la décomposition de

n
sk m

P’+ e, + f ey + &
5

en facteurs irréductibles est-elle plurivoque, quand m > 1.

60. — On sait qu'une constatation analogue faite dans un
aulre domaine (dans un systeme de nombres complexes a
deux coordonnées indépendantes, appartenant a un corps
dérivé d'une racine de 'unité) a amené le mathématicien
E. E. Kummer a créer ses nombres idéaux. Voyant que la
décomposition d’un complexe entier en facteurs premiers
était plurivoque, il imagina, pour faire disparaitre cette ano-
malie, de considérer ces facteurs premiers eux-mémes non
pluscommeirréductibles, mais comme décomposables encore
en d’autres éléments; or, comme ces derniers, les éléments
vraiment irréductibles, ne se trouvent en réalité pas dans le
systeme qu’il envisageait, Kummer les a créés de toutes
pieces, par la pensée, en posant des définitions appropriées.
A ces entités logiques créées par pure convention et pour
des besoins de simplification, Kummer appliqua le nom de
nombres ; et pour les distinguer des nombres ou complexes
réels dont était composé effectivement le systeme qu’il étu-
diait, Kummer les appela «nombres idéaux » (le mot de
« nombres imaginaires » ayant déja une signification fort
différente). De cette facon, Kummer a considérablement élargi
le domaine de nombres qu'il étudiait, en lui adjoignant une
infinité d’éléments nouveaux dits « nombres idéaux », parmi

L’Enseignement mathém., 18¢ année; 1916. 17
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lesquels 'se trouvent les nombres vraiment irréductibles,
c¢'est-a-dire indécomposables. Kummer a, naturellement, posé
d’une facon tres judicieuse les conventions auxquelles étaient
censés obéir ses « nombres idéaux », de sorte qu'il réussit a
démontrer que, dans ce domaine agrandi, on peut ériger
une arithnomie réguliere, semblable en tous points a celle
construite par Gauss dans le systeme des nombres a 4 bi.

Des rapprochements suggestifs ont été faits entre les
nombres idéaux de cette arithnomie et certains radicaux ou
éléments chimiques dont l'existence a été postulée par la
théorie bien avant d’étre confirmée par l'expérience; tout
comme ces radicaux de la chimie, les facteurs idéaux de
Kummer n’apparaissent jamais a |'état isolé, mais figurent
«a 1'état de combinaison» dans les complexes entiers (v.
« Journal f. d. reine u. angew. Mathematik » fondé par Crelle,
vol. 35, p. 360).

61. — Les théorémes de décomposition valables dans le
domaine des quaternions entiers et des tettarions entiers
(v. article 23) pourraient peut-étre faire apparaitre sous un
jour nouveau cette pluralité de possibilités dans la décom-
position en facteurs premiers. Soit un tettarion entier ¢ dont
la norme N(c) comprenne quatre facteurs premiers dont
deux égaux entre eux, et posons :

Bie} = B oBoebr-Ps

Ayant arrété cet ordre de succession des facteurs Py~ on
peut décomposer le tettarion donné ¢ supposé primitif (c’est-
a-dire tel que le plus grand commun diviseur de ses coor-
données soit 1) en un produit de quatre tettarions premiers
primaires :
ou

N(m) = p; ; N (7)) = p, ; N(m) = p, ; Ni(z) = p, ,

et cette décomposition est unique. Si 'on fixe un autre ordre
de succession, qu’on pose par exemple

N(¢) = py.py-Pa-P1 >
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on aura une autre décomposition du tettarion donné ¢ en un
produit de quatre tetlarions premiers primaires :

et cette décomposition sera de nouveau unique, c'est-a-dire
déterminée sans ambiguité.
Les tettarions premiers p, seront différents, en général,

des tettarions premiers = ; ainsi p, 3 m, quoique N{p,)

\

— N(r,) = po; de méme =, == p,, quoique N(r,)=Ni(p,) =p,;
etc.

A chaque décomposition de N(c¢) en facteurs premiers, ou
nlutot a chaque ordre de succession que l'on fixe, arbitraire-
ment du reste, pour ces facteurs premiers p, (il y a douze

permutations possibles dans cet exemple particulier) corres-
pond une décomposition unique et bien déterminée de c en
tettarions premiers primaires, mais ces diverses décomposi-
tions de ¢ (au nombre de douze dans I'exemple particulier)
ne contiennent pas les mémes facteurs premiers. Si le pro-
duit final est néanmoins toujours le méme, c'est-a-dire si

~

.l.ﬁg.ﬂ%.‘ﬁ' — 10

~
4 U102

O

.\O_l — 01.0'2.0'3.0'4 e g w— O

o
D

¢’est parce qu'un produit dépend non seulement de ses fac-
teurs, mais aussi de leur ordre de succession.

Ce théoreme reste vrai pour les tritetlarions (nous l'avons
démontré dans un autre mémoire); en d’autres termes: ce
théoréme reste vrai si ¢ est un complexe aneuf coordonnées
(v. article 29) représentable par

Or, le systéme de complexes & trois coordonnées que nous
venons d'éludier est un cas particulier des tritettarions
(v. article 44). Donc, le théoréeme de décomposition en fac-
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teurs premiers ¢énoncé ci-dessus doit rester applicable,
semble-t-il, quelles que soient les coordonnées ¢, . pourvu
que N(cj = 0. Or, en prenant en particulier

¢

Cog == Uy , (15 =, , ¢

11 1 1: —— ((:‘,‘ 4 (‘13 ——: ('31 —_— 023 = ('3,2 j— (‘.2 - 0

33 21

1 .
appartenant au domaine que nous étudions depuis l'article 51,
en laisant g =1; on doit donc toujours avoir plusieurs

possibilités de décomposition:

. 5 v . ; a,
on obtient précisément le complexe entier a = <(/1 .= (13>

-

C = (0 = 7, .y . Ty 4% "]

_ —_— ~ ~
I e R e R B S S AR

~ —_—
o8
O

3 = -

O

Mais maintenant, la multiplication est cominutative ; le
produit =,.7,.7,.7, quiest égal a cne dépend plus de l'ordre de
succession des facteurs, ni le produit g,.0,.0,.¢,. nilesautres
produits analogues. Ilenrésulte duméme coup queladécom-
position de ¢ en facteurs premiers n'est plus univoque. puis-

qu'en général, les p. sont différents des =, . différents aussi

des o. . ete.

62. — De plus, ces réflexions semblent indiquer que la
multiplicité de décomposition tient a la commutativité de la
multiplication et provient d'elle, tandis que l'unicité de
décomposition tient a la non-commutativité de la multipli-
cation. Ces considérations nous ont amené a rechercher si.
dans tous les systemes de nombres hypercomplexes. la dé-
composition d'nn complexe entier donné en facteurs pre-
miers est plurivoque ou unique, selon que la multiplication,
dans le systeme en question. est commutative, ou ne l'est pas.

Quelques faits paraissent militer en faveur de cette these :
c'est d’abord un théoreme fondamental qui repose sur I'im-
portante notion de systéme simple introduite par MM. £. Car-
tan et Th. Molien; ce théoreme dit que tous les svstemes
« simples » de nombres hypercomplexes a multiplication
associative, ou l'é¢galité et 'addition de deux complexes sont
définis par 'égalité et I'addition de leurs coordonnées cor-
respondantes, constituent des sous-svstemes, donc des cas
particuliers, de certains systemes de tettarions. C'est ensuite
le fait qu'un systeme de polvtettarions a u? coordonnées
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entre lesquelles existent n relations n’est autre chose, en
réalité, qu'un systéme de nombres hypercomplexes a (u* — n)
unités relatives. Il semble méme que les polytettarions ou
u-tettarions (u = 2, 3, 4, b, ...) contiennent, comme cas par-
ticuliers, tous les systémes possibles de nombres hypercom-
plexes a multiplication associative, c¢’est-a-dire ou la relation
(@.b).c=a.(b.c) est toujours satisfaite; il semble, dis-je,
qu'il suffise d'établir des liaisons appropriées entre les coor-
données d’un systéeme de p-tettarions pour obtenir, a ’écri-
ture prés, tel systéme qu’on voudra de nombres hypercom-
plexes & multiplication associative. Par exemple, les nombres
complexes de Gauss sont un cas particulier des duotettarions;
les quaternions sont un sous-systéme particulier des tetra-
tettarions, et ainsi de suite. Des propositions ci-dessus res-
sort en tout cas I'importance trés grande des tettarions dans
lathéorie générale des systémes de nombres hypercomplexes.

63. — Revenons au domaine [H] formé par 'ensemble des

W . .1'9 , ‘1‘2 , \
complexe's entrers x = x,e; 4+ 2, + rze, =Xy, =, X3}, ou
ol el

les X, sont des nombres entiers variant de — o0 a + w, et g

unnombre entierfixe (v.51). Que devient, dans ce domaine[H],

la théorie du plus grand commun diviseur ? Voicice que 'on

peut démontrer sans grande difficulté : deux complexes
. : a b

entiers donnés, ¢ — <(11, -2, (53> et b = (()1, -, b3>, pos-
o

o
sedent «en général» un plus grand commun diviseur, unique

et bien déterminé si 'on ne considére que les entiers pri-
maires (v. 85); de plus, il existe un procédé analogue a I'al-
gorithme d'Euclide permettant de déterminer ce plus grand
commun diviseur par un nombre fini d’opérations ration-
nelles.

Mais ce théoreme « général » présente ici (comme dans le
cas des quaternions entiers lipschitziens, v. articles 9 et 12),
des exceptions déconcertantes. Elles sont méme si nom-
breuses qu'on peut se demander si le théoréme énoncé ci-
dessus n’est pas plutét un théoréme exceptionnel (nous
le qualifions de « général », parce que son analogue est
vrai, sans exception, dans l'arithmétique classique). D’abord,
dans certains cas, l'algorithme d'Euclide ne conduit pas au




254 L.-G. DUPASQUIER

but: a mi-chemin, il cesse d’étre applicable; cela arrive,
par exemple, lorsque «, et a;, coordonnées extrémes de «,
sont des multiples de N(b) et qu’en méme temps a, n’est pas
divisible par N(). Ensuite et surtout, un plus grand com-
mun diviseur au sens habituel de ce terme n’existe pas tou-
jours. En fait de démonstration, donnons un exemple numé-
rique facilement généralisable.
Les complexes entiers

20 15
g = (2531 + e+ 83> et b= <25e1 + —e + e3>
o Il

ont méme norme: N(a) = N(0) = 625, sans cependant éire
associés. Les égalités

2 2
a:<5ei—{——(;e2+eg>

<CC1 =
/

f
=i ¢ —{—e:).<5€1 + —62+83> ;

o
el

[

3
e, + €3> . (5@1 + —e + 83>

te]

s [

O = (5e, + By - <5e] -+ ij e, + 63>
o

\

1
<5e1 =gy «93>.<5e1 + —e + 63)

o

[\

I

montrent que ces complexes a et b possédent quatre com-
muns diviseurs, tous quatre entiers et non associés, donc
essentiellement différents entre eux, a savoir:

: 2
d, = 5e, + ¢, ; dy = Se; + —e, + ¢,
o
_ 1 3
dy = 5e; + —e, + e, ; dy = Se; + - e, + ¢ .
o o

Si a et b possédaient un plus grand commun diviseur d,

) ) . a = f.d . .
on devrait avoir: d’une part ou [ et i seraient cer-

b —= h.d

tains complexes entiers, d’autre part

d — d0'80 — d1-81 — d2,82 — 83_61

3
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les 0, représentant certains complexes entiers, puisque le
plus grand commun diviseur d, devant contenir comme fac-
teurs tous les autres communs diviseurs, devrait étre divi-
sible par d,, d,, dy et dy. Comme N(a) = N(d).N(f) = 625,
il n’y a que les 5 possibilités suivantes: N(d) = 1, ou =15,
ou — 25, ou = 125, ou = 625. Mais N(d) = 625 est exclu,
car il s’ensuivrait que @ el b seraient associés, ce qul n'est
pas le cas. Les égalités

Nid) = N(d,).N(3,) = N(d,].N(3,) = N (d,).N3,) = N{(d,).N(3,)

excluent les hypothéses N(d) =1 et N(d)=15, puisque
N(d,) = N(d,) = N(d,) = N(d,) = 25; si N(d)=25. il s’en-
suivrait que, les J, étant des unités, d,, d,, d, et d, seraient
associés, ce qui n’est pas le cas. Il ne reste ainsi plus a exa-
miner que la derniére hypothese, savoir : N(d) =125; il
s'ensuivrait N(f) =5; donc f, étant un complexe entier,

; , ; . s x , oy
serait nécessairement de la forme /= (1, =, 5). De ’égalité

a !
L d).
4 _ ] |
o5 20 N —=(1.% s\ (4.2 4 dod 1—=5.d
g g 1 Eg 3 3

ce qul est impossible en nombres entiers. Donc enfin, I'hy-
pothese d'un plus grand commun diviseur d de « et b con-
duit nécessairement & une contradiction. Et voila deux com-
plexes entiers « et 6 ayant quatre diviseurs communs bien
différents entre eux, mais ne possédant, néanmoins, aucun
plus grand commun diviseur, au sens qu'a ce terme dans
'arithmétique ordinaire.

[

. . , . ’
a —=f.d, on tirerait, en écrivant d — <(Z1,

Cm|

Des lors, il n'est plus vrai qu'un complexe premier qui
divise un produit de deux facteurs divise nécessairement
'un de ces facteurs. Par exemple, les égalités ci-dessus

‘ : ‘ 4 : -,
prouvent que le complexe entier 5e, + —e, -} e; qui est irré-
o
ductible dans ce domaine et qui ne divise ni d,, ni d,, divise

cependant le produit d,.d; = a. Enfin, quoique les com-

plexes entiers d, — He, + % 0 + ey et dy=>5e, + —e, + ¢,
b o
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tous deux irréductibles dans ce domaine, soient premiers
entre eux (c'est-a-dire admettent comme plus grand commun
diviseur 1), leurs cinquiémes puissances,

6 250 . _ 9375
e, + e, et d; = 3125,, 4 By — By 4
g ' g

d: = 3125¢, +

ne le sont point et admettent le diviseur commun 3 125¢, 4 e¢,.
Ainsi se trouve confirmée la présomption émise a la fin
de l'article 51, a4 savoir que 'arithnomie du corps de nombres
EK basée sur la définition XI ne serait probablement pas
«réguliére », parce que la dite définilion du complexe entier
engendre un domaine holoide [H] non maximal.
64. — Toutes les déductions précédentes restent valables,

. 1 .
si I'on remplace — par un nombre rationnel y non nul, du reste
P - 7
tol

arbitraire. Faisons remarquer que plus le nombre entier g
contient de diviseurs, plus le domaine holoide [H] corres-
pondant enveloppera de complexes rationnels. On peut donc
agrandir indéfiniment le contenu du domaine [H], ou, pour
employer uneimage empruntée a la physique, y «ccomprimer»
des complexes rationnels de plus en plus nombreux. Sil'on
choisit, au contraire, pour y un nombre entier m, on pourra
diminuer indéfiniment 'ensemble des complexes rationnels
faisant partie de [H], en prenant pour m un nombre de plus
en plus grand; on a donc la possibilité (pour employer la
méme image que tout a I'heure) de «faire le vide» de plus
en plus complétement dans l'ensemble [H]. Mais, qu’on
augmente ou qu’on diminue le contenu de cet ensemble,
I'arithnomie dont nous avons esquissé ci-dessus la partie
élémentaire ne changera pas essentiellement, le domaine
holoide non maximal [H] restera toujours non maximal.

Pour faire disparaitre les singularités dont nous avons
signalé quelques-unes, il faul avoir recours a des procédés
plus profonds.

65. — En principe, deux voies bien différentes s’offrent
au mathématicien. La premiére consiste a maintenir les
mémes définitions : de la divisibilité, du commun diviseur,
du nombre premier, etc., mais a élargir l'ensemble [H] que
I'on étudie. On peut y arriver de deux fagons: 1° en définis-
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sant différemment le nombre hypercomplexe rationnel
«entier » dans le corps de tous les complexes rationnels;
cette maniére de faire est due a M. 4. Hurwitz qui l'appliqua
pour la premiére fois au systéme des quaternions; 2° en.
créant, par des définitions judicieuses, des entités logiques
soumises a des lois appropriées, entités que l'on appellera,
par extension, des « nombres» et que l'on adjoindra a [H];
cette maniére de procéder est due & Kummer (v. article 60).

La deuxiéme voie consiste a suivre une marche en quelque
sorte inverse de la précédente: on maintient tel quel le do-
maine [H] que l'on étudie, on ne l'élargit poinil, mais on
change les définitions de la divisibilité, du commun diviseur,
du « nombre premier », etc. Le changement le plus radical
provient de ce que, dans les nouvelles définitions, I'on n’en-
visage guére un nombre ou un complexe isolément, mais
plutot des ensembles composés d’une infinité de complexes,
et que l'on opére avec ces ensembles de complexes au lieu
d'opérer avec des complexes isolés. Cette voie fut ouverte
par J.-W. Richard Dedekind. — R. Dedekind désigne par
des lettres gothiques minuscules : a, b, ¢, d, e... ces ensembles
particuliers auxquels il donna le nom d'idéaux, nom criti-
quable peut-étre, mais qui a acquis droit de cité dans la
théorie moderne des nombres. L'idée géniale du célébre
mathématicien revient a ceci: prendre comme sujet direct
d’étude, au lieu de l'entier considéré a, 'ensemble de ses
multiples g.a; cet ensemble forme «l'idéal principal de
Pentier @». A ces idéaux principaux, Dedekind a joint des
1déaux secondaires; ce sont de nouvelles familles de nombres
déduites des précédentes par voie d’addition. La définition
générale d’'un 1déal peut s’énoncer ainsi:

Définition XI/: Un idéal a est un ensemble formé d’une
infinité de nombres entiers ordinaires ou de nombres hyper-
complexes entiers, dits les éléments de I''déal a, ensemble
jouissant des deux propriétés suivantes: 1° les éléments de
I'idéal se reproduisent par addition et soustraction; 2° si
est un élément quelconque de l'idéal a, le produit g.x, ot g
représente un complexe entier quelconque, est aussi con-
tenu dans cet idéal a.
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En vertu de cette définition, un idéal a contenant les deux
éléments a et b différents entre eux, contient nécessairement
ausst a4+ b, a—0, g.a, g.b, ou g est un complexe entier
quelconque pouvant lui-méme faire partie, ou non, de I'idéal
en question. On démontre alors que tout idéal posséde une
base finie (v. articles 16 et 17).

On définit ce qu’il faut entendre par le produit et par le quo-
tient de deux idéaux a et b, ce qu’est un idéal « premier »,
un idéal «composé ». un diviseur d’idéal, le plus grand
commun diviseur de deux idéaux, et ainsi de suite.

Ceci montre que l'arithnomie du domaine [H] que lon
veut étudier devient un calcul avec des idéaux, au lieu
d’étre un calcul avec des nombres ordinaires ou avec des
complexes entiers. Mais ces idéaux au sens de Dedekind (et
contrairement aux «nombres idéaux » de Kummer) ne sont
plus des abstractions; ce sont des ensembles tout aussi
réels, tout aussi effectifs, que les nombres hvpercomplexes
eux-mémes dont ils sont constitués. Tel est le principe de
la méthode de Dedelkind, permettant d’étudier le domaine
holoide |H] sans modifier ce domaine.

La méthode employée par L. E. Kummer est tout autre.
Elle modifie tres profondément le domaine holoide [H] a
étudier, puisqu’elle lui adjoint une infinité de « nombres
idéanx» qui, au fond. ne s’y trouvent pas du tout. Ces nombres
idéaux rappellent un peu les points imaginaires et les droites
imaginaires des géometres quand ils disent, par exemple,
que deux circonférences dont 'une estentiérementintérieure
a l'autre se coupent, néanmoins, en deux (voire méme en
quatre) points imaginaires et que ces mémes circonférences
ont quatre tangentes communes, mais maginaires. Les
nombres idéaux de la méthode de Kummer, comme les figures
imaginaires de la géomélrie, touchent a ce qu’on pourrait
appeler la « métamathématique » (par analogie a «méta-
physique ») et restent impénétrables a beaucoup d’esprits. La
méthode de Kummer est du reste d'une application moins
facile que la théorie des idéaux, car on ne voit pas toujours
du premier coup d'wil quelles sont les définitions qu'il faut
poser pour créer de facon appropriée les «nombres idéaux ».




NOMBRES HYPERCOMPLEXES 259

Les deux voies, si différentes en principe, celle de £. L.
Kummer et celle de R. Dedekind, peuvent conduire au méme
résultat : faire tomber les singularités que présente l'arith-
nomie de certains domaines holoides.

66. — Résumons en disant: la définition lipschitzienne du
nombre hypercomplexe entier a 'avantage d’étre toujours
applicable et toujours univoque (v. définition V); mais elle
est en quelque sorte superficielle, en ce sens qu’'en l'adop-
tant, on ne tient compte que de la nature des coordonnées,
sans aucun égard aux réegles qui définissent le systeme envi-
sagé de nombres hypercomplexes. Malgré I'avantage d’étre
toujours applicable et univoque, elle doit étre rejetée comme
pouvant conduire & des arithnomies non régulieres.

La maniere hurwitzienne de définir le nombre hypercom-
plexe entier est plus profonde (v. définition IX, art. 24), en
ce sens qu’en l'adoptant, on tient compte non seulement de
la nature des coordonnées, mais des propriétés intrinséques
du systéme envisagé de nombres hypercomplexes, puisqu’on
doit rechercher un domaine holoide maximal et qu’il n’est
pas possible de le déterminer sans se servir des regles qui
définissent le systéeme en question. Aussi la définition fur-
wilzienne conduit-elle a des arithnomies régulieres la ou la
définition lipschitzienne reste en défaut.

Par contre, la définition hurwitzienne a I'inconvénient de
ne pas étre toujours univoque, et surtout celui de ne pas
pouvoir s’appliquer a tous les cas, puisqu’il existe des corps
de nombres sans domaine holoide maximal. Pour étudier
ces systemes de nombres, on se sert avec avantage de la
méthode des idéaux. Elle consiste a modifier les définitions
de facon a ne plus avoir, dans la théorie de la divisibilité,
a calculer avec des nombres entiers isolés, mais avec des
idéaux. Celte méthode permet d’écarter les obstacles qui
pendant longtemps ont obstrué l'entrée d'une immense
région : 'arithnomie des nombres complexes généraux.

Neuchatel, octohre 1915.
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