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178 M.-F. DANJTELS

tration analytique du théoréme plus général, di a H. A.
Scuwarz (Crelle’s Journal, vol. 63, S. 309-314, et Gesammelle
Ablandlungen, 11, S. 1-7). Cette démonstration est basée
sur la théorie des « dyadiques », les «dyadics » de GiBBs-
WiLson (Vectoranalysis, 1902, chapter V, pp. 260-331)!. La
seconde partie de notre article est consacrée a une démons-
tration analytique du théoréme de Pohlke, indépendante de
la premiére, et dans laquelle nous nous servons uniquement
des éléments du calcul vectoriel. Elle a I'avantage de con-
duire a des constructions trés simples.

1. — TutoreME pE H. A. Scuwarz. — Trous vecteurs non
coplanaires connus (ORy) = R (k=1, 2, 3) peuvent tou-
Jjours, par une projection paralléle, donner trois vecteurs
coplanazires, formant une
figure semblable a celle
de trois vecteurs copla-
naires connus (0"Ay) = Hx,
pourvu que parmi les
quatre points O, A;, A,,
A, il n’y en ait pas plus
de trois en ligne droite.

Nous pouvons d'abord
simplifier le probléme.
En effet, si les grandeurs
des vecteurs connus R
sont R;, le théoréme de
Schwarz prétend changer les vecteurs-unités non-copla-
naires R, : R, = v, par projeclion paralléle en trois vecteurs
coplanaires formant une configuration semblable a celle
des vecteurs connus #A,: R, = a,.

Fig. 1.

' On peut consulter encore e. a.: C. BuraLi-Fortr et R. MaRcoLONGO :
Omografie vettoriali, Torino, 1909; G. Jauman~ : Die Grundlagen der Be-
wegungslehre, Leipzig, 1905, et E. Buope: Tensoren und Dyaden, Braun-
schweig, 1914. La notation employée dans cet article est celle de Gibbs-
Wilson sauf pour un point tout a fait secondaire, sur lequel nous revenons.
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2. — Supposant le triedre des ¢, placé par rapport au plan
contenant les a, de maniere telle que la projection des ¢,
parallelement au vecteur-unité v par des droites de longueurs
Xy, Xy, Xy donne des vecteurs ma,, ma,, ma,, proportionnels
aux a,, nous obtiendrons un systéme de seize équations
scalaires. Or, nous ne connaissons pas la position des trois ¢,
et de ¢ par rapport au plan des a,; de ce fait il y a douze
inconnues; les longueurs x,, x,, x, en forment irois autres
et m enfin est la seiziéme inconnue. Les équalions en ques-
tion seront, si nous appelons y, les angles des vecteurs
donnés ¢, :

¥, — Ty = My ¥y.¥; = COS Y, % =l
(1) Ty — Xot = ma, ¥,.1, = COS Y, vt = 1 r.rZil .
T, — A, = ma, ¥, .7y — COS Y, r3.r3:1
3. — Les trois premiéres équations qui, étant vectorielles,

correspondent a neuf équations scalaires, peuvent étre con-
densées en l'unique égalité des dyadiques :

(2) P = (v, — ‘T1r)r1 + (rz T 3"21‘)1'; + (v, — 1‘31’\1‘;

& ! ’ 4
et m¥ = m(ayx, + ax, + azr,) .

dont les « conséquents®» sont les vecteurs réciproques v/
correspondant aux vecteurs non-coplanaires donnés v, .
L’égalité des « conséquents » dans ces dyadiques égales en-
traine celle des «antécédents», et comme les « antécédents»
a, de la seconde dyadique sont coplanaires, il ya des nombres
p, tels que la somme des produits p, a, est nulle. Il en est
donc de méme pour les trois «antécédents » de la premiere
dyadique, de sorte que:

Py Pty T+ paty = (2 + Py + Uyt

! Les vecteurs réciproques en question satisfont a

r,__r2><r3 r,_~r3><1:1 r,~r1Xr2
7 2215 : t; v, 1] [y
—— F o
ou Dy, =1, X, , Dy, =, ><r ...

si nous appelons « fe sinus de I'angle triédre », qui est le produit pseudo-
scalaire des valeurs v, par abréviation D. (Gibbs-Wilson, p. 83).
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Or, 1l est facile de choisir les y de maniere a faire du
premier membre un vecteur-unité. Nous trouvons donce, cect
étant fait,

(3) L S Tl Pl R T

c’est-a-dire le vecteur indiquant la direction de la projection
dans sa position par rapport au triédre donné des v, et en
outre la relation importante :

(4), Uy - Upay -y, = pop = 1.
Dans la derniere équation nous avons introduit le vecteur
auxiliaire
4 4 r
(9) x = xx, + 20, + o1,
dont nous allons voir la signification dans un instant.
4. — Il est évident qu’apreés inlroduction de « I'idemfac-

teur I », somme des trois produits indéterminés v, v,, la pre-
miere dyadique peut s’écrire :

(6) G =1—1¢x.

Pour les doubles produits scalaire et vectoriel de cette
dyadique?!, on obtient

(7) P? = D:d =14 x.x
(8) 20, = 03P = 2pr

2 el ] _—
(9) ¢, = ¢:D, = p.x

! Les doubles produits scalaire et vectoriel (voir J. Guior : Le Calcul vec-
toriel et ses applications a la Géométrie réglée, Paris, 1912) correspond au
« double dot product » et « double cross product » de Gibbs-Wilson (p. 306-
315). Le double produit scalaire de ¢ par &, pour lequel nous nous permet-
tons d’écrire ici par abréviation ®* est :

‘DZE@:Q:(I——rx):(I——rx)EI:I——er:I—}—;c.p
=3 —2rp+rr=141xrx.
La moitié du double produit vectoriel de ¢ et ¢, que Gibbs-Wilson

appelle le «second» de ® est, si v, g, f sont trois vecteurs-unités tri-
rectangulaires et £, £,, £; les grandeurs des composantes de x selon ces axes:

¢ =(I—rp)y =T —ep s I=1— (5 vr + Erve + Evf) X (vr + 66 + ) =
=T —§1+ Er+ e+ &by = xr :

va que £, , la grandeur de la protection de x sur r, est égale 4 'unité a cause
de la relation (4).
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et si I'on tient compte de la relation (4), on voit facilement
que
r.® ou my W

est nul. Ceci nous montre que le vecteur auxiliaire que nous
venons d'introduire est perpendiculaire aux «antécédents »
a, de la dyadique planaire ¥ ou encore que x est normal au
plan des projections.

5. — Aprés avoir trouvé le vecteur ¢, qui indique la direc-
tion de la projection, occupons-nous maintenant du coefli-
cient m. Or, les équations (7) et (9) nous apprennent que

2 2 ] 2 4 2
o — <I)2 ou mUY —m 111'2

est égal a 'unité. Nous possédons donc une équation qua-
dratique en m?, qui nous donne

g2 | e‘/‘l’4 — 4y, 9

(10) m? = = =
2y v — ¥ — 4y,

b4

ou ¢ est 'unité positive ou négative. Ces deux valeurs.sont
réelles; en effet, si nous transformons la dyadique ¥, en
introduisant au lieu des « conséquents » ¥, trois vecteurs-
unités trirectangulaires 1, nous aurons

(11) T =a2 + o, +ar, = 8 + 8i + 8, ,

ou les nouveaux «antécédents » §, sont évidemment copla-
naires et contenus dans le plan des a,. Si les angles de ces
antécédents de somme 2z sont §_, nous aurons par consé-
quent :

W A = (by + by 4 by)” — G(baby sin? By + bybi sin2f, 4 Dy sin? By)
— l)i - I): 4- b: + 2[)2/)2 cos 203, + 2[)21)? cos 23, + 2[)?/)2 cos 23,
= (bifs + by + baty)

pourvu que les § soient des vecteurs-unités coplanaires, fai-
sant des angles 2f3 . Le dernier membre étant positif, les
valeurs (10) trouvées pour m? sont réelies.

6. — Nous arrivons maintenant, aprés avoir déterminé la
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direction de la projection v et le coeflicient de proportionna-
lité m, au vecteur ¢, normal au plan des projections a,. Sott
¢ un vecteur-unité quelconque dans le plan des a,; dans ce cas
son produit scalaire par x est nul et on aura?:

(12) ¢.(D.D,. D — D) ou me.(m*¥ W, W — W)
=x.xr cr (r —x) .
On connaitra par conséquent en direction et en grandeur
v — x, donc aussi x, vu que v est déja connu, lorsqu’on aura
trouvé les deux produits scalaires x.x et v.v du second
membre. Lie premier membre en effet dans sa seconde forme
est un vecteur connu, dés qu'on aura choisi le vecteur-
unité ¢ dans le plan des a,. Pour arriver aux produits sca-
laires, nous prenons d’abord la racine positive ?:
/(. D)2 — 1 ou /m2e W)z —1
= I}Jl 1c.r\

Ensuite nous nous servons d'un résultat déja trouvé plus
haut au paragraphe 4, résultat qui donne la racine positive:

l/fi: ou 1;12[/117‘:
=[xl .

La substitution du produit des deux derniéres équations
dans (12) donne, vu que

¢c.v — sigle.r) e vl

! Dans cette expression, &, est la dyadique conjuguée I — xr; on aura
donc en se rappelant que ¢.x =0 et v.x = 1:

c.(@t, .o — ) =c.(l —rx). ([ — x¢) ([ —rx) — ¢. (I — 2
=c(—pe +xx+repxr —rrprxl =crv x.x (r—x -
? On a évidemment
VieeP —T=ylc—crrP—1={(ct)frr=I12]crl,

vu que ¢ est un vecteur-unité, dont le produit scalaire par ¥ est nul.
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pour le vecteur normal au plan des projections l'expression:

sig (¢.v)e. MWW, — 11 W
nzl/@“:[r)zz(c.‘lf)z — 1]

(13) £ =r—

7. — Il nous faudra examiner encore si l'expression sous
le radical du dénominateur est positive. Le double produit
scalaire ¥? |'est certainement; il suffira donc d’examiner

4

| 2(e. W2 — V2 + sl/‘l’ AV
m?(¢.¥)?? — 1 ou —
v — o)/ v — v

que nous avons transformé par 'introduction de la valeur (10)
du paragraphe 5. Or le dénominateur ici est toujours positif,
pour ¢ = -+ 1 aussi bien que pour ¢ = — 1, tandis que le
numeérateur

2

%W, 0 — W )W — Ay ou e.(2¥.¥, — ¥2Die o) ¥ 4
par Pintroduction d’un vecteur auxtliaire?
(14) ¢.(2Y.¥, — V) = ¢ =yt — 4y .

peut prendre la forme
e + <l .

Cette scmme n’est positive que pour ¢ = -+ 1, car la valeur
absolue [ est supérieure au premier terme, qui n’est que la
projection de £ sur ¢. Nous arrivons donc a la conclusion,
que x n’est réel que lorsque ¢ = -+ 1, c'est-a-dire lorsque

2 2
i D) - .
W"l/‘}"i*"’*q’: vy [

(15) =

8. — Une autre question qui se pose est celle-ci : le second
terme dans l'expression (13) trouvée pour x dépend-il ou ne
dépend-il pas du vecteur-unité ¢?

! On démontre au § 14 que le carré du vecteur auxiliaire f est en effet
4 2
\y - [l\yz'
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[ntroduisant successivement la valeur de m? d'aprés (10)

et le vecteur auxiliaire ¢ nous pouvons écrire :

(16) sig (¢.7) c(mé‘}’.‘I’c—I)‘Y sig(e.r) ¢.(2¥.¥, — Y214 1).¥
ml/‘I-fz Ymic ¥ —1 l/g_\y—z Ve 2V Y, — YL+ |
sig (¢.v) (84 le).¥

T Vi Vet

Or, les vecteurs f et /¢ ont la méme grandeur /; leur
somme est par conséquent un vecteur dirigé selon leur bis-
sectrice et si nous nommons un vecteur-unité dans la direc-
tion de cette bissectrice ', le numérateur peut s’écrire

sig{c.r).210051

é(c, ) . v

tandis que le dénominateur prend facilement la forme :
— 1
l/’il‘lfz.cosfz(c, f) .

C’est ainsi que nous sommes amenés a 'expression

. L,
(17) sig (¢.1) \/——; .v .
¥y

On démmontre maintenant sans peine (voir § 15) qu'a toute
rotation # du vecteur ¢ dans le plan des a, correspond une
rotation — 6§ du vecleur { dans le méme plan, ce qui nous
fait conclure que le vecteur-unite §, selon leur bissectrice, ne
change pas et est indépendant du vecteur ¢. Quant au sig(¢.v),
il est évident qu’il peut étre aussi bien positif que négatif,
vu que ¢ est un vecteur-unité tout a fait arbitraire dans le
plan des a,. La direction seule de x nous intéresse et celle-ci

ne change pas lorsque, multipliant par VW, nous écrivrons

(18) .’é:I/‘Erig/Tf’.W.

9. — Nous avons donc fixé par rapport au triedre des ¥,
d’abord la direction de la projection par (3), et ensuite le
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vecteur normal? au plan des projections par (18). L’équation
(10) nous fait connaitre le coeflicient de proportionnalité. Les
deux signes dans l'expression (18) nous démontrent que le
probleme admet en général deux solutions, et comme les
deux vecteurs du second membre sont rectangulaires, vu
que leur produit scalaire

V. ¥.r = Ullar, + a0 + o). (1 + bty + 1)
= V(e + poay + pgay)

est nul, les deux x sont symétriques par rapport au vecteur x.
10. — Les deux solutions n’en forment qu’une, lorsque /
est nul, c’est-a-dire lorsque

(20} v — 4y, ou (Y :9) = (YX¥): (YY) .

Dans ce cas, la direction de la projection v coincide avec
celle de la normale x : la projection est orthogonale.

11. — La solution-limite se présente lorsque m? devient
infini, c’est-a-dire (10) lorsque

2 b . - % @
(21) D .‘P; = (0’2(13 sino, v, 4+ a;a, sina, v, + a,a, sin <7z3y,-3)2

s'annule ®. Ceci implique la disparition de chacun des trois
termes :

ay,dy sln o, a;a, sina, , Cll dy SIn o,

ce qui ne se réalise que lorsque les trois vecteurs a, sont
portés par la méme droite.

12. — Les expressions trouvées ¢, x, [* et m? contiennent
les constantes u,, les doubles produits scalaires ¥2 =¥ : ¥

! Lorsqu'il s’agit d’exprimer % en fonction des Ty il suffira de multiplier
par l'idemfacteur et d’écrire :

(19) x = l/q/;(E'Llrl T ety T Pyt
mal AN S AR L A A N 0 AN
* Le « second » ¥, est
nia,a, sina, r; > v+ aga, sin a, r’3 < r’l + a,a, sina, v, < t))
1

ou ]—)n((12 a, sino, ¥, + a;a, sina, v, + a,a, sina, r,) lorsque n est un

vecteur-unité dans la direction commune des produits vectoriels a, < a;’
a, >< a,, et a, X< a,.

L’Enseignement mathém., 18¢ année, 1916. . 13
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et V) = W, : ¥, et le vecteur-unité ¢'. Il est facile de les écrire
en fonction des vecteurs donnés a,, de leurs angles «,, et
des éléments du'triédre connu des v,, qui sonl les cotés y, et
les angles extérieurs T', du triangle sphérique correspon-
dant.

a) Nous avons en effet pour le premier des doubles pro-
duits scalaires ! :

D2y? = D2a.a v v, + a,.0,v,.v; + ... 20,0 )¢, + ...

= aisin’y, + &} sin®y, 4 @ siny, 4 2a, ¢, cosa,.siny, siny, cos I'; 4. ) .
0) La valeur du second des produits scalaires a été trouvée

par (21). Elle est:

Dz‘{fz = (aya,sina, v, + a;a, sina, v, + a,a, sin a, r,)*

= aya;sin® o, + alalsin® o, + &} a) sin® 4, + 2aja,a;sine, sinag cos 'y + ...
c) On obtient pour les constantes u, en formant les pro-

duits vectoriels des a, par la somme des p, a, qui est nulle,

d’abord :

(12 a3 sin (11 . (13 (l,1 sSin a2 . al ((2 sin O(3 — &
— = =0,
e} ; te s
et ensuite a cause de (21)
2 — 2 2 s 2 : 2
07 = gy A Pety Pgry)” = (ayagsinoy, 4 aga sinay v, 4 @, @y sina, vy

= DQ‘V: .
Les trois constantes en question sont donc

a, (13 MSlll &y (I-3 a, sin Oy ﬂl a, SIn oy

22 - = ) gy =0 —————— , g — —————— -
= D)/ v, " b/ v " D)/ v

1 Les expressions trouvées pour ¥? et ¥; peuvent étre simplifiées par l'in-

troduction des formes .quadratiques

C o) — 2 2 2 o _—
(X ryxg) = wyal At 0y ] A gy ] 4 2w,50, Xy + 2wy 252, -+ 2wy, Xy
= 2 9 < _—
et Quugugl = Qul 4+ Qpout 4 ... 2Qp uuy 4 ... 0ol o, = cos Y,
. . L Al it —_ . ~ o, ’ -
et £, = siny; siny, cos I, (voir M. Fr. Dantiits, Essai de Géoméirie

sphérique en coordonnées projectives, Fribourg, Suisse, 1907).
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d) La seconde partie de x posséde dans la direction ¢, une
composante, dont la grandeur se trouve d’apres (19, 17, 16)
facilement :

(23) /L. V. ¥.¢r, ou ¢.(mV.¥Y,—1D.¥ r'l//m‘/mi"(c,\lf)Q—-l )

/ 1

ou ¢ est un vecteur-unité dans le plan des a,, pour lequel
nous voulons prendre un vecteur-unité dans la direction a,.
La substitution ne présente aucune difficulté, mais elle con-
duit a des résultats plutot longs, qui font bien apprécier
I'extréme concision résultant de l'emploi des dyadiques.
Nous trouvons pour les différentes parties dont se compose
notre expression (23), si nous posons par abrévialion

siny, =s,, cosy, =c, et cosT', = (,_, successivement
R alr’l -+ a, cos agr; + a, cos ayr;
¢.V.¥, = (a;¥] + a, cosoyr) 4 a, cos ayx).(t,a, + rja, + 1 ay)

Y N— .2 . )
Dic.W.¥, = (a;s] + a, cosa;.5,5, G + a;cosay.s58 Cola, + ...
= mya, -+ mya, + mya,

oy 2 e _ _
D*W.x) = sja; + 55, Chay + 535, Cha; = na, + nya, + nya,

Dic.¥.¥ .¥.¢, = mna’4 mynya% = mgngat 4 (myny + myn,)a,a, cos a, +- ..
D2(c.¥)? = a’s] 4 a]cos?a,.s2 4 acos®a, 5% 4-2a,a, cos ay.5,5,C, + ...
D%¢.¥.¢' == a5 4 a,cosa,.5,5 C, + a, cosay.s,5 C, .

13. — Les formules précédentes se simplifient beaucoup,

lorsque les ¢, forment un triedre irirectangulaire, comme
c’est le cas dans le théoréme de Pohlke. Nous avons alors en
effet :

D=1; sk_—:i; ck:O; Ck:()

g a:+ a, + a; ; ¥ zz ajalsin’o; 4+ afaisin2 oy + atalsin®a, , etc.
5 2 ;

Nous revenons sur ce cas dans la seconde partie de notre
travail.

14. — Il nous reste encore a démontrer que le carré du
vecteur auxiliaire 2¢ .. ¥, — ¥2¢ introduit au paragraphe 7
est bien W4 — 4Y¥7, autrement dit, qu'un vecteur-unité ¢
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situé dans le plan des antécédents de la dyadique planaire ¥
satisfait a I’équation :

¢CY.W WY e — Y2 WY ¢+ ¥ = ¢ (V.Y WY, — V2¥.¥, + ¥21).c =0

Nous formulons a ce propos un théoréme plus général :
S1 ¥ est une dyadique planaire de la forme

¥ =ar + ayr, + a7, ou B, + 8,8, + 8,1,

on aura toujours

(24) BY. ¥, Y. ¥, — ¥2¥.¥_ 4+ ¥1).6 =0

pourvu qu'un des vecteurs H et @@ an moins soit dans le
plan des « antécédents » coplanaires.

Voici une esquisse de la démonstration. Appelons Q la
dyadique entre parenthéses (24) et cherchons d’abord en
nous servant de la seconde forme pour ¥, la direction de 8§,
étant supposée différente de celle de 8,, les vecteurs

Q.8 , Q8,, Q8 <8 =V8x8,.

Multiplions-les scalairement une premiere fois par 8,, une
seconde fois par 8,. Les six produits obtenus seront tous
nuls. Nous en concluons que

(u, B, + 1ty B, + uy 8, < 82)~Q~("1 B, + o8, + v, 8, <X B,) = uy V:%"Y:‘(B1 > B,)* .

Or ceci ne disparait que lorsqu’un des coeflicients «, ou ¢,
est égal a zéro, c’est-a-dire lorsqu’un des vecteurs terminaux
au moins est dans le plan des «antécédents » coplanaires §, .
c. 1. d. \

15. — En dernier lieu il nous faudra montrer (§ 8) qu’une
rotation ¢ du vecteur ¢ dans le plan des «antécédents» a,
ou 8, produit une rotation — ¢ dans le méme plan du vecteur-
auxiliaire :

(25) = c¢.2¥Y. ¥, — V) =¢.2 .

La dyadique ¥ que nous venons d’introduire n’est pas
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seulement planaire et auto-conjuguée, elle satisfait* encore
a1.3.44+4.2.4=0, si i et j sont deux vecteurs- unités

rectangulaires dans le plan de 8,. Ces trois propriétés nous
permettent de dire que dans la dyadique écrite comme noneon,
les neuf coeflicients étant ¢, (z, &k = 1, 2, 3) nous avons
d’abord ¢, = ¢,, = ¢,;, = 0, ensuite ¢, = ¢,, et enfin

¢, + ¢,, = 0, donc

(26) S = ¢, lif — §j) + eplif + ji)

D’autre part, les dyadiques conjuguées qui, employées
comme « préfacteurs», produisent les rotations 6 et — 6
dans le plan des 8, sont?:

(27) AECOSOI+sin0(ji—ij) et A, =cosfl — sinf(ji — ijf} .

En les multipliant par X nous trouvons sans peine

(28) SA=A_.3.

c

Si donc nous appelons ¢ et { les vecteurs en question avant
et A.¢ et £ aprés la rotation, nous aurons, conformément a
la définition (25) de f et a cause de 'égalité (28):

f=(Ac).X=c. A Y= (c.5).A =0A=A_f

ce qui nous prouve que le nouveau vecteur { est obtenu par
une rotation — 8 du vecteur {. q. e. d.

! Comme X n’opere que sur des vecteurs dans le plan des §,, nous pou-
vons remplacer 'idemfacteur par if + ”
2 On a en effet

©2.8+ 5.5 = 208,47 + 208, 12 + 2(B,.4)2 — b — by — b}
+ 2(8,.§)% + 2(8,.§)° + 208,.)2 — by — b — by =0 .
3 On a en effet

A(zi+ 2 =5 A4+ 50§ = 5 (icos0 4 fsinb) + z,(— isinb ~+ jcos6)
=5t 4 5

les vecteurs-unités {’ et j’ faisant un angle 0 avec { et J
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