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LES THÉORÈMES DE H. A. SCHWARZ ET K. POHLKE.

DÉMONSTRATIONS ANALYTIQUES

PAR

M.-Fr. Daniels (Fribourg, Suisse).

Le célèbre théorème de K. Pohlke (1853), qui est à la base
de l'axonométrie, a été l'objet d'un grand nombre de travaux
mathématiques. Parmi les nombreuses démonstrations
géométriques — celle de Pohlke lui-même ne fut jamais publiée
— citons d'après l'article de E. Papperitz sur la Géométrie
descriptive dans Y Encyklopädie der mathematischen
Wissenschaften (vol. III1? p. 573), celles de C. Pelz (1877), Fr. Schur
(1897), Fr. Schilling (1902) et Th. Schmid (1904). A ces noms
nous pouvons encore ajouter (voir E. Wendling : Der
Fundamentalsatz der Axonometrie, Zurich, 1912, p. 95-96) ceux
de von Deschwanden (1861), H. A. Schwarz (1864), G. von
Peschka (1879), H. Drasch (1883), J. Mandl (1886), G. Küpper
(1889), A. Beck (1890), F. Ruth (1891) et E. Kruppa (1907)K

Les démonstrations analytiques du même théorème sont
beaucoup moins nombreuses. Elles sont dues à H. Kinkelin
Vierteljahrsschrift der Naturforsehenden Gesellschaft Zurich,

1861), à F. Klein [Elementarmathematik vom höheren
Standpunkte aus : IL Teil, 1890, S. 161-174) et à M. Koppe (Sitzungsberichte

der Berliner mathematischen Gesellschaft, 1911,
S. 108-109).

Nous donnons dans le présent travail la première démons-

1 Voir encore J. van Brüggen : De Hoofdstelling der Axonometrie, Thèse
Utrecht, décembre 1915.
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tration analytique du théorème plus général, du à H. A.
Schwarz [Grelle s Journal, vol. 63, S. 309-314, et Gesammelte
Abhandlungen, II, S. 1-7). Cette démonstration est basée

sur la théorie des « dyadiques », les « dyadics » de Gibbs-
Wilson {Vectoranalysis, 1902, chapter Y, pp. 260-331) h La
seconde partie de notre article est consacrée à une démonstration

analytique du théorème de Pohlke, indépendante de
la première, et dans laquelle nous nous servons uniquement
des éléments du calcul vectoriel. Elle a l'avantage de
conduire à des constructions très simples.

I

1. — Théorème de H. A. Schwarz. — Trois vecteurs non
coplanaires connus (01%) (Rk (k 1, 2, 3) peuvent
toujours, par une projection parallèle, donner trois vecteurs

coplanaires, formant une
figure semblable à celle
de trois vecteurs copiait

a ires co n nus {0 ' A G) dElk,

pourvu que parmi les

quatre points O', A2,
A3 il n'y en ait pas plus
de trois en ligne droite.

Nous pouvons d'abord
simplifier le problème.
En effet, si les grandeurs
des vecteurs connus (JU

sont Ryt, le théorème de
Schwarz prétend changer les vecteurs-M/uVes non-copla-
naires (R^ : Rk tk par projection parallèle en trois vecteurs
coplanaires formant une configuration semblable à celle
des vecteurs connus 3b

k
: Rk ak.

1 On peut consulter encore e. a. : C. Burali-Forti et R. Marcolongo :

Omograße vettoriali, Torino, 1909 ; G. Jaumann : Die Grundlagen der
Bewegungslehre, Leipzig, 1905, et E. Budde : Tensoren und Dyaden,
Braunschweig, 1914. La notation employee dans cet article est celle de Gibbs-
Wilson sauf pour un point tout à fait secondaire, sur lequel nous revenons.

Fig. i.
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2. — Supposant le trièdre des xk placé par rapport an plan
contenant les a de manière telle que la projection des xk

parallèlement au vecteur-unitéx par des droites de longueurs
;x\, ,r3 donne des vecteurs 7??ai, /^a2, proportionnels
aux aA,, nous obtiendrons un système de seize équations
scalaires. Or, nous ne connaissons pas la position des trois xk

et de r par rapport au plan des ak ; de ce fait il y a clouze

inconnues; les longueurs xA, ,:r2, x3 en forment trois autres
et m enfin est la seizième inconnue. Les équations en question

seront, si nous appelons yk les angles des vecteurs
donnés x, :

k

xt — x1x — «idj r2. x?> — cos y1 x1.v1 — 1

(1) r2 — .r2 x xH. tq — cos y2 r2. r2 — 1 r.r 1 •

r3 — ar3t ma3 tq.% cos y3 rs.r3 1

3. — Les trois premières équations qui, étant vectorielles,
correspondent à /?e^/'équations scalaires, peuvent être
condensées en Tunique égalité des dycidiques :

(2) <I> _ orix)x1 + (r8 — *2x)x[ + (rs —

et mY m{atx[ + a3r3 + <t3r3)

dont les «conséquents1» sont les vecteurs réciproques xk

correspondant aux vecteurs non-coplanaires donnés xk.
L'égalité des « conséquents» dans ces dyadiques égales
entraîne celle des «antécédents», et comme les «antécédents»
ûk de la seconde dyadique sont coplanaires, il y a des nombres
y.k tels que la somme des produits [JLk<xk est nulle. Il en est
donc de même pour les trois «antécédents» de la première
dyadique, de sorte que :

h *1 -b [J-2 r2 + f-3^3 (!Vri + -r2 + IVLé* •

1 Les vecteurs réciproques en question satisfont à

' — y2 X h ' __ *3 X xy _ xt X x2
r" ~ kl *2 h)'_ kl*2*sî ' r' ~ [*1 *2 *31

Dr, r X r Dr' r X r„

si nous appelons « le sinus de Tangle trièdre », qui est le produit pseudoscalaire

des valeurs par abréviation D. (Gibbs-Wilson, p. 83).
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Or, il est facile de choisir les /xk de manière à faire du

premier membre un vecAeur-unité. Nous trouvons donc, ceci
étant fait,

(3) V [J-2x1 + \i.2x2 + p.3t3

c'est-à-dire le vecteur indiquant la direction de la projection
dans sa position par rapport au trièdre donné des xk, et en
outre la relation importante :

(4), ij^x^ -j- u2x2 -f tx3.r3 x.p 1 •

Dans la dernière équation nous avons introduit le vecteur
auxiliaire

(5) V + or9t'9

dont nous allons voir la signification dans un instant.
4. — Il est évident qu'après introduction de « l'idemfac-

teur I », somme des trois produits indéterminés vkxk, la
première dyadique peut s'écrire :

(6) $ — i — r*
Pour les doubles produits scalaire et vectoriel de cette

dvadique1, on obtient

(7) $2 S <ï> : <ï> 1 + p.p

(8) 2% $ * <ï> 2pt

(9) E= <ï>2 p.p

1 Les doubles produits scalaire et vectoriel (voir J. Guiot : Le Calcul
vectoriel et ses applications à la Géométrie réglée, Paris, 1912) correspond au
« double dot product » et « double cross product » de Gibbs-Wilson (p. 306-

315). Le double produit scalaire de $ par 4>, pour lequel nous nous permettons

d'écrire ici par abréviation 4>2 est :

$2 $ : $ — (I — *;?) : (I — xp) I : I — 2xp : I -f p-p
3 — 2x.p + p.p 1 + p.p •

La moitié du double produit vectoriel de $ et que Gibbs-Wilson
appelle le « second » de <I> est, si x, e, t sont trois vecteurs-unités tri-
rectangulaires et Çj, Ç2 Ç3 les grandeurs des composantes de p selon ces axes :

$2 (* — *X)î 1 — X
1 1 — te+ î (** + + M) —

Sl-EII + (Ç1t + Ç,«r + Ç,<)r x»

vu que Çj, la grandeur de la protection de p sur x, est égale à l'unité à cause
de la relation (4).
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et si Ton tient compte de la relation (4), on voit facilement

que
<ï> on nip "*F

est nul. Ceci nous montre que le vecteur auxiliaire que nous
venons d'introduire est perpendiculaire aux «antécédents»
<xk de la dyadique planaire W ou encore que je est normal au
plan des projections.

5. — Après avoir trouvé le vecteur r, qui indique la direction

de la projection, occupons-nous maintenant du coefficient

m. Or, les équations (7) et (9) nous apprennent que

>K2 A* 2ïti>2 4TTf*2$ — <ï> ou m -— m 4^
2 2

est égal à l'unité. Nous possédons donc une équation
quadratique en 7?z2, qui nous donne

W2 -f si/ Y4 — 4T* 2
(10) m2 =z a'^

2Y\ Y2 — s|/ Y* — 4Y*

où £ est l'unité positive ou négative. Ces deux valeurs sont
réelles; en effet, si nous transformons la dyadique Y, en
introduisant au lieu des « conséquents »' vk trois vecteurs-
unités trirectangulaires xk, nous aurons

(11) Y + a2< + v; 6^ + ß2t2 + ß3t3 >

où les nouveaux « antécédents » ß^ sont évidemment copla-
naires et contenus dans le plan des <xk. Si les angles de ces
antécédents de somme 2tt sont ß nous aurons par conséquent

:

ir - 4?; (bl + b\ + b\)* - 4 iblbl sin2 + b\b\ sîn2 ßa + b\b\ sm2ß3)

— b\ -|- /;2 -f- b% -j- 2bib3 cos -j- 2bsbi cos 2ß2 2btb2 cos 2ß3

(b\îi+ b\ft + bl f3)2

pourvu que les îk soient des vecteurs-unités coplanaires,
faisant des angles 2ßk. Le dernier membre étant positif, les
valeurs (10) trouvées pour m2 sont réelles.

6. — Nous arrivons maintenant, après avoir déterminé la
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direction de la projection x et le coefficient de proportionnalité

m, au vecteur je, normal au plan des projections ak- Soit
C un vecteur-unité quelconque dans leplan des ak ; dans ce cas
son produit scalaire par je est nul et on aura 1

:

(12) — <ï>) ou

JC.JC c.v (x - je)

On connaîtra par conséquent en direction et en grandeur
r — je, donc aussi je, vu que x est déjà connu, lorsqu'on aura
trouvé les deux produits scalaires jc.% et x x du second
membre. Le premier membre en effet dans sa seconde forme
est un vecteur connu, dès qu'on aura choisi le vecteur-
unité c dans le plan des ak. Pour arriver aux produits
scalaires, nous prenons d'abord la racine positive3:

0(c. 4>)2 — 1 ou |/m2[c.W)2—1

Ijt C.vI •

Ensuite nous nous servons d'un résultat déjà trouvé plus
haut au paragraphe 4, résultat qui donne la racine positive :

\/ï>\ ou

1*1 •

La substitution du produit des deux dernières équations
dans (12) donne, vu que

c.r sig (c.v) ; c.v!

1 Dans cette expression, est la dyadique conjuguée I — jcvon aura
donc en se rappelant que c.jc — 0 el v.JC 1 '•

c. ($ .1»6, .<î> — <t>) c - I — ry).(I — — xp) ~ c.(I — vjc)

— c.(—jet -f jeje -f xt jc.jc — xjc y.y) c.r je.je (r — y) -

2 On a évidemment

(/(c.<t\r — 1 — t/(c — c.v y)2 — 1 — (/(c.*)2 JC.JC \X I | c.vI

vu que c est un vecteur-unité, dont le produit scalaire par x est nul.
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pour le vecteur normal au plan des projections 1 expression :

8iS(c.r)c.(m2iF.¥« — Il ^
(13)

- 1)

7. — Il nous faudra examiner encore si l'expression sous
le radical du dénominateur est positive. Le double produit
scalaire Wl l'est certainement; il suffira donc d'examiner

2(C.T|3— T2 + s|/V — 4<H2

m'2(c. V j2 — 1 ou
4T2

que nous avons transformé par l'introduction de la valeur (10)

du paragraphe 5. Or le dénominateur ici est toujours positif,
pour s -f 1 aussi bien que pour s —1, tandis que le

numérateur

2c.T.Yt..c — ~h fj/V — 4 M'2 ou c. (2VF. yc — y2I\.c -f eJ/V — 4y*

par l'introduction d'un vecteur auxiliaire1

(14) c.{2*F.*Fc — T21) f (1= y4 — 4Ta)

peut prendre la forme
f.C + s/ •

Cette somme n'est positive que pour s — -J- 1, car la valeur
absolue l est supérieure au prämier terme, qui n'est que la

projection de f sur c. Nous arrivons donc à la conclusion,
que x n'est réel que lorsque s -f- 1, c'est-à-dire lorsque

o o

(15) m2 ~ -

Vy — 4^2
XF2 — / *

8. — Une autre question qui se pose est celle-ci : le second
terme dans l'expression (13) trouvée pour % dépend-il ou ne
dépend-il pas du vecteur-unité c?

1 On démontre au § 14 que le carré du vecteur auxiliaire f est en efTet
y4 — 4y\.
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Introduisant successivement la valeur de m2 d'après (10)

et le vecteur auxiliaire £ nous pouvons l'écrire :

sig(c.t) e(m2T.Yc- I)Y sig(c.r) c.(W.Vc — V-l + ll)-Y
1 ~ |/£tf•

'
^/c.(2T.Te — <t2I).c + /

_
sig(e.r) (f+/c).T

~~ ]/1?r ' i/rrn
Or, les vecteurs { et le ont la même grandeur l; leur

somme est par conséquent un vecteur dirigé selon leur
bissectrice et si nous nommons un vecteur-unité dans la direction

de cette bissectrice le numérateur peut s'écrire

sig (c.r).2/ cos
-î

(c f) f. T

tandis que le dénominateur prend facilement la forme :

|/Wî.cos|(t, f)

C'est ainsi que nous sommes amenés à l'expression

(17) sig (c.r) y/~ f'.Y

On démontre maintenant sans peine (voir § 15) qu'à toute
rotation 9 du vecteur c dans le plan des <xk correspond une
rotation — 9 du vecteur f dans le même plan, ce qui nous
fait conclure que le vecteur-unité t', selon leur bissectrice, ne

change pas et est indépendant du vecteur c. Quant au sig (c.r),
il est évident qu'il peut être aussi bien positif que négatif,
vu que c est un vecteur-unité tout à fait arbitraire dans le

plan des ak- La direction seule de je nous intéresse et celle-ci

ne change pas lorsque, multipliant par \Zwl, nous écrivrons

(is) x |/Vl r ± j/t r. y

9. — Nous avons donc fixé par rapport au trièdre cles t'k
d'abord la direction de la projection par (3), et ensuite le
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vecteur normal1 au plan des projections par (18). L'équation
(10) nous fait connaître le coefficient de proportionnalité. Les
deux signes dans l'expression (18) nous démontrent que le

problème admet en général deux solutions, et comme les
deux vecteurs du second membre sont rectangulaires, vu
que leur produit scalaire

f.T.r F.(axtq + a2r^ + a3r8). ({J-^ -f- [J-2r2 + \^x3)

f. + [Jo a2 + [j-3a3)

est nul, les deux % sont symétriques par rapport au vecteur r.
10. — Les deux solutions n'en forment qu'une, lorsque l

est nul, c'est-à-dire lorsque

(20) y4 ou (y : Y)2 (V ; Y) : (y * y; •

Dans ce cas, la direction de la projection x coïncide avec
celle de la normale p : la projection est orthogonale.

11. — La solution-limite se présente lorsque m2 devient
infini, c'est-à-dire (10) lorsque

(21) D8.vI/2 (ct2a3 sinoqtj -f- a3a1 sina2r9 +• a1aS) sina3r3)2

s'annule2. Ceci implique la disparition de chacun des trois
termes :

ci2 #3 sin cq a3at sin a2 a1 a2 sin a3

ce qui ne se réalise que lorsque les trois vecteurs ak sont
portés par la même droite.

12. — Les expressions trouvées v, l2 et m2 contiennent
les constantes les doubles produits scalaires ^F2 *F : ^F

1 Lorsqu'il s'agit d'exprimer % en fonction des xk, il suffira de multiplier
par l'idemfacteur et d'écrire :

(19) % f/4- [i2r2 + p,3r,)

±[/l{î'.V.x;r. + f'.'Tr; ra + f.T.r; r.)
2 Le « second » Y2 est

n{a2a3 sin cq x'a X r8 + a3a1 sin a2 x's X ï[ + o1a2 sin cq x[ X x'2)

1
ou ^njff2a3 sin aq ti + a3a1 sin a2 r2 + ax a2 sin a3 r3) lorsque n est un

vecteur-unité dans la direction commune des produits vectoriels a9 X a3
'

a3 Xûp et dj Xûr
L'Enseignement mathém., 18e année, 1916. 13
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et et le vecteur-unité f. Il est facile de les écrire
en fonction des vecteurs donnés ak, de leurs angles ctk, et
des éléments du trièdre connu des rk, qui sont les côtés yk et
les angles extérieurs du triangle sphérique correspondant.

a) Nous avons en effet pour le premier des doubles
produits scalaires 1

:

D2T2 D2(ai.alxl.x[ + a2.a2r;.r; -f • +
— aJ sin2^^ -f- a* sin2y2 -f- a? siny3 -{- 2a2az eosa^siny^ siny3 cos -f-

b) La valeur du second des produits scalaires a été trouvée
par (21). Elle est :

1)2xF2 («2 «3 sin oq x1 + «3 a1 sin oc2 x2 + <l1a2 s*n a3 X?S2

— «gsin2 cq -f- a\a\ si"2 a2 4~ s^°2 as d" 2aJ<7.2 #3 sin a9 sin a3 cos -{-

c) On obtient pour les constantes uk en formant les
produits vectoriels des ak par la somme des pk<xk qui est nulle,
d'abord :

a9 a3 sin oq asal sin oc2 a1 a2 sin oq

Fl F2 _ F3
~~ '

et ensuite à cause de (21)

p2 — p2(p-1x1 4- p-2r2 + ^3t3)2 ia2a3 sinait1 + a5a1 sina2y2 -(- a1a2 sina3r3>2

d>:

Les trois constantes en question sont donc

a9a0 gin a, a0 a. sin a.,
<22> CrT -/-i)|/>, D|/>s

1 Les expressions trouvées pour T2 et x\r\ peuvent être simplifiées par
l'introduction des formes quadratiques

co(x1.r2.r3) -f- w22.r* -f- ?o33.r® -j- 2«12.*q.r2 -j- 2a>23,r2#3 -}- 2co31a'3x1

et ü{u1u2u3\ + Û22 u\ + 2Q23w2w3 + où ioik ~ cosy ik
et Qk EE sin yf. sin y^ cos (voir M. Fr. Daniels, Essai de Géométrie
sphérique en coordonnées projectiles, Fribourg, Suisse, 1907)
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d) La seconde partie de y possède dans la direction vi une

composante, dont la grandeur se trouve d'après (19, 17, 16)

facilement :

(23) |/7„ f. T ^ ou tJmi/mFü.V)2 — 1

où c est un vecteur-unité dans le plan des aÄ, pour lequel
nous voulons prendre un vecteur-unité dans la direction a1.
La substitution ne présente aucune difficulté, mais elle conduit

à des résultats plutôt longs, qui font bien apprécier
l'extrême concision résultant de l'emploi des dyadiques.
Nous trouvons pour les différentes parties dont se compose
notre expression (23), si nous posons par abréviation
sin yk sk, nos yk s ck et cos r, Ck, successivement

a1x'1 + a2 cos a3^ + a?> cos a2rj

e.V.XYC — (a1x[ + a2 cosa3r[ + a3 cos a2xs) Ax^ + *'aa2 A- ùa3)

B2c.xV.x¥c {a1s\ + #2 cos a3 C8 + a3 cos a2. s3 s1 C2"t dj -f
EE mxitj + m2 a2 -j- m3a3

D2 Y .r^ + s2s1 C3a2 + V9iC2a3 ~ nax 4~ n2 a2 -f- /i3aâ

D4c. Y.Y£. Y.r^ 4~ "V'2aa d" nhn?,al '"V?2 "b m2ni^aia2 cos S ~b ••

D2(c. Y)2 m a2s* -f- <x2 cos2oc3.à2 -{- #2cos2a2 *2 -}- 2a1u2 cos -f-

D2 c. Y. x[ cq 6® 4- #2 cos a3. s2 C3 + ff3 cos a2. s3 st C0

13. — Les formules précédentes se simplifient beaucoup,
lorsque les vk forment un trièdre trirectangulaire, comme
c'est le cas dans le théorème de Pohlke. Nous avons alors en
effet :

I) 1 ; skz= 1 ; ck — 0 ; Ck 0

Y2 <r/2 -}- a2 4- <72 ; Y2 ~ a2«2sin2a 4~ c/2össin2al, 4~ sin2 a„ etc.
1

1

2 3 2 2 3 11 SI ^ 1

1 1 :5 '

Nous revenons sur ce cas* dans la seconde partie de notre
travail.

14. — 11 nous reste encore à démontrer que le carré du
vecteur auxiliaire 2c.xï.Wc — x¥2c introduit au paragraphe 7

est bien W* — 4*F*, autrement dit, qu'un vecteur-unité c
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situé dans le plan des antécédents de la dyadique planaire Y
satisfait à l'équation :

>• c + XF- c.(T.T .W.W. — W2W.Wr + l2I).c — 0
C C ' 2 \ 6 C 6 1 2 '

Nous formulons à ce propos un théorème plus général :

Si W est une dyadique planaire de la forme

*F a,r; -f a2r(, + a3Tg ou ß^ -f- ß2t2 + ßHt.,

on aura toujours

(24) Ü.(T.XFC.T.YC — ^2vF.Tc. + YJÏ).(g 0

pourvu qu'un des vecteurs <ü et QjJ au moins soit dans le

plan des « antécédents » coplanaires.
Voici une esquisse de la démonstration. Appelons û la

dyadique entre parenthèses (24) et cherchons d'abord en
nous servant de la seconde forme pour Y, la direction de ß,2

étant supposée différente de celle de ßt, les vecteurs

Ü.ßt Q.ß2 Q.ßj X ß2 — Yjß, X ß2

Multiplions-les scalairement une première fois par ßi, une
seconde fois par ß.2. Les six produits obtenus seront tous
nuls. Nous en concluons que

(Ml + M2 + Ml x B2) *^• (^1 ßi + Ma + M X ß2) X ß2)2 •

Or ceci ne disparaît que lorsqu'un des coefficients a3 ou e3

est égal à zéro, c'est-à-dire lorsqu'un des vecteurs terminaux
au moins est dans le plan des « antécédents » coplanaires &k.

c. f. d.
15. — En dernier lieu il nous faudra montrer (§ 8) qu'une

rotation 9 du vecteur c dans le plan des « antécédents » ak

ou ß; produit une rotation —9 dans le même plan du vecteur-
auxiliaire :

(25) f c.(2Y.Y6. — T2I) c.S

La dyadique 2 que nous venons d'introduire n'est pas
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seulement planaire 1 et auto-conjagitée, elle satisfait2 encore
à {, 2.x + 0, si t et j sont deux vecteurs-unités

rectangulaires dans le plan de ß^. Ces trois propriétés nous

permettent de dire que dans la dyadique écrite comme nonion,
les neuf coefficients étant cik{i, k — 1, 2, 3) nous avons
d'abord ci3 c23 c33 0, ensuite c12 c21 et enfin

Ch + ^ donc

(26) 2 — cnltt — + Ci8(tj + jt) •

D'autre part, les dyadiques conjuguées qui, employées
comme « pré facteurs », produisent les rotations 9 et —9
dans le plan des ß^. sont3 :

(27) A EE cos 61 + sin 6 (jt — tj) et Ac — cos 61 — sin6(jt — tj)

En les multipliant par 2 nous trouvons sans peine

(28) 2-.A Ac.S.

Si donc nous appelons c et fies vecteurs en question avant
et Ä. c et f après la rotation, nous aurons, conformément à

la définition (25) de f et à cause de l'égalité (28) :

f (A.c).S c. AC.S (c.S).A f.A Ac.f

ce qui nous prouve que le nouveau vecteur f est obtenu par
une rotation — 9 du vecteur f. q. e. d.

1 Comme S n'opère que sur des vecteurs dans le plan des ß^., nous pouvons

remplacer l'idemfacteur par tt + jj.
2 On a en effet

t.S.t + j : 2. j 2(61.t)2 + 2 iß2 tj2 + 2 (ßg .t)2 - b\ - b\- bl

+ 2 (ßj. j)2 -\r 2(ß2-j)2 ér 2 (ß3 .jf — bt — b.l — /y3 — 0

3 On a en effet

A. (Sji + s2j) — zi Ad + -2 M "i (t COS 6 + j sin 6) + ~2( — t sinö -f j cos 9)

"l«' + "sf
les vecteurs-unités \ et j' faisant un angle 6 avec t et j.
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II

1. — Théorème de Pohlke. — Trois vecteurs-unités trirec-
tangulaires peuvent toujours, par une projection parallèle,
donner trois vecteurs copia n a ires formant une figure
semblable à celle de trois vecteurs coplanaires connus (O'A ak,
pourvu que parmi les quatre points 0', A2, A3 il n'y en
ait pas plus de trois en ligne droite.

Les vecteurs-unités trirectangulaires xi, t2, t3 donneront,
la projection se faisant parallèlement au vecteur-unité x par
des droites de longueurs x2, .r3, dés vecteurs
proportionnels aux ak (voir fig. 3), lorsque les douze composantes
de tj. t.>, t3 et r, les trois scalaires x\, .x\. .r3 et le facteur de

proportionnalité m satisfont à :

' tj — ^ r m aj t2. È 0 tj. ij 1

i 1 u — oc2t — m a2 to.tj 0 i,.i; 1 r.r 1

c'est-à-dire à un système de seize équations scalaires. Nous
déterminons successivement le vecteur r en fonction des xk,
le coefficient de proportionnalité m et les trois scalaires xk.

2. — Les vecteurs donnés ak étant coplanaires, il existe
des nombres u.k tels que

(2) u., a2 + [j-2 a, + [ig a3 0 et (3) u* -f ^ ^ 1

et si nous multiplions les équations (1) par les yk, nous
obtiendrons par conséquent en ajoutant :

U1ti -p ;j-2 U ;J-o to — + \^2 X2 + ^3 ^ o t

Le premier membre de cette équation est un vecteur-unité
à cause de (3) ; v est également un vecteur-unité. Il en résulte
donc d'abord

(L r p-Ai + ;j-2 t2 + \hh

et ensuite, si les xk sont considérés comme longueurs des

composantes d'un vecteur auxiliaire x selon les \

(5) -f- [X2.r2 -f [Vr3 r X — 1
•

a- x m a, r t2 0 u % 1



THÉORÈMES DE SCHWARZ ET POHLKE 191

L'équation (4) nous fait connaître la position du vecteur x*

qui détermine la direction de la projection par rapport au
trièdre des t^., dès que les constantes pk ou leurs rapports
sont connus.

3. — Or, en multipliant l'équation (2) vectoriellement1 par
les a., nous obtenons, si les angles des <xk sont ak :

a^cio si n a, a, sin a9 0-.a9 sin a„
(6) ——2 i — -1—1 2 -l—l - p

P*1 P"2 P"3

et ensuite, si cr est l'aire du triangle, qui d'après (2) peut être
construit sur les pkdk comme côtés :

(7) o2 — ce à2, sin2 a, 4- a2 ft2 sin2 a9 4- a2a2 sin2 a. — 4a2/u2u2u2 2

\ I \ 23 11 31 ^ 1 12 •> '' l1 3

4. — Le vecteur auxiliaire % a une signification bien simple.
En effet, les produits scalaires % [j.kak p. (tÄ_ — xkx)

~ %. ik — xk étant nuls, il est normal au plan des trois
projections mar

5. — Nous connaissons maintenant le vecteur r, qui détermine

la direction de la projection par (4). Pour trouver le
facteur de proportionnalité ??z, prenons la somme des carrés
des équations (1) et la somme des carrés des produits
vectoriels formés avec ces équations deux à deux3 ; nous obtien-

1 Le produit vectoriel de (2) par cq donne

X a2 P-3 (t. X Äj — 0 OU V-2aia2 si" a3 4= \Haza1 s*u a2 etc*

2 L'aire a du triangle des \xkak satisfait à

2cr îjl2 a2. p., <?;)> sin cq — ^az-V-iai s*n a2 — Pi^i-p-s0^ s^n a3

donc aussi à

4c>2 ^ o-2 p.2 + u2 -f- u.2) — u2 p.2 p.2 ia* a2 sin2 a, 4- âafla$iij?a9 et* et2 sin2 a„)~1 1 »2 1 i 3 ' 1' 2» 3* 23 1 1 31 21 12 3'

3 Les premiers membres des deux dernières équations (1) sont :

h — *2*. h —+ Ihh+ Ms> ~ + I1 — V?x2)i2 ~ tVr2<3

«3 — V <3 — + SMS + testai — ft*»«! — + l1 ~
On trouve pour leur produit vectoriel en tenant compte de (5)

P-i(Xti + x2u + ^3t3) et pour son carré p.2(a2 -j- .r2 -f ,r2) etc. Le produit
vectoriel des seconds membres correspondants est m2a2 X a3 et son carré
m* a2 a2 sin2 a. etc.
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drons les relations :

(8) 1 4- .r2 4- X'I 4- X* m2 (a] 4- a\ + a?) m2s

(9) x* 4- / + x* r= m4(a*a* sin2 oq 4~ a\a\ sin2 a2 4-

EE Wa2/^2^2

qu'il nous est facile de simplifier. En effet, si (\, f2, f3 sont
trois vecteurs-unités coplanaires faisant des angles 2<xk et

(10) f «^ 4- + ^f3

un nouveau vecteur auxiliaire de longueur l, nous aurons
d'abord évidemment1 :

(11) / < 4- al 4- al 5

et ensuite au lieu des deux équations précédentes2:

(12) 1 -f- xj 4- ^2 — m2s et 4 (,ri ~b ,rî ~~b ^g) — '»4(s2— /2)

1 On a seulement l s dans le cas où les quatre points O, Aj, A2, A.
sont en ligne droite.

2 La différence s2 — l2 est égale (d'après 11, 10 et 7) à (a2 4" a\ ~b a2)2

— K + + 2alalcos2ai + •••) 4K«s sin2«! + 16a2/(x2 a2 [x2.



THÉORÈMES DE SCHWARZ ET POHLKE 193

Nous en tirons sans peine pour m2 la valeur positive

(13) m2 — 2/s —.1
'

La seconde valeur de m2 également positive ne conduit
pas, comme il ressort du paragraphe suivant à des xk réels.
Pour la construction du vecteur auxiliaire f comme somme
des vecteurs ctk(k, nous renvoyons à la fig. 2, où nous avons
fait coïncider avec la longueur de ce dernier vecteur
étant prise comme unité. Pour obtenir et al(z, il s'agit
de construire sur a2 respectivement a3 comme bases des

triangles semblables à ceux qui ont a, comme base et a2

respectivement a3 comme seconds côtés.
6. — Pour obtenir la grandeur scalaire xA, nous élevons

au carré la première des équations (1)

— 2;j-1 + 1 — in-a\ ou [xx — ^)2 m2a\ — u* —

Les racines de cette équation sont réelles, car si nous
substituons pour m2 la valeur (12) trouvée dans le paragraphe
précédent :

m2 2 (s + I)/ (s2 - l2) S^2^2 +a\ + a\ + Z)/16a»

nous trouvons facilement, en introduisant de nouveau le
vecteur auxiliaire î et les angles positifs qu'il fait avec les f/c,

angles que nous nommons 29k

16a»_^)» 2p2[x21x2.a2>2 + a\ + l) - 16a». ^ - 16a». ^
2H-x^ijv^-K + «; + *; +1) - sin2a2-rf

— 4 a2 a.2 a2 a2 sin2 a„. u.2
i ir2 i 2 3 i 3

2P-Î!J-sSJ-8-ai-(°i + C'\ C0S 2a3 + al C0S 2a2 + ')

2FL;Fij!t;.«;.(Zco8 2e1 +/)1

4|x»;.a;./cos«e1

1 Le vecteur auxiliaire t fait avec ft l'angle 26j ; nous avons donc d'une
part f.fj I cos 29j ; d'autre part, d'après (10) aussi

f-f, (a'J,+ ajf2 + + a\ cos 2«3 + a* cos 2a2
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II en résulte, si ek est l'unité positive ou négative, et si par

abréviation nous posons :

(14) lFite!V«*.eosOAy7: 2a I Ak

pour les valeurs des xk, qui constituent (voir paragraphe 4)

les grandeurs des composantes de la normale au plan des

projections :

(15) Xk — [Lk -f Zk kk

où seuls les ek éont inconnus. Or en utilisant successivement
les relations (5), (3) et (14) nous trouvons d'une part:

14 X1 + :J--2 x2 + !4 X?, 1 — y-iOl £1 3" [J-2 14 "b H" £3 ^3 ^

(16) a1 Aj -f [i-2 £2 A2 + [J-3 £3 A3 =r 0

ou 14 z1 I ax cos 61 j + |i-2 % j cos 62 | -j- ix3s3 | a3 cos ô3 | — 0

d'autre part si (fig. 2) L' est le milieu de (LLJ et ï un vecteur-
unité dans cette direction1

(17). î' <4 + [J-2 Ä2 + [J-3 4?) !4 ax C0S Öl + a2 COS Ö2 + !4 C0S % 0

La comparaison de (16) et (17) nous apprend que les signes
des ek doivent être tous égaux ou bien tous opposés à ceux
des akcos&k. Ces dernières grandeurs sont les projections
des &k sur f.

7. — Nous possédons maintenant, les ek étant déterminés
de cette manière, trois vecteurs

% — ([4 + h\)* ' h ~ f*2 + £2A2)* » h — ^3 + £3A3)*

dont les grandeurs, d'après ce que nous avons vu au
paragraphe précédent, sont proportionnelles à celles des ak. Le
coefficient de proportionnalité a été trouvé au paragraphe 5.
Si nous ajoutons ces vecteurs, après les avoir multipliés par

1 On a en effet

2Ô3 (LL3) — (LLj) -f- (L2) -j- (L2L3)

— ^(L'Aj) 4" 2(A1A2I 4" 2(A2A3i 2(L/A3)

c'est-à-dire (L/A3) 63 et de même (L/A2) — 62 et (L/A1) — Ô1.
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les u.k, ils donneront, absolument comme les ak, une somme

[J-1 A| -|- [J-o £g ^2 ~r H"3 S3 ^3^ *

nulle, à cause de l'équation (16), ce qui nous prouve : 1° qu'ils
sont coplanaires et 2° qu'ils font bien, le triangle formé étant
semblable à celui des uk&k, entre eux aussi les angles ak-

8. — Il nous reste à dire un mot sur le vecteur normal au

plan des projections. Ce vecteur est, d'après ce que nous
avons vu au paragraphe 4 :

(18) % — -j- + (lJ--2 + £2 ^2) ^2 4" ((J'3 4~ h^s)h •

Les équations (6), (7) et (14) permettent de l'écrire :

(19) a2 a?> sin + a1 cos 01 |/ / )x1 + a
?> ax sin a2 Hh a2 cos 02.{/ i) t2

-f- («1 a9 sin a;! + cos 03.j/ l )% •

9. — Il y a donc en général deux solutions, et comme
dans (18) les deux parties dont se compose le second membre

Mi 4- M2 4- % * et Mih 4- Msb 4-

sont des vecteurs normaux, vu que leur produit scalaire

F"! £1 4" F"2 £2 ^2 4- F*3 s3 ^3

est nul à cause de (16), les deux y sont symétriques par
rapport à x.

10. — Les deux solutions coïncident, lorsque (19)

' I + *:e2 + a% I

est nul. Dans ce cas x coïncide avec x : la projection est
orthogonale.

11. — La construction des vecteurs y et x qui déterminent
les plans de projection et la direction des droites projetantes

par rapport au trièdre trirectangulaire des \ ne
présente aucune difficulté. Tous les éléments essentiels de cette
construction se trouvent dans la figure 2.

Fribourg (Suisse), octobre 1915.
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