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SUR LA MOYENNE ARITHMÉTIQUE 163

où M et N sont deux constantes numériques ayant pour
valeurs

7Ü *
M 3e3 8,548 96 N 2 + — 3e3 16,591 34

Nous remarquerons en terminant que les formules (27) et

(28) ne sont qu'un cas particulier d'un théorème général
exprimant la relation entre la moyenne arithmétique d'un
nombre quelconque de quantités positives, et une (onction

symétrique arbitraire de ces quantités, qui sera exposé dans

un autre Mémoire.

Glion s. Montreux, février 1916.

THÉORÈME SUR LA MOYENNE ARITHMÉTIQUE
DE QUANTITÉS POSITIVES

PAR

Michel Petrovitch (Belgrade, Serbie).

1. — Soit f(x) une fonction développable, au voisinage de

x 0, en série de puissances

(1) oQ -j- a1 x -J- a2x2 -j-

chaque coefficient ai étant réel et positif ou nul, les deux
premiers coefficients aQ et ai pouvant, d'ailleurs, avoir des
valeurs réelles quelconques.

Soient #,,.r2, xn des quantités réelles et positives,
dont la [somme est plus petite que le rayon de convergence
de la série (1).

Désignons par

^ ^ + + ^ et M __
f(xl) + + (fxn)

n n
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la moyenne arithmétique p. des quantités.#, et la moyenne
arithmétique M des valeurs correspondantes de la fonction
f{x).

Je me propose d'exprimer M en fonction de p. sous la forme
d'un théorème de la moyenne.

A cet effet j'envisage la fonction de n variables x.

(2) F jc2, xn) np 1
(jcp -|- xp) — (xt -f- + xn)p

oùp est un nombre réel quelconque, et je remarque que,
comme on le voit facilement par des procédés ordinaires de
la théorie des maxima et minima,

1° si p > 1 la fonction devient minimum pour

(3) Xl x2 — xn ;

ce minimum étant zéro, la fonction est positive pour tout
autre ensemble de valeurs positives des x. ;

2° si p < 1 la fonction devient maximum pour (3) ; ce maximum

étant zéro, elle est négative pour tout autre ensemble
de valeurs positives des x. ;

3° si /? 1 la fonction se réduit identiquement à zéro.
On en conclut qu'en désignant par p la valeur du rapport

K -f- + OCn]P

(4) ** + ...+**
on aura

p ^ YlP 1

pour P > 1

p ~ np~^ pour p< 1

p 1 pour p l

D'autre part, on a manifestement

p 1 pour p y> 1 ; p 1 pour p 1

l'égalité n'ayant lieu que lorsque les x. sont négligeables par
rapport à l'un d'eux.

Par suite : la valeur p est toujours comprise entre les
limites 1 et np~~l ; la première limite est atteinte lorsque,
p étant quelconque, les X. sont négligeables par rapport à



SUR LA MOYENNE ARITHMÉTIQUE 165

l'un d'eux, ou bien lorsque, les x. étant quelconques, on a

p 1 ; la seconde limite est atteinte lorsque les x. deviennent

égaux entre eux.
Ceci étant; on en tire pour p 2, 3, 4, la suite

d'inégalités

(5) ap(x1+ + xn)p ^ + +

(6) a Jx1 + + x)p ^ *1 + ••• + (nxn)p]r n

qui se réduisent en égalités (identités) pour/? — 0 et p 1.

De (5) on tire

f(xt + + xn) ^ f(x±) + + f[xn) -(n- 1) /"(0)

et par suite

(7) M^i[fW+|ft-l)f(0]].

De (6) on tire, en remplaçant nxi par x.

(.X1
—j— —f- rt...

« + ••• + <>

d'où
f(lx) ^ - [fi#]) + ••• + f(-x'n)\

n

et par suite
(8) ffc) ^ M

On arrive ainsi à la double inégalité

(9) f({,) - M - /-M + ~

qui fournit les limites le plus resserrées possibles, comprenant

la moyenne arithmétique M exprimée en fonction de la
moyenne arithmétique y.

D'après ce qui précède ces limites peuvent être atteintes

pour une fonction f(x) arbitraire.
La double inégalité (9) se laisse exprimer sous la forme du

théorème de la moyenne suivant que nous avions en vue :
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Théorème : les moyennes arithmétiques

M _
/'(-yi) + •• + f(xn)

et u.
,r1 4- -f .r il

il n

sont liées par une relation cle la forme

(10) M — $(a) 4 9¥(u)
OU

(11) $<!*) =/M
(12) W([t) /''"H + (» - Dffl _ f(jl)

et où 9 est un facteur toujours compris entre 0 et 1 ; les limites
9 — 0 et 9 1 sont atteintes, la première lorsque tous les
sont égaux entre eux, la seconde lorsque tous les x. deviennent
négligeables par rapport à l'un d'eux.

On peut aussi transformer la double inégalité (9) en égalité
de la manière suivante : l'expression

représente une fonction de 2 se réduisant au premier membre
de (9) pour 2=1, au troisième membre de (9) pour t — n,
et croissant constamment lorsque t croît de 1 à n ; par suite,

pouvant être atteintes pour une fonction f(x) arbitraire, la

première lorsque tous les x. sont négligeables par rapport à

l'un d'eux et la seconde lorsqu'ils sont égaux entre eux.
La formule (14) fournit également la solution du problème

inverse: exprimer Ici moyenne arithmétique u ci l'aide de la
moyenne arithmétique M : on aura

(13) "7 1/ Ù\x) + d — L /"(0)]

[J.

où x est l'une des racines positives de l'équation

f(x) I[M - (1 - Ç) AO)]
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La formule (10) ramène le même problème à la résolution
de réquation

<I> (x) + ÜW(x) rr: M

a étant Tune des racines positives de cette équation en x.
Si dans (14) on change x. en n%v. et si ensuite on pose

/?£ — ^ on arrive à la formule

,15) f(x,+ + xj=K [/( U'j + + /(4'j] - («Ç - 1) /'(0)

1

- ^ X ^ t
n

exprimant une sorte de théorème d'addition d'une fonction
f(x) de l'espèce considérée, sous la forme d'un théorème de la

moyenne. Les limites S — et Ç 1 sont atteintes dans les

cas indiqués précédemment. On peut donc affirmer que la
valeur de

(16) f[x1 + + xn |

est toujours comprise entre les valeurs des expressions

(17) [f(*x) + + /"Kl] — (n ~ A°)
et

(18) - [f{nx1 -f + f(nxn)]

pouvant se confondre, pour une fonction f(x) arbitraire, avec
l'une ou l'autre de ces limites.

L'équation (10) fait voir que la fonction symétrique

(19) f(xJ -j- -f- f(xn)

de n quantités positives dont la somme a pour valeurs, se
laisse toujours exprimer sous la forme

(20) A + 9B

OÙ

A

(21) B f(t\— -f- (n— 1) f(0)

0 ^ 6 < 1
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de sorte qu'eue esttoujours comprise entre les valeurs

*f(f) etf(s)+ (n-l)f(O)

pouvant se confondre avec l'une ou Vautre de ces limites.
2. — Les égalités et les inégalités précédentes se prêtent

à des applications variées dont je n'indiquerai, à titre
d'exemple, que quelques-unes des plus immédiates.

En prenant, par exemple

f(x) ex

on trouve que la valeur de la somme

exi+ + ex"

se laisse exprimer par A + 0B où

A nen B es -J- n — 1 — netl s — x1 + -{- xn

En prenant
f(x) CLX X k ——

0Ck

où a et x sont des quantités réelles positives, la somme

a* + a** + ••• + v-xH

se laisse exprimer sous la forme A + #B où

X xn — 1 X11 — 1 xxn— 1

A wJl X~x B a*"*11"7 + n — 1 -
En prenant

x1 — sin2 x x2 zzr cos2 x
on trouve

f(sin2«r) -j- f(cos2 x) A + 6B

OÙ

A 2f(i) •
B m + m ~ 2fif)

Si a, /3, y sont les angles d'un triangle, on aura

m + m + M a + 6B,
où

A B + -
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de sorte qu'on aura, par exemple, pour un triangle
quelconque

ea + — a + 6/;

OÙ

X IS

a 3e3 zzz 8,54896 h 2 + — 3e3 16,59134

Etant donnée une équation algébrique

+ cy~x + v*"-2 + + Cyl 0

à racines ai, a2, an toutes réelles, on aura

/K) + + /K) A + 6B

où
(ci - 2c2\ — 2eo.\

A
y ' B ^ ~2Cs) + (" - ~ nf\~7i—1y '

de sorte qu'en posant
S, «f + + *p

on aura
SM XS* \(c[- 2c/-U < X < 1

Lorsque toutes les racines sont réelles et positives on aura

/K) + + Aa„)=A + 0B

où

A nf{~ n) •B f(~cJ+ (" - - £) '

de sorte que, par exemple, la valeur de la fonction
symétrique

rcf. 1 ry
e 1 -f- -f- e 11

où r est une quantité positive, est toujours comprise entre
la limite

_ 'pi

ne
11

atteinte dans le cas de l'équation

L'Enseignement mathém., 18e année; 1916
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et la limite

M. PETRO V1TCH

e~rc^ +72 — 1

atteinte dans le cas de l'équation

+ 4- Ci) — o

On aura également dans le cas de racines positives

S* ÀSf X(- c/,

Une fonction rationnelle symétrique quelconque des
racines s'expriprimant à l'aide des S*, on peut en avoir les
limites de variation à Taide de c± ou de c*— 2c2.

On a pour les .r. positifs et p réel

où les oq, ci2, an sont des quantités réelles quelconques
et u une fonction réelle et finie d'une variable t dans un
intervalle considéré de t — a à t=b et dont les valeurs,,

pour t compris dans cet intervalle, sont elles-mêmes
comprises entre 0 et 1. Soit v une fonction de /, réelle et d'un
signe invariable dans l'intervalle (af b). Il s'en suit de ce

qui précède que l'intégrale

log (xf + + x*) — p\ogs + 5

avec
0 < Ô < (1 p) log 72 si P <C t
(1 p) log 72 < 8 < 0 si p 1

Prenons, par exemple
a,

p U

b

a

aura pour valeur
b b

a a
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où C et D ont pour valeurs

171

.C log(eai + ea* + + ea») D (1 — N) log n

où N désigne la plus petite valeur de la fonction u dans 1

intervalle [a, b) et où 9 est un facteur compris entre 0 et 1.

Dans le cas où les valeurs de la fonction u, pour t compris

dans l'intervalle (#, b), seraient plus grandes que 1, la

constante D serait à remplacer par (1 — M)log/^, où M

désigne la plus grande valeur de u dans l'intervalle [a, b).

Faisons aussi une application au calcul des longueurs
d'arcs de courbes à n dimensions. 11 s'ensuit de ce qui
précède que pour les x. positifs on a

(22) (/**+ + < ^=<8<1-

On le voit d'ailleurs directement sur l'identité

«S x] —(S.^)2 —

i ~ i 2 n j — 1 2 n

montrant que
(S*;)2

l'égalité n'ayant lieu que dans le cas où tous les x. sont
égaux entre eux.

Soient x^ x2 xn les coordonnées d'un point M dans
l'espace à n dimensions, telles que l'élément d'arc d'une
courbe considérée dans cet espace soit exprimé par

ds2 S dx\

Considérons une partie s de longueur finie de l'arc, le

long de laquelle chaque coordonnée x. varie constamment
dans un même sens, en croissant ou en décroissant.
Désignons par Xi la valeur absolue de l'accroissement fini de la
coordonnée x. lorsqu'on passe d'une extrémité de l'arc à

l'autre. On aura alors la proposition suivante :
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Lalongueur s de l'arc a pour valeur

(23) s

f 1
9 étant un facteur compris entre et t.

Il suffit, pour le voir, de remplacer dans l'égalité précédente

(22) les x. par les valeurs absolues des dx.et d'intégrer

entre les deux extrémités de l'arc, avec l'application du
théorème commun de la moyenne que comporte la présence
du facteur 9.

Dans le cas particulier des courbes planes, le facteur 9 est

compris entre 0,7071 et 1; pour les courbes gau-
1

ches il est compris entre —— 0,5774 et 1, etc.

3. — Le théorème précédent sur les moyennes arithmétiques

fournit également des théorèmes de la moyenne pour
les intégrales d'une foule d'équations différentielles
ordinaires, équations aux dérivées partielles ou aux différences
mêlées. Il fournit le moyen d'en exprimer les intégrales,
satisfaisant à des conditions très larges, en fonctions
connues des variables indépendantes et d'un ou plusieurs
facteurs 9 dont on connaîtra les limites des variations.

Considérons, par exemple, l'équation du premier ordre

(24) s f{X r)

à laquelle se réduit le problème général de déterminer les
courbes planes dont l'arc s est une fonction donnée /(.r, y)
des coordonnées.
En y remplaçant s par

9[(-r — x0) -f (r — j0)] ou bien par 6[(.r — x0) — (y — y0)]

suivant que l'on considère les branches réelles croissantes ou
les branches réelles décroissantes dans l'interville considéré,

on aura, sans l'intégration, les équations de ces branches
sous l'une ou l'autre des deux formes

(25)
fix, y) — 6 £* + y — (.r0 + y0)] 0

f{x, j) — 6 [.r — y — Ur0 — r0)] 0
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où o est un facteur dont les valeurs ne peuvent varier qu'entre
0,7071... et 1, et où le point initial (x0, y0) joue le rôle de la

constante d'intégration.
Considérons comme deuxième exemple l'équation

1261 (ij + y' m
qui se présente dans des problèmes généraux de géométrie
et de mécanique. En désignant par cp(x) la détermination
positive de \/'f\x) supposée finie et continue dans un intervalle

de x ~ x0 à x x{, considérons les intégrales réelles
passant par un point initial donné M(7r0, y0), situé (pour fixer
les idées) au-dessus de l'axe des x; ce point se trouve
nécessairement dans la région D comprise entre l'axe des x et la
courbe y <p(x), sans quoi la branche considérée de la

courbe intégrale serait imaginaire.
Par M0 passent deux branches de la courbe intégrale, l'une

positive croissante Yi à coefficient angulaire de la tangente
en M0 ayant pour valeur

VnUUU*

l'autre positive décroissante à coefficient angulaire de la
tangente en M0 égal à

- i/?w —Jo;

les deux tangentes se confondent lorsque M0 se trouve sur
la courbe y — <p(x).

Pour la branche Y1 on aura, d'après ce qui précède,

|27> v/(s)'+'-*'(=+')' 75

et par suite cette branche satisfait à une équation de la forme

(28) 3r + r XlÇ(*K 1<^<V2".
On en tire

r ~|
y e-M I

r0 + f Xj x° 9(x)dx
L 0CQ -
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ou bien, en y appliquant le théorème commun de la moyenne

(29) y J0 $ (x, x0)+ IJ.J 4' [x,
OÙ

X

(30) <ï> (x ,r0) =; (.r x0) ~ e~~xj* ex © (x) dx

et où désigne un facteur, fonction de x, dont la valeur
reste, le long de la branche Y1, constamment comprise entre
let 1/2.

L'équation (29) représente la branche Yi et montre que
celle-ci se trouve constamment comprise entre les branches
correspondantes des deux courbes

(31) y — jo $ (*> *o) + v (x, x0) et r—y0$(*> *0) 4- ^f{x, x0)

Pour la branche Y2 l'équation (27) est à remplacer par

<•« \/W^=*<(>-£)
ce qui conduit à l'équation

(33) y y0 <ï> (x, x0) — u.2 W (x, x0) 1 < ^
[où et Y sont donnés par (30)], représentant la branche Y2 ;
celle-ci se trouve ainsi comprise entre les branches

correspondantes des deux courbes

y — Jo 4> (#, X0) - ^F (x, x0)

y Jo $ (a:. #0) — V2 ^ fr, a^)

Par le point M^(.r0—yQ), symétrique au point M0 par
rapport à l'axe des x, passent également deux branches de la

courbe intégrale, l'une négative décroissante Ui, l'autre
négative croissante U2, toutes les deux symétriques aux
branches YA et Y2 par rapport à l'axe des x et dont il est facile
d'avoir les équations.

Les branches Y1 et Y2 (ainsi que U1 et U2) se succèdent
alternativement en se raccordant aux points où elles
rencontrent la courbe fixe

J2 - f(x) 0
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représentant le lieu des maxima et des minima de la courbe

intégrale.
Envisageons comme troisième exemple l'équation aux

dérivées partielles

(£)'+(S)"-"""
et considérons une région D dans le plan xOy dans laquelle° ôy ÖV

l'intégrale Y est réelle et où chacune des dérivées — et —

conserve un signe invariable. Soit e l'unité affectée du signe

constant de ~ et y? la quantité correspondant à la dérivée

^ Dans la région D l'intégrale V satisfera à l'équation

övy / &vy+ (v) ^
avec

(36) o(x, y) if (oc, y)

ou, d'après ce qui précède, à l'équation linéaire

öV öV
(87) s-+„_ 9,p (*,.,•)

où 9 est un facteur compris entre 1 et
On est ainsi amené à considérer le système

/00 dx dy dN
(38) 6 -T 1 T=~i 1 i e cp

d'où l'on tire
£

(39) r -x + C1

(40)
ôV

bX

Ci étant une constante arbitraire. Si dans le second membre
de (40) on remplace y par sa valeur (39), l'équation (40) prend
la forme

(4t) g =.eecp(*,i* + C,

La fonction <p gardant un signe invariable, on aura par
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l'application du théorème commun de la moyenne

(42) Y eQ' Çy(^c, — x dx 4~ C2

C2 étant une seconde constante arbitraire, et 9' un facteur

compris entre 1 et \/2
D'autre part, de (39) et (42) on tire

Cx — y — - X, C2 Y — e8' (t> (x, Cj)

OU

<ï> (;«, Gj) — j*© ^x, - x -f- C^j dx

de sorte que l'intégrale cherchée sera de la forme

V — s 6r f (.r, y — — x ] -f- (y x

W(t) étant une fonction, convenablement choisie, d'une seule
variable t.

Le procédé s'applique, avec la même facilité, à l'équation
générale

~àx1] \bx

et conduit à une expression analogue de l'intégrale V dans
tout domaine de l'espace à n variables indépendantes
x xn dans lequel l'intégrale V est réelle et où chaque

ôY
dérivée partielle — conserve un signe invariable ; l'intégrale
se laisse mettre sous la forme

V iF + 0 $

où W et $ sont des fonctions de xt xn de forme connue et

où 9 est un facteur compris entre 1 et \/n
Glion, mars 1916.
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