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160 M. PETROVITCH

façon que leurs accroissements infiniment petits simultanés
sont à chaque instant susceptibles de former un triangle.

La longueur de l'arc sera égale à la somme des accroisse-
ments finis des coordonnées, correspondant au passage d'une
extrémité de l'arc à l'autre, multipliée par un coefficient
numérique toujours compris entre 0,5774... et 0,7071 —

Lorsque, par exemple, les équations de la courbe sont

f(x y z) — 0 o(x y z) =z 0

les conditions précédentes qui sont

0 — dy — dix ^ dz — dy -f- dx

(ou bien celles qu on aurait en intervertissant ,r, y, z), se
résument en inégalités suivantes devant être vérifiées pour
tous les points de la courbe sur l'arc considéré :

(19)

où

(20) P

O ^ P — T Q
T

yy y y df df
dz dx dx dy dy dz

T —
öcp df Ö9 do Ö9 do

dz dx dx dy dy dz

III. — Fonctions symétriques aes cotes ou a es uni

Soit f(x) une fonction de x développable, au voisinage de

x 0, en séries de puissances

(21) a0 -f- aj x -}- a2x2 +
chaque coefficient a. étant positif ou nul, les deux premiers
coefficients a0 et ax pouvant d'ailleurs être réels quelconques.

Partons du fait suivant facile à démontrer : la valeur du

rapport
(22)

' (* + -r +XL,
xp -f- yp -f- zp

où x, y, z, p sont des quantités positives, est toujours com-
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prise entre 1 et 3P""1 ; la limite 1 est atteinte lorsque p 1

ou lorsque deux des quantités x, y, z sont négligeables par
rapport à la troisième; la limite 1

est atteinte lorsque
x — y — z.

On tire pour p 2, 3, 4

(23) ak{x + y + z)k =fc ak(xk + yk + -*) >

(24) ^(x + y + z)k ^ a-k [(Sx)4 + (3j)4 + (3,)4]

{k 2, 3, 4

En supposant la somme x + y + z plus petite que le rayon
de convergence de la série (21), de (23) on tire

(25) f(x) + f(y) + f[z) ^ f (x -f y -j- z) -f 2/(0)

et de (24), en y remplaçant 3x, 3y, 3z par x, y, z, on tire
d'abord

a*(X +
3

+ ')t~ îfV+ / + **)

et à l'aide de ceci

^ +
3

+ ') - I + flz)î •

ou encore

(26) M + M+ m^3/(-+ 3
+

•

On a ainsi la double inégalité

(27) 3f(p±L±Ij ^ f(x)+f(r)+ m ^ + y + ,} + mo)

qui se laisse exprimer par l'égalité

(28) f(x) + f(y) + f(z) Ft*+y + z) + m(x +y + z)

où

(29) F (t) 3/'(!) $ (<) /{*) - 3/•(!) + 2/(0)

et où 0 désigne un coefficient compris entre 0 et 1. Ces deux
limites 0 et 1 sont atteintes pour une fonction f(t) arbitraire
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lorsque deux des quantités x, y, z tendent vers zéro (0 1),

ou bien lorsque x y z (0 0).

Appliquons maintenant la proposition aux deux cas
suivants :

Premier cas: x, y, z sont les trois côtés d'un triangle. En
désignant par s le périmètre du triangle, la formule (28)

fournit
(30) f(m| + f[b) -f- f(c) ~ F (s) -f- 6$[s)

F et $ étant les deux fonctions (29). La limite inférieure 0 0

est atteinte pour le triangle isocèle ; la limite supérieure 0 1

n'est jamais atteinte.
Deuxième cas : x, y, z sont les trois angles d'un triangle

exprimés en parties de t:. La formule (28) fournit

(31) A«) + A?î + Aï* + W(-)

F et $ étant les deux fonctions (29). La limite inférieure 0 0

est atteinte pour le triangle isocèle et la limite supérieure
0=1 pour le triangle équilatère à un angle obtus voisin
de 7T.

Les formules (30) et (31) fournissent cles expressions
remarquables des fonctions symétriques des côtés ou des angles
d'un triangle.

Rappelons que ces formules supposent la fonction f{t)
développable, au voisinage de t 0, en série de puissances

(32) f[t) — aQ -j- a11 a2 i~ -j-

où chaque coefficient ci. est positif ou nul, les deux premiers
coefficients ciQ et pouvant être réels quelconques. De plus
la formule (30) suppose la convergence de la série (32) pour
/ s et la formule (31) la convergence de la série t t..

En prenant, par exemple,

fié — d

on trouve pour un triangle quelconque

ea -f e'8 -f eT M + ÔN
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où M et N sont deux constantes numériques ayant pour
valeurs

7Ü *
M 3e3 8,548 96 N 2 + — 3e3 16,591 34

Nous remarquerons en terminant que les formules (27) et

(28) ne sont qu'un cas particulier d'un théorème général
exprimant la relation entre la moyenne arithmétique d'un
nombre quelconque de quantités positives, et une (onction

symétrique arbitraire de ces quantités, qui sera exposé dans

un autre Mémoire.

Glion s. Montreux, février 1916.

THÉORÈME SUR LA MOYENNE ARITHMÉTIQUE
DE QUANTITÉS POSITIVES

PAR

Michel Petrovitch (Belgrade, Serbie).

1. — Soit f(x) une fonction développable, au voisinage de

x 0, en série de puissances

(1) oQ -j- a1 x -J- a2x2 -j-

chaque coefficient ai étant réel et positif ou nul, les deux
premiers coefficients aQ et ai pouvant, d'ailleurs, avoir des
valeurs réelles quelconques.

Soient #,,.r2, xn des quantités réelles et positives,
dont la [somme est plus petite que le rayon de convergence
de la série (1).

Désignons par

^ ^ + + ^ et M __
f(xl) + + (fxn)

n n
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