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156 M. PETROVITCH

on tire
sin a _ sin ß

a — h — ; :—- b h j-1-:—7.
sin a -j- sm ß sin a -{- sin ß

et par suite
c [/a2 -j- b2 — 2 ab. cos y z: Äo(a ß y)

Il s'ensuit que

(6) c — (a -j- 6) cos2 ————- (1 + b

où l'erreur relative s est celle commise sur la fonction y qu'on
vient d'étudier.

En prenant

(7) c — (a b) cos2
^

^

on commet une erreur relative qui pour les angles y
supérieurs à 140° n'atteindra pas 4 °/(n pour les angles supérieurs
à 150° 1,8 °/o, pour les angles supérieurs à 160° 0,7 °/0, pour
les angles supérieurs à 170° 0,2 °/0, etc.

II. — Une fonction des côtés.

L'identité

3 (.a2 -j- b2 -f- c2) — (a -j- b + c)2 — (a — b)2 -J- (a — c)2 4- (b — c):

écrite sous la forme

/0i 4 ^ Ci2 4- b2 -f- c2 _ 1 (a — b)2 + {a — c)2 4- (b — c)2
\ > /„ I h L /-• \2 Q I

(a -j- b -f- c)2 3 3(a b c)2

montre que, a, b, c étant des quantités positives, dont une
ou deux peuvent être nulles, la valeur du rapport

[/a2 -)- b2 4- c2

(9) [i - ci —j— b —j— c

\ Iest toujours comprise entre —= et 1, la limite inférieure —=J |/ 3 / 3

étant atteinte pour a b — c et la limite supérieure! étant
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atteinte lorsque deux de ces trois quantités deviennent
négligeables par rapport à la troisième.

Or, clans le cas plus particulier où a, b, c sont les trois
côtés (Tun triangle, la limite supérieure 1 est à remplacer

1

par —j.1/2
En effet, dans ce cas chacune des trois valeurs a, è, c est

au moins égale à la différence et au plus égale à la somme
de deux autres. Soit, pour fixer les idées

a ^ b b — a ^ c ^ b a \

posons
c — x a2 -f- b2 =r m a + b n

de sorte qu'on ait
[/m + x2

(10) -—~—
n + x

On a

nx — m nx — u.f u'
[J- ^ —u k

u

avec
u (x -J- ii)2/\/m -j- x2

de sorte que ^ présente un minimum unique atteint pour la
valeur

m a2 -j- b2
(11) x :

n a -j- b

laquelle est manifestement comprise entre b — a et b +
et la valeur même de ce minimum est

/ m / a2 —J— b
' ' 7~ym + ~ V «2 + + (a + b)2

1
atteignant bien la valeur pour a b.

Lorsque x décroît de

m
# — a x — b — a

n

p croît depuis sa valeur minimum unique (12) jusqu'à la
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valeur

(13) g — taL + >>2 +o — a'2
—

1 .A « /«V—\A
V 2 V2b y 2 V b ' \b

cl 1

laquelle, en vertu de ^ ^ 1 est au plus égale à —
; V 2

Donc : a, b, c étant les côtés d'un triangle, la valeur du

rapport

_ y«2 + b2 +T2
iLL

« -f- b -f- c

est toujours comprise entre les deux nombres

-4= 0,5774 ••• et _L 0,7071
V 3 V 2

On peut l'exprimer sous la forme de l'égalité

(14) yV + p+ c2 (A + 6B) (a+ b+

où A etB sont les constantes numériques ayant pour valeurs

(15) A —L : 1 0,5774 B —L= 0,1297
y 3 y 2 y 3

et où 9 représente un nombre compris entre 0 et 1.
1

La limite inférieure (correspondant à 9 0) est at-

lteinte pour les triangles isocèles; la limite supérieure —=z

(correspondant à 9 — 1) est atteinte lorsque

a — b c 0

Applications. — On peut en faire bien des applications
dont nous n'indiquerons que les suivantes, à titre d'exemples.

I. La relation connue

m2 + V + p2|(«2 + IP + c2)

entre les longueurs m, /z, p des médianes d'un triangle dont
les côtés sont a, b, c, conduit, d'après la proposition pré-
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cédente, à la relation

159

(16) Vui~ -f- 7i" -{- p~ — to [ci -f- b -j- c)

où co est un nombre compris entre

^ — 0,5000 et VY 0,6124

La longueur de la diagonale L d'un parallélipipède
rectangle ayant pour côtés les trois médianes d'un triangle, est
donc égale au périmètre S de ce même triangle multiplié
par un coefficient numérique toujours compris entre 0,5000
et 0,6124.

On voit aussi que les seuls triangles rectangles pouvant
avoir leurs deux cathètes égales aux longueurs L et S

rattachées à un même triangle, sont ceux ayant leurs deux
angles aigus compris : l'un entre 26°30' et 31°30', Lautre
entre 58°30' et 63°30'.

II. La résultante de trois vecteurs susceptibles de former
un triangle et ayant pour somme scalaire S, a pour valeur XS,

où X est un coefficient numérique compris entre 0,5774
et 0,7071...

III. Etant données trois fonctions

/iW > AN » AN

positives dans l'intervalle de x a à x — b et telles que
dans cet intervalle on ait constamment

m A — A - A - A + A »

on aura
b r b b b

(18) f dx|/ t\+ f'l +fl=(A+ 0B) f'fl dx +ff2 dx + Jft dx
a L a a ci

où A et B sont les constantes numériques (15) et où 9 est
un nombre compris entre 0 et 1.

IV. Considérons un arc d'une courbe gauche le long
duquel, en le parcourant dans une direction déterminée, toutes
les trois coordonnées x, y, z croissent à la fois et de telle
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façon que leurs accroissements infiniment petits simultanés
sont à chaque instant susceptibles de former un triangle.

La longueur de l'arc sera égale à la somme des accroisse-
ments finis des coordonnées, correspondant au passage d'une
extrémité de l'arc à l'autre, multipliée par un coefficient
numérique toujours compris entre 0,5774... et 0,7071 —

Lorsque, par exemple, les équations de la courbe sont

f(x y z) — 0 o(x y z) =z 0

les conditions précédentes qui sont

0 — dy — dix ^ dz — dy -f- dx

(ou bien celles qu on aurait en intervertissant ,r, y, z), se
résument en inégalités suivantes devant être vérifiées pour
tous les points de la courbe sur l'arc considéré :

(19)

où

(20) P

O ^ P — T Q
T

yy y y df df
dz dx dx dy dy dz

T —
öcp df Ö9 do Ö9 do

dz dx dx dy dy dz

III. — Fonctions symétriques aes cotes ou a es uni

Soit f(x) une fonction de x développable, au voisinage de

x 0, en séries de puissances

(21) a0 -f- aj x -}- a2x2 +
chaque coefficient a. étant positif ou nul, les deux premiers
coefficients a0 et ax pouvant d'ailleurs être réels quelconques.

Partons du fait suivant facile à démontrer : la valeur du

rapport
(22)

' (* + -r +XL,
xp -f- yp -f- zp

où x, y, z, p sont des quantités positives, est toujours com-
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