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156 M. PETROVITCH

on tire
sin a , A sin §
sina + sin 3’ T Usina 4 sin

a —

et par suite
c =V a® + 0% —2ab.cosy = ho(a, B, v .

Il s’ensuit que

(6) c_—_(a+i))cos2"‘zﬂ1—_&;e),
ou Uerreur relative ¢ est celle commise sur la fonction ¢ qu’on
vient d’étudier.

En prenant

(7) ¢c = (a + b 005277:—-4_—Y
on commet une erreur relative qui pour les angles y supé-
rieurs a 140° n’atteindra pas 4 9/,, pour les angles supérieurs
a 150° 1,8 9/,, pour les angles supérieurs a 160° 0,7 °/,, pour
les angles supérieurs a 170° 0,2/, etec.

II. — Une fonction des colés.
L’identité
Bla? + b2 4+ ¢y —(a+ b+ c)P=(a— b+ (a —¢c)? + (b —¢)?

écrite sous la forme

(@ — 0> 4+ (a — ¢)* + (b — ¢)?
3(a + b+ ¢)?

A e

8) T a4+ b4+ ¢2T 8

+

montre que, a, b, ¢ étant des quantités positives, dont une
ou deux peuvent étre nulles, la valeur du rapport

Vat F b2 & 2
a+ b+ ¢

(9) p=

. : 1 s ey m @ 1
est toujours comprise entre ﬁ et 1, la limite inférieure —

étant atteinte pour « = b=rc et la limite supérieure 1 étant

EOT TR
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atteinte lorsque deux de ces trois quantités deviennent négli-
geables par rapport a la troisieme.
Or, dans le cas plus particulier ou a, b, ¢ sont les trots
cotés d'un triangle, la limite supérieure 1 est a remplacer
1 .
par o |
En effet, dans ce cas chacune des trois valeurs a, 6, ¢ est
au moins égale a la différence et au plus égale a la somme
de deux autres. Soit, pour fixer les idées

a =b, b—a=c=<0b-+ a;

posons
c—x , a4+ b>=m , a4+ b=n,

de sorte qu’on ait

o m -+ a?
(10) . == K;;::r—x—
On a
, __nx —m w __ nx — p'u’
YT ’ - u
avec

u=(x 4+ n)?Vm 4+ a2,

de sorte que u présente un minimum unique atteint pour la

valeur

m a? -+ b?
1 mem oo ome—s b
(1) ¥ n a-+ b’

laquelle est manifestement comprise entre b — a et b + «a,
et la valeur méme de ce minimum est

o m a? + b>
(12) 9—\/m‘— a® + 0 F (@ + b
atteignant bien la valeur -‘71: pour a = b.

Lorsque x décroit de

. croit depuis sa valeur minimum unique (12) jusqu’a la
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valeur-
(13 =V EEFO—at 1 f a4y
~ 20 Ve b T\
, L1
laquelle, en vertu de %é 1 est au plus égale & —.

V2
Donc: a, b, ¢ étant les cétés d’un triangle, la valeur du
rapport

'\/(¢2+b2—}—c2
Iy, ==
' a4+ b+ ¢

est toujours comprise entre les deux nombres

1
—— T 0,5774 . by B et

V'3 Ve

On peut I'exprimer sous la forme de 'égalité

(14 V@ + 0 F 2= (A+0B)a+b+c),
ou A et B sont les constantes numériques ayant pour valeurs

(’15) A:——L_:O,5774 e B — 1__—— 1__
ve V3

V

= 0,1297 ... ,

et ou O représente un nombre compris entre 0 et 1.

- . o, 1 )
La limite inférieure S (correspondant a # = 0) est at-

teinte pour les triangles isoceles; la limite supérieure —

V2
(correspondant a § — 1) est atteinte lorsque
a—15>, ¢c =20 .
Applications. — On peut en faire bien des applications

dont nous n'indiquerons que les suivantes, a titre d’exemples.
I. La relation connue

m? 4 'n® 4 p* = —3[;((52 + 0% 4+ ¢?

entre les longueurs m, n, p des médianes d’un triangle dont
les cotés sont @, b, ¢, conduit, d’aprés la proposition pré-
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cédente, & la relation

(16) : Vm? +n* + p*=wla+ b+ ¢,

ol » est un nombre compris entre
1 . = Nor
5 = 0,5000 ... , et V38 =0,612% ...,

La longueur de la diagonale L d'un parallélipipéde rec-
tangle ayant pour c6tés les trois médianes d’un triangle, est
donc égale au périmetre S de ce méme triangle multiplié
par un coefficient numérique toujours compris entre 0,5000
et 0,6124. 4

On voit aussi que les seuls triangles rectangles pouvant
avoir leurs deux cathétes égales aux longueurs L et S rat-
tachées a un méme triangle, sont ceux ayant leurs deux
angles aigus compris: l'un entre 26°30" et 31°30", l'autre
entre 58°30" et 63°30".

II. La résultante de trois vecteurs susceptibles de former
un triangle et ayant pour somme scalaire S, a pour valeur 3S,
o A est un coeflicient numérique compris entre 0,5774 ...
et 0,7071 ...

II1. Etant données trois fonctions

file) s folx), fila)

positives dans l'intervalle de x==a a x =10 et telles que
dans cet intervalle on ait constamwment

(17) Lh—h=hL=hL+16
on aura '
- b

b . .
(18 ./.dxl/fj‘F f:-i—f::(A _{-OB)[fﬁdx -{—ffgdx +1/Af3dle,

a

ot A et B sont les constantes numériques (15) et ou 6 est
un nombre compris entre O et 1.

[V. Considérons un arc d'une courbe gauche le long du-
quel, en le parcourant dans une direction déterminée, toutes
les trois coordonnées x, y, z croissent & la fois et de telle
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facon que leurs accroissements infiniment petits simultanés
sont & chaque instant susceptibles de former un triangle.

La longueur de l'arc sera égale a la somme des accroisse-
ments finis des coordonnées, correspondant au passage d’une
extrémité de larc a lautre, mulliplice par un coefficient
numerique toujours compris enire 0,5774... et 0,7071...

Lorsque, par exemple, les équations de la courbe sont

fle,y,3) =0 o, 5,z =0

0

les conditions précédentes qui sont

0= dy — dx < ds < dy + dax

v

\

(ou bien celles qu'on aurait en intervertissant x, v, z), se
résument en inégalités suivantes devant étre vérifiées pour
tous les points de la courbe sur I'arc considéré :

Pp—-T7T Q P+ T

19 E-m— =5 =
(19) O=- === -1
ou
of of of of | of of
z 0x ox oy oy 0z
(20) P = , Q= , T =
09 09 0p Op 09 09
0z dx lbx oy oy 0z

III. — Fonctions symétriques des cotés ou des angles.

Soit f{x) une fonction de x développable, au voisinage de
x =0, en séries de puissances

(21) a, + a,x 4 a,x* + ...

chaque coeflicient «, étant positif ou nul, les deux premiers

coefficients a, et @, pouvant d’ailleurs étre réels quelconques.
Partons du fait suivant facile a démontrer: la valeur du

rapport

(x 4+ 7 + =)?

(22) p 4 p’
x84 P 4 2

ou x, ¥, 3, p sont des quantités positives, est toujours com-
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