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ESSAI SUR LA THEORIE DE LA DEMONSTRATION
DANS LES SCIENCES MATHEMATIQUES

PAR

S. ZaremBa, professeur a4 'Université de Cracovie.

INTRODUGTION.

Les paradoxes apparents qui surgissent dans les sciences
mathématiques a mesure que les questions étudiées croissent
en généralité et en abstraction, ont induit les mathémati-
ciens a apporter une rigueur toujours plus grande dans les
démonstrations et afaire un sujet spécial d’étude de la forme
savante qu’assume la méthode déductive dans leur science.
Mais, jusqu’a présent, on s’est plutot appliqué a rechercher
les éléments les plus simples en lesquels le raisonnement
peut 2tre décomposé, a classer ces éléments et a imaginer
des systemes de symboles propres a les représenter avec
briéveté et précision, qu’a étudier la démonstration comme
un tout. C’est par exemple dans ce sens qu’'ont été dirigés
les travaux fondamentaux de M. Peano et de ses éléves. Or,
il me semble que, pour l'intelligence et la critique des bran-
ches les plus délicates et les plus abstraites des mathém a-
tiques modernes, comme par exemple la recherche des fonde-
ments de la Géométrie ou de I'’Arithmétique, ou encore la
théorie des Ensembles, il est nécessaire de connaitre, dans
leurs traits essentiels, la structure et les propriétés de la
démonstration mathématique, ainsi que les applications de
ces notions au probléme délicat de la compatibilité et de I'in-
dépendance d’un systéme de propositions données.

C’est précisément a I'étude de ces questions que je con-
sacre le présent travail. |
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Je ne ferai usage d’aucun systéeme particulier de symboles,
mais j'ose espérer que cette circonstance ne nuira en rien a
la clarté et a la précision de 'exposition.

Loin de chercher a épuiser le sujet, je me suis efforcé de
me borner aux questions auxquelles je croyais pouvoir
répondre avec sureté.

Bien que le domaine que j'étudie appartienne presque
entiecrement a celui de la logique générale, je ne donne, a
dessein, que des exemples tirés des éléments des mathéma-
tiques. Ces exemples sont peut-étre moins simples que
d’autres qu’il serait aisé d'imaginer mais, a cause de la pré-
cision de tout ce qui est du domaine des mathématiques, je
les crois particulierement adaptés au but que javais en vue.

Dans un travail comme celui-ci, 1l est impossible de pré-
ciser les influences variées sous lesquelles se sont dévelop-
" pées les idées que I'on expose, mais je dois dire que je dois
" beaucoup a4 mon distingué collegue M. Jean SLESzZYNSKI,
lequel ne s’est pas encore décidé a publier ses longues et
profondes recherches dans le domaine de la logique, mais
se fait un plaisir d’en faire part 4 ses amis dans des conver-
sations privées.

J'ajoute que je reproduis, dans ce travail, avec quelques
perfectionnements, I'apercu que j'ai placé au début du pre-
mier volume de mon /Introduction a UAnalyse publiée en
langue polonaise a Varsovie.

I. — POSTULATS, DEFINITIONS, THEOREMES.

§ 1. — Les propositions dont l'ensemble exprime tout ce
qui est affirmé dans une théorie déductive et, par conséquent,
dans loute théorie mathématique se divisent en deux caté-
gories, a savoir : '

1° Les propositions regardées comme vraies sans aucune
démonstration et que, a défaut d’un terme classique, jap-
pellerai prémisses ;

2° les théorémes ou propositions appuyées de démonstra-

tions.
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§2. — Il existe une catégorie particuliere de prémisses
appelées définitions. On entend par «définition » toute pro-
position qui exprime une convention en vertu de laquelle le
sens d'une expression (qui peut étre un mot, une phrase ou
quelque autre symbole) devra étre considéré comme iden-
tique a celui d’'une certaine autre expression plus ou moins
compliquée, mais uniquement formée de termes considérés
comme clairs par eux-mémes ou définis antérieurement.
Voici par exemple la définition ordinaire des droites paral-
leles : « I'assertion que deux droites indéfinies sont paralleles
exprime que ces droites sont situées dans un méme plan et
n’ont aucun point commun ».

D’aprés ce qui précede on peut, sans altérer en rien le
contenu d'une théorie, supprimer toute prémisse qui est une
définition a condition de remplacer partout l'expression dont
le sens est déterminé au moyen de la définition, parla phrase
qui, aux termes de celle-ci, a le sens de I'expression consi-
dérée. Cette remarque permet de constater qu'une prémisse
peut, comme une définition, étre une proposition vraie seule-
ment parce que l'on est convenu d’interpréter un certain
terme de facon qu’il en soit ainsi, sans que la prémisse con-
sidérée soit une définition au sens précis que nous avons
attribué a ce mot. Ainsi, par exemple, si en énoncant les
prémisses de la Géométrie, on disait que le mot « droite »
sera considéré comme ayant le sens voulu pour que la pro-
position « deux droites qui ont deux points communs se con-
fondent » soit une proposition vraie, on énoncerait une pré-
misse quine pourrait pas étre regardée comme une définition,
méme dans le cas ou elle exprimerait tout ce qui est affirmé
en Géométrie sans démonstration au sujet des droites. En
effet, la prémisse que nous venons de considérer ne permet-
trait pas, comme devrait le permettre une véritable défini-
tion, de faire disparaitre, dans la Géométrie, le mot « droite »,
en leremplacant par une périphrase convenable.

Toute prémisse qui n'est pas une définition s’appelle pos-
tulat.

§ 3. — Il est utile d’insister un peu sur la notion de défi-
nition. Il est tout d’abord évident qu’il serait parfaitement
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absurde de rechercher la démonstration d’'une définition,
mais il ne faudrait pas en conclure que les définitions puis-
sent étre posées d'une facon absolument arbitraire. Une défi-
nition peut devoir étre écartée non seulement a cause de
son peu de fécondité, mais encore parce qu’elle peut étre
absurde et dés lors absolument inadmissible. En effet, il peut
arriver qu’il soit impossible d’attribuer a4 une expression le
sens voulu par la définition correspondante parce que la
chose que cette expression devrait désigner n’existe pas:
J'ajoute que, dans la pratique, c’est ordinairement de la que
dérive I'inadmissibilité des définitions incorrectes. Par con-
séquent, 'existence de la chose que doit désigner une expres-
sion en vertu de sa définition doit étre ou un théoreme
diment démontré, ou un postulat.

D’ailleurs, lorsqu’une définition ne donne pas lieu a 'ob-
jection précédente et lorsque, de plus, I'expression qu’elle
définit n’a pas été précédemment employée, la définition con-
sidérée peut étre plus ou moins heureusement choisie, mais
elle peut siirement étre adoptée sans contrevenir aux régles
de la logique.

§ 4. — Il importe de faire remarquer que, dans les démons-
trations, le role des définitions ne differe en rien de celui des
postulats. Ainsi par exemple, dans la démonstration d'un
théoreme relatif aux droites paralléles, on n’a nullement a
tenir compte du fait que 'équivalence des deux propositions
suivantes : « deux droites sont paralleles » et « deux droites
sont situées dans un méme plan et n'ont aucun point com-
mun », dérive d’'une convention ; la seule chose qui importe
est cette équivalence elle-méme.

§ 5. — Il est aisé de comprendre pourquoi les théories dé-
ductives, relativement parfaites, sont hérissées de définitions,
En effet, la précision d’une proposition est une condition
nécessaire (quoique insuflisante) de son exactitude, car I’épi-
thete de vraie ou fausse ne peut évidemment étre attribuée a
une proposition que dans le cas ou l'on sait bien ce qui est
affirmé par cette proposition. Il est donc indiqué d’éviter,
dans la mesure du possible, I'emploi d’expressions (ou
d’autres symboles) dont le sens exact n’aurait pas été déler-
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miné au moyen de définitions. Toutefois, il est impossible
de se passer de termes non définis, considérés par conse-
quent comme clairs et précis par eux-mémes. En effet, dans
toute théorie, il devra y avoir une définition qui précéede
toutes les autres et, dans celle-ci, le terme défini par elle
devra l’étre au moyen de termes non définis.

§6. — Pour terminer ces considérations sommaires sur
les prémisses d’une théorie, nous allons mettre en évidence
la relativité des notions de définition, de postulat et de théo-
reme. Lorsqu'une théorie (T) fait suite a d'autres théories
(T'), on peut & volonté considérer la théorie (T) comme un
tout isolé ou comme une partie d’une théorie plus étendue,
englobant la théorie (T) et les théories (T'). Dans le pre-
mier cas, les postulats de la théorie (T) comprendront en par-
ticulier tous les théorémes des théories (T’), dans le second
cas, au contraire, aucun théoréme de la théorie (T') ne fera
partie de 'ensemble des postulats de la théorie formée par
la réunion des théories (T) et (T").

Il peut arriver aussi que, étant donné une théorie (T), on
en isole momentanément une partie (T;) pour’étudier comme
un tout. Dans ce cas, les théorémes qui, dans la théorie (T),
précédent la partie (T,) de celle-ci, devront étre considérés
comme faisanl partie des postulats de la théorie (T,). Ainsi
par exemple, quand on veut soumettre la démonstration d’'un
théoréme particulier d’'une théorie & une étude approfondie,
on regarde ce théoréme et sa démonstration comme formant
une théorie a part, et alors tout théoréeme antérieurement
démontré et intervenant dans la démonstration du théoréeme
considéré acquiert le caractere d'un postulat.

La relativité de la notion de postulat apparait encore a un
tout autre point de vue. Ayant une théorie a exposer, on
peut, sans altérer en rien les résultats de celle-ci et sans
contrevenir aux regles de la logique la plus impeccable,
adopter au choix différents systemes de postulats et suivant
que l'on aura choisi 'un ou 'autre systéme de postulats, une
meéme proposition pourra acquérir le caractéere d'un postulat
ou d’un théoreme,

Naturellement il ne résulte pas de la que, pour constituer
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une théorie mathématique, on puisse raisonnablement
adopter I'un quelconque des systémes logiquement possibles
de postulats. En réalité on doit tenir compte d'une foule de
circonstances telles que le degré d'évidence des postulats,
la simplicité plus ou moins grande des démonstrations selon
le systeme de postulats adoptés, etc. Mais, dans cet ordre
de choses, les préférences personnelles ne peuvent jamais
étre completement écartées et, en outre, I'évolution de la
science nous apprend qu’il est souvent utile de remanier les
théories précédemment élaborées en substituant aux pos-
tulats adoptés d’abord, un autre systéme de postulats. Il va
sans dire (u'un remaniement d’'une théorie peut porter non
seulement sur les postulats, mais encore sur les définitions,
et alors une proposition qui, dans un mode d’exposition,
est vraie par définition peut, dans un autre mode d’exposition
acquérir le caractére d’un postulat ou celui d'un théoréme.

Plus tard, au § 18, nous aurons l'occasion de constater la
relativité des notions de postulat et de définition encore a un
nouveau point de vue.

II. — PROPOSITIONS CONDITIONNELLES. INDETERMINEES POUVANT
ENTRER DANS UNE PROPOSITION CONDITIONNELLE. PROPOSI-
TIONS CONDITIONNELLES ILLUSOIRES.

§ 7.

Nous appellerons proposition conditionnelle toute

proposition exprimant une relation de la forme suivante:

lorsqu'une certaine proposition (H) est vraie, une certaine
autre proposition (C) est vraie aussi; la proposition (H) s’ap-
pellera hypothése et la proposition (C), conclusion de la pro-
position conditionnelle. Toute proposition non conditionnelle
s'appellera proposition catégorigue.

La précédente division des propositions en deux caté-
gories porte en réalité sur la forme de celles-ci ef non sur
le sens, car le sens d’une proposition catégorique peut tou-
jours étre rendu au moyen d’une proposition conditionnelle.
Ainsi par exemple la proposition « le nombre 7 est un nom-
bre premier » est une proposition catégorique mais, au fond,
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ellen’exprime pas autre chose que la proposition condition-
nelle suivante : « lorsqu’un symbole @ représente le nombre 7,
il représente un nombre premier ».

Bien qu’il n’y ait qu'une différence de forme entre les pro-
positions conditionnelles et les propositions catégoriques, la
distinction de ces deux genres de propositions est fonda-
mentale pour nous & cause du caractére formel des démons-
trations déductives en général et des démonstrations mathé-
matiques en particulier.

§ 8. — Une proposition conditionnelle peut contenir un
certain nombre de symboles, que nous appellerons indéter-
minées de la proposition, offrant cela de particulier que le
sens de la proposition ne serait pas altéré si 'on remplacait
ces symboles par n’importe quels nouveaux symboles, pourvu
que ces nouveaux symboles soient différents entre eux et
différents des autres symboles entrant dans la proposition
considérée. Voici un exemple d'une proposition condition-
nelle contenant des indéterminées:

« Lorsque @ et { représentent deux nombres réels ou com-
plexes, 1'égalité suivante:

a® — b = (a + b).(a — b
a lieu».

Il est évident que, au sens indiqué plus haut, la proposi-
tion précédente contient deux indéterminées, a savoir a et b.
Il arrive souvent que, pour abréger, on énonce une propo-
sition conditionnelle contenant desindéterminées sans mettre
celles-ci explicitement en évidence. Ainsi, par exemple,
quand on dit que « deux droiles dont chacune est parallele
a une troisieme sont paralleles entre elles », on énonce une
proposition conditionnelle contenant en réalité trois indé-
terminées sous-entendues qui, d’aprés 'hypothése de la pro-
position conditionnelle considérée, représentent trois droites
dont deux sont paralleles a la troisiéme. Nous admettrons,
dans Ia suite, que les indéterminées de chaque proposition
conditionnelle qui en contient ont été mises explicilement en
évidence.

On verra, dans les chapitres suivants, combien est impor-
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tant le role des propositions conditionnelles dans les démons-
trations mathématiques.

§9. — Les propositions conditionnelles que I'on rencontre
ordinairement dans les théories mathématiques contiennent
des indéterminées et cela de telle facon qu’il est possible
d’attribuer a celles-ci a volonté, soit un sens tel que I’hypo-
thése devienne une proposition vraie, soit tel que I’hypothese
devienne fausse. C'est ainsi que, dans le premier exemple
considéré au paragraphe précédent, I'hypothése est cons-
tituée par la proposition suivante : « les symboles u et v repré-
sentent deux nombres réels ou complexes », et cette propo-
sition pourra étre vraie ou fausse selon la signification
particuliére attribuée aux indéterminées. Mais il peut arriver
que I’hypothése d’une proposition conditionnelle soit inexacte
dans tous les cas et cela soit parce qu'il est impossible d’at-
tribuer aux indéterminées, quand il y en a, une signification
telle que I'hypothése devienne une proposition vraie, soit
parce qu’il n'y a pas d'indéterminées et qu’en méme temps
I'hypothése de la proposition conditionnelle considérée cons-
titue une affirmation inexacte.

Nous dirons qu’une proposition conditionnelle dont 'hy-
pothése est inexacte est une proposition illusoire.

Des que l'on a constaté qu’une proposition conditionnelle
est illusoire, celle-ci perd évidemment tout intérét, mais il
en est tout autrement tant que cette circonstance n'a pas été
établie et ¢’est ce qui fait que, dans la pratique, on est sou-
vent conduit a considérer momentanément des propositions
conditionnelles que 'on reconnait plus tard étre des propo-
sitions illusoires. Ainsi par exemple, dans la théorie des
paralléles, telle qu’elle est exposée dans de nombreux traités,
on rencontre, au cours d'une démonstration, la proposition
illusoire suivante :

« Si deux droites, situées dans un méme plan et perpen-
diculaires a une troisiéme droite, située dans ce plan,
n'étaient pas paralleles, il existerait un point parlequel passe-
raient deux perpendiculaires a la troisieme droite ».

Il est aisé de voir qu’une proposition conditionneile illu-
soire ne peut en réalité jamais étre ni vraie ni fausse. En
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effet, aucune proposition conditionnelle ne contient un juge-
ment relatif 3 la vérité ou a la fausseté de I'hypothése ; le
jugement exprimé par une proposition conditionnelle se
rapporte exclusivement au cas ou I'hypothése est vérifiée.
Or, pour une proposition illusoire, ce cas ne se présente pas.
Donc, malgré 'apparence contraire, celle-ci n’exprime en
réalité aucun jugement et, dés lors, elle ne peut étre ni vraie
ni fausse.

Toutefois, lorsque, sans se demander si une proposition
conditionnelle donnée est illusoire, on cherche a la démon-
trer suivant les régles ordinaires, on peut réussir méme dans
le cas ou la proposition considérée est en réalité illusoire.
Cela étant, nous conviendrons, comme on le fait, au moins
implicitement, dans tous les traités de mathématiques, de
regarder 'ensemble des propositions illusoires comme une
classe particuliere de propositions vraies. Cette convention
ne nous expose a aucune contradiction parce qu'une propo-
sition illusoire, ne contenant en réalité aucun jugement, ne
peut étre en contradiction avec quelque autre proposition
qu’enapparence, mais jamais enréalité; s'ilarrive parexemple
que, sans tenir compte de ce qu'une proposition conditlion-
nelle peut étre illusoire, on ait démontré deux propositions
conditionnelles ayant méme hypothése mais telles qu'il y ait
contradictions enire les conclusions, on n'aura nullement
démontré deux propositions conditionnelles qui se contre-
disent ; en réalité, on aura simplement établi que chacune
des deux propositions considérées est illusoire ; en d’autres
termes, on aura démontré I'inexactitude de I'hypothése com-
mune des deux propositions conditionnelles.

III. — CHAINON LOGIQUE. DEMONSTRATIONS AFFECTANT LA FORME
D UNE SIMPLE SUITE DE CHAINONS LOGIQUES. DEMONSTRATIONS
RAMIFIEES.

§ 10. — Avant d'aborder le sujet propre de ce chapitre,
nous allons définir une expression qui permettra d’abréger
beaucoup le langage dans la suite.
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Lorsque, en envisageant une proposition (T) dans une
théorie, nous dirons qu’une autre proposition (P) est une
proposition reconnue oraie précédemment, nous entendrons
exprimer parla qu’'elle satisfait & I'une des trois conditions
sulvantes :

1° Elle se confond soit avec une des prémisses énoncées
avant la proposition (T), soit avec un théoréme démontré avant
d’énoncer cette proposition ;

2° Elle exprime une partie de tout ce qui est aflirmé dans
I'une des propositions qui satisfont a la condition précédente ;

3° Elle exprime laméme chose que '’ensemble de certaines
propositions dont chacune satistait & 'une des deux condi-
tions précédentes.

Ainsi par exemple, lorsqu’en développant un traité
d’arithmétique, on a déja établi chacune des deux propo-
sitions suivantes :

(¢) chacun des nombres 2, 3, 5 et 7 est un nombre premier;

(B) le nombre 11 est un nombre premier,

dans ce cas, on pourra non seulement affirmer que cha-
cune de ces deux propositions a déja été reconnue vraie,
mais encore on aura le droit de dire que, parmi les propo-
sitions reconnues vraies, il y a des propositions comme, par
exemple, les suivantes:

« Le nombre 3 est un nombre premier»;

« chacun des nombres 2 et 11 est un nombre premier »;
elc.

§ 11. — Supposons qu’en développant une théorie mathé-
matique (T) on veuille démontrer un certain théoréme (A).
On pourra alors rechercher si, parmi les propositions recon-
nues vraies (§ 10) précédemment, il setrouve une proposition
conditionnelle (C,) ou bien telle que sa conclusion coincide
avec la proposition (A,), ou telle qu’elle contienne au moins
une indéterminée et puisse, au moyen de la substitution de
symboles convenables aux indéterminées, étre transformée
en une proposition ((,) ayant pour conclusion la proposition
(Ay). Supposons que l'une des conditions précédentes se
vérifie et, selon que la premiére ou la seconde d’entre elles
se présenterait, désignons par (A,) la proposition qui cons-
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titue 'hypothése de la proposition (C,) ou de sa transfor-
mée (C'). |

S’il arrive que la proposition (A,) est une proposition recon-
nue vraie (§ 10) précédemment, la proposition (A;) devra
évidemment étre regardée comme démonirée. Nous dirons
que l'ensemble des trois propositions (A,), (C,) et (A,) cons-
titue un chainon logique ayant pour premiere prémisse la pro-
position (A,), pour seconde prémisse la proposition (C,) et
pour conclusion la proposition (A). ‘

Le lecteur n’aura pas de peine a constater que le syllogisme
classique peut étre regardé comme un chainon logique de
nature particuliere.

§12. — Reprenons les notations du paragraphe précédent
mais, sans rien changer aux autres hypothéses, ne supposons
plus que la proposition (A,) soit une proposition reconnue
vraie (§ 10) antérieurement. Dans ce cas, la démonstration de
la proposition (A,) aura été ramenée a celle de la proposition
(A,) et 'on pourra chercher a démontrer la proposition (A))
par la méthode que l'on avait essayé d’appliquer a la recher-
che de la démonstration de la proposition (A,). Sans qu'il soit
nécessaire d'insister, on con¢oit commenton peut étre amené
a découvrir une suite de chainons logiques vérifiant les con-
ditions suivantes : ‘

1° La premiére prémisse du premier chainon fait partie
de I'ensemble des proposilions reconnues vraies antérieure-
ment; |

2° la premiére prémisse de chaque chainon, a partir du
second, coincide avec la conclusion de celul qui le précede
immeédiatement ;

3° la conclusion du dernier chainon coincide avec la pro-
position qu’il s’agissait de démontrer;

-4° la seconde prémisse de chaque chainon fait partie de
'ensemble des propositions reconnues vraies (§ 10) précé-
demment. |

Lorsqu’une suite de chainons logiques vérifie ces quatre
conditions, elle constitue évidemment une démonstration de
la proposition que I'on voulait établir et cette démonstration
aura la forme d’une simple suite de chainons logiques.
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Pour présenter un exemple simple du type précédent,
observons que, d’aprés les éléments de I’Arithmétique, on a
les propositions suivantes :

(A,) Chacun des symboles 3 et 7 représente un entier
impair.

(Gy) Lorsque chacun des symboles a et b représente un
entier impair, le symbole !

(@ + b)

représente un entier pair.
(Cy) Lorsque le symbole ¢ représente un entier pair, le
symbole ¢? représente un entier divisible par 4.
Ces propositions admises a titre de postulats, proposons-
nous de démontrer le théoréme suivant :
(A,) Le symbole
(3 + 7)*

représente un entier divisible par 4.
A cet effet, observons que, a la suite de la substitution du

symbole
(3 +7)

a I'indéterminée ¢ de la proposition conditionnelle (C,), la
conclusion de celle-ci vient coincider avec la proposition
(Ag) qu’il s’agit précisément de démontrer, tandis que I’hy-
pothése de la proposition conditionnelle considérée prend
la forme suivante :

(A,) Le symbole A

(3 +7)
représente un entier pair.

Or, il suffit de substituer aux indéterminées a et b de la
proposition conditionnelle (C,) les symboles 3 et 7 pour que
la conclusion vienne coincider avec la proposition (A,) et
I’hypothése avec la prémisse (A,). Par conséquent, la
démonstration du théoréme (A, se présente sous la forme
d’une simple suite de chainons logiques et peut étre résumée

1 Nous conserverons les parenthéses méme la, ou, d’ordinaire, on ne les emploie pas, pour
n’avoir pas a nous appuyer sur les prémisses relatives a leur usage.
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comme il suit: Il résulte des propositions (A,) et (C,) que la
proposition (A,) est vraie et les propositions (A,) et (C))
entrainent la proposition (A,) qu’il s’agissait précisément de
démontrer. /

§ 13. — Lorsque le procédé exposé au § 12 ne permet pas
d’arriver a la démonstration demandée, on peut quelquefois
réussir a découvrir cette démonstration en combinant ce pro-
cédé avec la remarque suivante: s'il arrive que le sens d’'une
proposition coincide avec celui de ’ensemble (S) de certaines
autres propositions, il suffit, pour la démonstration, d’éta-
blir chacune des propositions du systeme (S). La démonstra-
tion que 'on obtient de cette facon ne se réduit plus a une
simple suite de chainons logiques et prend la forme d'une
combinaison d’un certain nombre de suites de ce genre. Il
est naturel d’appeler démonstrations ramifiées les démons-
trations de ce type.

Pour donner un exemple d’'une démonstration ramifiée,
adoptons, a titre de prémisses, les propositions suivantes :

(1) Lorsque trois entiers, a, b et ¢, vérifient les égalités

a—5b et b=c,

on a

(2) Lorsque les symboles @ et b représenlent deux entiers,
le symbole?
(@ + b)

est aussi le symbole d’un nombre entier.
(3) Lorsque quatre entiers @, 4, a’, 0’ vérifient les égalités

a = a et b=—=1b",
on a ,
(@ 4+ b) = (a" + V)

! Pour éviter d’énoncer les prémisses relatives a I'emploi des crochets, nous conservons
ceux-cl comme nous avons eu déja l'occasion de le faire dans un autre exemple, méme la ot
il est d’'usage de s’en passer,

[’Enscignement mathém., 18° année; 1916 2




4
kS

it
it

Rt 3
i

18 S. ZAREMBA

(4) Le symbole 3 représente un entier.
(5) » 7 » »
(6) » 3 » »
(7) » 5 » »
(8) » 10 » »
(9) » 13 » »
(10) » 23 » »
(11) On a

(3 4+ 7) =10
(12) On a

(8 +5) =13
(13) On a

(10 + 13) = 23 .

Cela posé, nous allons démontrer le théoreme suivant :

(A) On a
(B+7)+(8+5)=23.

Démonstration.
Lemme 1. Le symbole
(3 4 7)
est celui d'un entier.

En effet, aprés la substitution des symboles 3 et 7 aux
indéterminées @ et b de la prémisse (2), I'hypothese de
celle-ci devient, en vertu des prémisses (4) et (5), une pro-
position vraie et la conclusion, une proposition qui coincide
avec celle qu'il s’agissait d’établir.

Lemme 11. Le symbole

(8 4+ 9)
est celut d'un entier.

En effet, aprés la substitution des symboles 8 et 5 aux
indéterminées @ et b de la prémisse (2), ’hypothese de celle-ci
devient, en vertu des prémisses (6) et (7), une proposition
vraie et la conclusion coincide avec celle qu'il s’agissait de
démontrer.

! On appelle lemme tout théoréme intermédiaire qui se présente dans la démonstration
d’un autre théoréme, considéré comme formant 'objet propre du raisonnement que I'on déve-
loppe.
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Lemme 111. Le symbole
(B4 7) + (84 5))

est celui d’'un nombre entier.
En effet, aprés la substitution des symboles

34+7" et (8 + 5

aux indéterminées a et b de la prémisse (2), I'hypotheése de
celle-ci devient, en vertu des lemmes I et II, une proposition
vraie et la conclusion, une proposition qui coincide avec celle
qu’il s’agissait de démontrer.

Lemme IV. Le symbole

(10 + 13)

est celui d’'un nombre entier.
En effet, aprés la substitution des symboles

' 10 et 13

< aux indéterminées a et b de la prémisse (2), 'hypothése de
celle-ci devient, en vertu des prémisses (8) et (9), une pro-
position vraie et la conclusion, une proposition qui coincide
avec celle qu’il s’agissait d’établir.

Lemme V. On a

i
PN

((8+7) + (8 4+ 5)) = (10 + 13) .

En effet, aprés la substitution des symboles

LT g ey A
§non e e TR ok s el 2
EELMIN A 318 TR IR~ St et

3+7), (845, 10 et 13

aux indéterminées
a, b, a’, b’

de la prémisse (3), I’hypothése de celle-ci, devient, en vertu
des lemmes I el II et des prémisses (8), (9), (11) et (12) une
proposition vraie et la conclusion, une proposition qui coin-
-4 cide avec celle que nous voulions établir.

. Actuellement, il est aisé de démontrer la proposition (A)
elle-méme. En effet, en substituant dans la prémisse (1), aux

R e
Ko M i il

R
SRR
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indéterminées
a, b, ¢
les symboles
(8347 +(84+5)), (10+13 et 23

on constate que, dans cette proposition, I'hypothese devient,
en vertu des lemmes IIl et IV, de la prémisse (10}, du
lemme V et de la prémisse (13) une proposition vraie, la con-
clusion venant coincider alors avec la proposition (A) qu'il
s’agissait justement de démontrer.

Le diagramme ci-joint permettra de se faire une idée
d’ensemble de la démonstration précédente.

N 7\

Z 5 6 71| [77] [i2] T[e 9] [70] T3

Yo @ @) 2)
—f 17 i

L N

Y

3

,

i} v

|

Dans ce diagramme, les chiffres arabes renvoient aux pré-
misses et les chiffres romains, aux lemmes; les fleches
figurent le role des propositions conditionnelles indiquées
par les chiffres arabes écrits a coté de celles-ci; enfin les
traits qui n’affectent pas la forme de fleches servent & mettre
en évidence les combinaisons dans lesquelles les prémisses
et les lemmes entrent dans chaque chainon logique.




THEORIE DE LA DEMONSTRATION 21

© IV. — PROCEDE PARTICULIER APPLICABLE A LA DEMONSTRATION
- DES PROPOSITIONS CONDITIONNELLES. METHODE D'INDUCTION
~ MATHEMATIQUE. METHODE DE LA REDUCTION A L’ABSURDE. Pos-
TULATS HYPOTHETIQUES.

§ 14. — Contrairement a ce que 'on pourrait croire au pre-
mier abord, les propositions catégoriques ne sont pas les
seules dont la démonstration puisse affecter I'une des formes
considérées au chapitre précédent. Pour s’en convaincre, il
suffit de considérer que I'hypothese et la conclusion d’une
proposition conditionnelle peuvent étre elles-mémes des pro-
positions conditionnelles.

Voici d’ailleurs un exemple simple ou la démonstration
d’une proposition conditionnelle est effectuée au moyen d’un
chainon logique, formé de la facon expliquée au § 11. Adop-
tons, a titre de prémisses, les deux propositions suivantes :

(A,) Lorsque les symboles /, m, n représentent trois entiers
quelconques, on a:

l4+m4n=101+4+ (m 4+ n) .

(C) Lorsque, pour un ensemble (E), la proposition suivante
est vraie :

(P,) Pourvu que l'on désigne par a, b et ¢ trois éléments
quelconques de '’ensemble (E), on a:

a+b+4+c=a+4 (b+c),

dans ce cas, pour I’ensemble considéré, sera vraie aussi la
proposition que voici :

(P,) Pourva que I'on désigne par x, y, z, ¢ quatre éléments
quelconques de ’ensemble (E), on a:

x+ytzti=a+(y+ztb.

Ceci admis, il est aisé de démonirer le théoréme suivant:
~ (Ay) Lorsque les symboles p, ¢, r, s représentent quatre
~entiers quelconques, on a :

prg+r+s=p+lg+r-+s .

I
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En effet, substituons aux indéterminées:

élément de 'ensemble (E), a, b, ¢, x. y, =z, ¢,

~

de la proposition conditionnelle (C), les éléments suivants :
un entier, by m n, P q . ro, s .

Dans ce cas, I’hypothese (P,) et la conclusion (P,) de la pro-
position conditionnelle (C) se transformeront en deux propo-
sitions exprimant respectivement les mémes choses que les
propositions (A,) et (A,). La premiere de ces propositions
étant vraie (puisqu’elle est une prémisse), la seconde le sera
nécessairement, comme il s’agissait de le démontrer.

§ 15. — Bien que, d’apres ce qui précede, il puisse arriver
que la démonstration d’une proposition conditionnelle assume
'une des formes considérées au chapitre précédent, ce cas
ne se présente, dans la pratique, que d'une facon exceplion-
nelle.

Ordinairement on est obligé de recourir a l'artifice sui-
vant: on adjoint momentanément 'hypothese du théoreme
que l'on veut établir a I'ensemble des prémisses etl’on cher-
che a démontrer la proposition qui constitue la conclusion
du théoreme au moyen des procédés étudiés au chapitre pré-
cédent; si 'on y parvient, on aura évidemment démontré
par le fait le théoreme lui-méme qu’il s’agissait d’établir.

Pour donner un exemple simple de I'application de cette
méthode, adoptons a titre de prémisse la proposition suivante:

(1) Lorsque les symboles «, 0, c représentent trois entiers
vérifiant les relations

a—1b et b —=c¢ ,
on a
a—¢c¢ .
Cela posé, proposons-nous de démontrer le théoréme sui-
vant: "
(T). Lorsque les symboles p, ¢, i, sreprésentent des entiers
vérifiant les relations

r=u, q=r, r—s,
on a
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Conformément aux prescriptions de la méthode, adjoi-
gnons & la prémisse (1), a titre de prémisse provisoire, [hy-
pothése du théoréme (T); en d'aulres termes, regardons
! provisoirement comme vraies les sept propositions sui-
~ vantes :

(2) Le symbole p représente un entier.

S T

» » q » » »
» » I » » »

)
)
) » » s » » »
)
)

8)Ona r=s.
Lemme I[. Ona p =r.
En effet, en substituant aux indéierminées

a , b, c

- de la proposition (1), les symboles p, ¢, r, on transforme
- I’hypothese de celle-ci en une proposition vraie comme équi-
. valente, quant au sens, a I’ensemble des prémisses (2), (3),
(4), (6) et (7). D’autre part, dans les mémes conditions, la
- conclusion de la proposition (1) vient coincider avec le lemme
- que nous voulions établir. Donc, ce lemme est démontré.
 Cela posé, il suffit de substituer aux indéterminées

~

a , b . ¢
-~ de la proposition (1) les symboles

p ’ r y s i

. pour constater que '’ensemble des prémisses (2), (4), (5), avec
- le lemme 1 et la prémisse (8) d’une part, et la proposition (1)
. d’autre part, constituent la premieére et la seconde prémisses
d’un chainon logique qui a pour conclusion la relation

(1) p=>s.

Or, cette relation represente laconclusion du théoréme (T);
- donc, d’aprés les principes généraux exposés plus haut, le
-+ théoréme (T) lui-méme doit étre regardé comme démontré.

L
&' :
2%
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On peut, suivant le procédé employé déja au § 13, repré-
senter, au moyen du diagramme ci-joint, la déduction de
I’égalité (T') des propositions

(), 2 (3) (%) , (5) . (6), (7) (8)
2 2 & ) 6 7 d
I T B . ] T
1)
y
I
| 1) \
N
(1)
T’
§ 16. — Le procédé de démonstration connu sous le nom

de mélhode d’induction mathématique rentre, comme on le
verra, dans la catégorie de ceux que nous avons déja étudiés
mais, a cause du postulat remarquable sur lequel il repose
et de sa fécondité, il mérite d’étre étudié a part, bien qu’il ne
soit applicable qu’a une classe particuliere de théoremes.
Cette classe de théoremes est constituée par ceux dont
’énoncé peut étre mis sous la forme générale suivante:

[. Lorsqu'un symbole n représente un nombre entier non
inférieur a un nombre entier donné A, une certaine propo-
sition (P), dont1'énoncé contient le symbole », est vraie.

Tout théoréme de cette forme est évidemment une propo-
sition conditionnelle qui a la proposition (P) pour conclusion
et, pour hypothése, la suivante :

Le symbole n représente un nombre entier non inférieur
a U'entier donné &
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Voici, a titre d’exemple, 'énoncé d’un théoréme de la
classe considérée : o ‘

Lorsque le symbole n représente un nombre entier non
inférieur au nombre 2, la somme s, de tous les entiers de
1 a n inclusivement vérifie I’égalité suivante :

2.5, =mn.(n+41).

Dans les traités de mathématiques, on présente ordinaire-
ment la démonstration d'un théoréme du type [ de la facon
sulvante :

On démontre d’abord, au moyen des procédés étudiés pré-
cédemment, les deux propositions suivantes :

(1) La proposition (P;) en laquelle se transforme la propo-
sition (P), a la suite de la substitution du nombre & au sym-
bole n, est vraie.

(2) Si la proposition (P,) en laquelle se transformerait la
proposition P a la suite de la substitution au symbole n d'un
entier ¢, non inférieur a %, était vraie, la proposition (P, 4 1),
obtenue en substituant 'entier ¢ + | 4 n dans la proposition
(P), serait vraie aussi.

Cela posé, on termine la démonstration par 'affirmation
suivante :

(C) Donc, la proposition (P) est vraie pour toute valeur
entiére de n non inférieure a £ comme il fallait le démontrer.

Quelquefois, on fait précéder la proposition (C) par les
paroles suivantes : « la proposition (P) étant vraie pour

elle le sera, en vertu de (2), pour

% n—=%4+1;
. étant vraie pour "
: n—=Fk4+1,

 la proposition (P) le sera encore, en vertu de (2), pour

| n—==rFk-4 2

. etlec. »

Telles sont précisément les démonstrations que I'on dit
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étre effectuées par la méthode d’induction mathématique et
que l'on appelle aussi démonstrations par induction.

Il est aisé de voir que, en réalité, dans une démonstration
de la forme précédente, le théoréme qu’il s’agissait d’établir
se présente comme la conclusion d’un chainon logique dont
la premiére prémisse est formée par ’ensemble des propo-
sitions (1) el (2) et la seconde, par le postulat, évidemment
vral, que voicl:

(A) Lorsqu’un entier p fait partie d’un certain ensemble (E),
lorsqu’en outre il suffit qu’un entier r, non inférieur a p,
fasse partie de Uensemble (E) pour que lentier

r+1

fasse ausst partie de cet ensemble, dans ce cas, tout entier
non inférieur a p fait partie de l’ensemble (E).

En effet, substituons aux indéterminées :

p; un certain ensemble (E); r,
de la proposition (A) les expressions suivantes :

k

ensemble des valeurs de n pour lesquelles la proposi-
tion (P) est vraie; o

q.

Aprés cette substitution, 'hypothése de la proposition (A)
se transformera en une proposition qui exprimera la méme
chose que I'ensemble des propositions (1) et (2) et la conclu-
sion, en une proposition équivalente, quant au sens, au théo-
reme (T) que 'on voulait démontrer.

En résumé, on voit que les démonstrations « par induc-
tion » ne sont pas, quant a leur structure, différentes de
celles qui ont été étudiées précédemment ; ce quicaractérise
ces démonstrations, c’est I'emploi du remarquable pos-
tulat (A).

D’ailleurs la « méthode d’induction mathématique » est
tellement importante que Poincaré y. voyait la principale
source de la fécondité des sciences mathématiques .

Les exemples de 'application de cette méthode dans les

! PoINCARE. La Science et VHypothese.
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traités de Mathématiques sont si fréquents qu’il nous a paru
superflu d’en donner un dans ce travail.

En terminant ce paragraphe, il convient de faire remarquer
que la méthode d’induction mathématique différe essentiel-
lement de la méthode inductive des sciences expérimentales.
A la vérité il y a bien, dans les deux cas, un passage du
particulier au général mais il repose, dans ces deux cas, sur
des bases tout a fait différentes.

§ 17. — La méthode de démonstration, appelée méthode de
réduction & absurde, est intimement liée a la méthode de
démonstration des propositions conditionnelles exposée au
§ 15. Voici en quoi consiste la méthode de réduction a 'ab-
surde : pour établir un théoréme (T), on adjoint provisoire-
ment & I’ensemble des propositions reconnues vraies précé-
demment (§ 10) la proposition (1) qui exprime la négation
de I'exactitude de la proposition (T) et, en se servant des
procédés de démonstration exposés plus haut, on démontre
une proposition (P’) qui exprime la négation de I'exactitude
d’une proposition (P) que I'on sait étre vraie; ce résultat
obtenu, on conclut que la proposition (T') est fausse et que,
par conséquent, la proposition (T) qu’il s’agissait de démon-
trer est vraie..

Celte facom de procéder revient a établir d’abord, au
moyen de l'arlifice exposé au § 15, la proposition condi-
tionnelle suiwante : « si la proposition (T') était vraie, la pro-
position (P') lle serait aussi® », et a démontrer ensuite, par
une méthode quenous avons déja étudiée au chapitre précé-
dent, le théoireme (T) en ulilisant les postulats, évidemment
vrais, que voiici :

(1) Lorsqu”une proposition (P') constitue 1a négation d’une
proposition vsraie (P), elle est fausse.

(2) Lorsquee, dans une proposition condilionnelle vraie, la
conclusion (P”') est fausse, I'hypothése (T') de la proposition
conditionnellle considérée est fausse aussi.

! La proposition pplacée dans le texte enire des guillemets est en réalité une proposition
illusoire (§ 91; on vroit donc ici comment des propositions de ce genre peuvent apparaitre
momentanément dains les théories mathématiques.
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(3) Lorsque lanégation (T') d’une proposition (T) est fausse,
la proposition (T) est vraie.

En résumé, la démonstration d’un théoréme par «la réduc-
tion & Pabsurde » ne difféere pas, quant a sa structure, des
formes de démonstrations considérées précédemment et son
caractére propre tient en réalité seulement a la nature par-
ticuliere de certains postulats qu’elle fait intervenir.

§ 18. — Il arrive souvent qu’'upne théorie mathématique,
comme par exemple la géométrie non euclidienne, a pour
but I’étude de ce qui arriverait dans le cas ou certaines con-
ditions (C) seraient vérifiées. Il est évident que les théoremes
d’une théorie de ce genre sont en réalité des propositions
conditionnelles dont les hypothéses contiennent 'ensemble
(E) des proposilions exprimant que les conditions (C) sont
vérifiées.

Pour appliquer a4 la démonstration de ces théorémes la
méthode du § 15 et pour éviter des longueurs inutiles, on
regarde les propositions de l'ensemble (E) comme faisant
partie des postulats de la théorie. Daus ce cas, les proposi-
tions de l'ensemble (E) constituent une catégorie de postu-
lats qui ont cela de particulier que, en réalité, on ne se pro-
nonce nullement sur la question de savoir si ces postulats
sont des propositions vraies. Il semble naturel de donner a
ces postulats le nom de postulats hypothétiques en réservant
aux autres postulats le nom d’axiomes. On peut, soit dit en
passant, diviser les axiomes en axiomes relalifs et axiomes
absolus en convenant de regarder un axiome comme faisant
partie de la premiére ou de la seconde catégorie selon qu’il
existe une théorie ou l'axiome considéré est une proposition
ayant le caractere d'un théoréme, ou que cette circonstance
ne se présente pas.

Il est évident que toute définition peut étre considérée
comme un postulat hypothélique; ainsi par exemple la défi-
nition ordinaire des droites paralleles peut éire regardée
comme exprimant I'’hypothése de l'identité du sens de l'as-
sertion que deux droites sont paralleles et de I'assertion que
les droites considérées sont situées dans un méme plan sans
avolr aucun point commun.
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En rapprochant ces remarques de celles qui ont été laites
au § 6, on arrive a la conclusion que les différentes subdivi-
sions des prémisses d’une théorie, si importantes qu’elles
soient quant a la facon de concevoir I’'ensemble de la théorie,
ont un caractére éminemment subjectif. Mais il importe de
faire remarquer que cette circonstance n’affaiblit en rien la
puissance des démonstralions comme moyen de provoquer
la conviction et cela pour la raison suivante : ainsi que nous
'avons annoncé au § 4 et comme cela résulte des dévelop-
pements présentés au chapitre précédent et dans le chapitre
actuel, la seule division des propositions formant une théorie
mathématique qui soit importante au point de vue de la
structure des démonstrations est la division de ces propo-
sitions en prémisses et en théorémes. Or, pour toute théorie
déja constituée, cetie division repose sur un caracteére qui
ne dépend pas du point de vue ou 'on se place et elle est
d'une parfaite netteté.

V. — EXAMEN CRITIQUE DES VUES PRECEDENTES.

§19. — Il est tout d’abord naturel de se demander si toute
démonstration mathématique rentre nécessairement dans les
cadres sommairement tracés dans les deux chapitres précé-
dents.

Nous croyons, sans pouvoir appuyer notre opinion d'une
démonstration, qu’il en est bien ainsi pour toute démons-
tration compleéte (c’est-a-dire développée d'une fagon tout &
fait détaillée) a condition de tenir compte de ce fait que, en
dehors des ramifications explicitement considérées au § 13,
la démonstration d’un théoréme peut en contenir d’autres
provenant de la démonstration de propositions condition-
nelles qui forment les secondes prémisses de certains chai-
nons logiques se présentant dans la démonstration du théo-
reme considéré. | |

§ 20. — Actuellement nous allons examiner une objeclion
grave qu'il est possible de soulever contre les démonstra-
tions mathématiques et que I'on peut présenter de la maniére
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suivante : le but des démonstrations mathématiques est,
semble-t-il, de borner le role de l'intuition a 'appréciation
de la correction des postulats; or, elles n’atteignent pas ce
but. En effet, c’est par l'intuition que 'on est obligé de juger
si, au sens du § 10, une proposition fait partie de celles qui,
au point considéré de la théorie, forment 'ensemble des
propositions reconnues vraies précédemment; en outre,
quand on forme un chainon logique, c’est par I'intuition que
l'on reconnait les indéterminées qui peuvent figurer dans la
proposition conditionnelle que 'on emploie et c¢’est encore
par l'intuition que I'on apprécie le résultat d’'une substitution
effectuée sur les indéterminées. A la vérité, étant donné la
démonstration d'un théoréme, on peut la compléter en dé-
montrant la justesse des jugements intuitifs qui s’y ren-
contrent sans figurer sur la liste des postulats, mais, alors,
on introduira de nouveaux chainons logiques avec leur
corlege de nouveaux jugements intuitifs. En résumé, toute
théorie mathématique, si délaillées que soient les démons-
trations, contiendra des jugements intuilifs, non prévus sur
la liste des prémisses.

Il est cerlainement impossible de nier la réalité de ce fait,
toutefois nous verrons au § 25, aprés avoir pris connaissance
d’'une remarquable propriété des théories mathématiques,
que, dans chacune d’elles, il existe un ensemble de choses
que l'on peut indiquer avec stireté et qui est tel que tout
jugement intuitif relatif & 'une quelconque de ces choses
est, s’il se présente dans la théorie, explicitement énoncé
dans les postulats. D'ailleurs il importe de noter le fait capi-
lal suivanl : en étudiant les théories mathématiques, on
constate, @ posteriort, que les démonstrations mathématiques
completes (§ 19) ne laissent subsister aucun doute dans
I'esprit.

§ 21. — Dans la pratique, on ne développe presque jamais
completement les démonstrations dans les théories mathé-
matiques a cause de leur grande longueur. Cette facon de
procéder est légitime quand on donne des indications sufli-
santes pour que le lecteur puisse, sans trop de peine, com-
bler lui-méme toutes les lacunes.
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Malheureusement, il arrive trop souvent que les abrévia-
tions sont poussées beaucoup plus loin et cela donne lieu,
non seulement & de grandes difficultés pour le lecteur, mais
encore a de graves erreurs, car le souci de la brievelé
empéche l'auteur, plus souvent qu’'on ne le croit, de s’aper-
cevoir que lui-méme ne saurait pas rétablir les chainons
manquant, et c’est ainsi que des propositions fausses sont
quelquefois présentées comme des théorémes démontrés.

VI. — COMPATIBILITE ET INDEPENDANCE D’'UN SYSTEME DE POS-
TULATS. TERMES TECHNIQUES ET TERMES COURANTS. POSTULATS
SPECIFIQUES D'UNE THEORIE.

§ 22. — Il est évident que, pour la correction d'une théorie
mathématique (et plus généralement, de n’importe quelle
théorie déductive), il est nécessaire que les postulats de
celle-ci soient compatibles; en d’autres termes, la condition
suivante doit étre remplie : _

I. Lorsqu’une proposition (P) est la négation d’un postulat
de la théorie, elle ne doit pas étre une conséquence des autres
postulats de la théorie considérée.

En dehors de cette condition, il en est une autre qui,
sans étre comme la précédente, une condition de validité de
la théorie, en est certainement une condition de perfection:
les postulats de la théorie doivent éire indépendants ; en
d’autres termes :

II. Aucun postulat de la théorie ne doit étre une conse-
quence des autres postulats de celle-ct.

La question de savoir si un systéme donné de postulals
vérifie 'une quelconque des deux conditions qui viennent
d’étre énoncées se ramene évidemment a la suivante :

111, Une proposition donnée (P) est-elle une conséquence
d’un systéeme donné (S) d’aulres propositions ?

On pourrait étre tenté de regarder cette question comme
équivalente a la suivante :

IV. Lesystéme de propositions (S) constitue-t-il un ensemble
suffisant de prémisses pour démontrer, d’aprés les principes
exposés aux chapitres 111 et 1V, la proposition (P)?
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Cette interprétation de la question 11l offrirait le grand
avantage de fournir (au moins théoriquement) un criterium
général pour la résoudre ; en effet, il est aisé de voir qu'un
nombre fini d’essais (pouvant, il est vrai, étre trés grand)
conduirait nécessairement au but. Mais, en réalité, l'inter-
prétation précédente de la question IIl ne satisferait pasaux
besoins de la science (et elle ne coincide pas avec celle que
I'on adopte dans les travaux modernes). En effet, on peut
d’abord se demander s’il n’existe pas quelque procédé de
démonstrafion déductive essentiellement différent de ceux
qui ont été considérés aux chapitres IV et V; en outre, méme
sil'on admet avec nous qu’'un tel procédé n’existe pas, onse
heurte a une autre difficulté qu’un exemple particulier fera
bien comprendre.

Envisageons les trois propositions suivantes:

(1) A toute suite finie de nombres entiers il correspond, en
vertu d’'une convention (C), un point parfaitement déterminé.

(2) Lorsqu'une suite finie (s) de nombres entiers est le
résultat de la transposition de deux termes consécutifs dans
une seconde suite finie (s’) de nombres entiers, les points
qui correspondent, en vertu de la convention (C), aux suites
(s) et (s'), sont confondus.

(P) Lorsque les termes de deux suites finies (g) et (¢') de
nombres entiers sont constitués par les éléments d'un méme
ensemble de nombres entiers et ne different par conséquent
que par lordre dans lequel sont rangés, dans chacune
d’elles, les nombres appartenant a l'ensemble considéré, les
points qui correspondent aux suites (g) et (¢'), en vertu de la
convention (C), sont confondus.

Cela posé, considérons la question suivante:

(Q) La proposition (P) est-elle une conséquence des propo-
sitions (1) et (2)?

Tout mathématicien répondra a cette question par l'aftir-
mation et, si I'onle prie de justifier sa réponse, il démontrera
la proposition (P) en placant parmi les prémisses les propo-
sitions (1) et (2) mais l'ensemble des prémisses qu’il aura
adoptées comprendra, en dehors des propositions (1) et (2),
d’autres propositions encore.
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Si I'on objectait a notre mathématicien que les proposi-
tions (1) et (2) ne constituent pas fout I'ensemble des pré-
misses sur lesquelles repose sa démonstration, il ne nierait
pas ce fait, mais il ajouterait qu’il a rigoureusement établi
que les propositions (1) et (2) ne peuvent étre vrales sans que
la proposition (P) ne le soit aussi et que, dés lors, il a justifié
sa réponse d'une facon compléte.
En résumé, la question 111 est loin d’étre simple et claire
par elle-méme ; pour I'interpréter d'une facon satisfaisante,
il est nécessaire d'étudier d’abord une propriété remar-
quable des théories mathématiques.
§ 23. — Pour mettre cette propriété en évidence, adres-
sons-nous a un exemple particulier en reprenant celui qui,
dans un tout autre but, a été déja présenté au § 15. Dans cet
exemple, nous avons adopté pour unique prémisse la propo-
sition suivante :

(1) Lorsque les symboles a, b, creprésentent des entiers
vérifiant les relations

a—15b et b —=c ,
on a

a—¢~c¢ .

Cela posé, nous avons démontré le théoréme suivant :
(T) Lorsque les symboles p, ¢, r, s représentent des
entiers vérifiant les relations :

on a
p=s.

Pour peu que l'on prenne la peine de repasser attentive-
ment toule la petite théorie ainsi conslituée, on constatera
que, pour la complete validité de celle-ci, il n’est pas néces-
saire que le symbole |

(ou I'expression équivalente « est égal ») ait, dans son applica-
tion aux nombres entiers, la signification habituelle ; en réa-
lité, il est nécessaire et suffisant que ce symbole ait le sens
voulu pour que la proposition (1) soit vraie. Ainsi par exemple,

L’Ens eignement mathém., 18¢ annde ; 1916. 3
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si 'on attribuait au symbole considéré le sens que 'on donne

habituellement au symbole
| <

le théoreme (T) et sa démonstration subsisteraient sans
aucune modification. J'ajoute que 'expression

« un entier »

donne lieu a une remarque du méme genre : on pourrait
altribuer a cette expression le sens de

« un élement d’'un certain ensemble (E) »

sans avoir a apporter la moindre modification a la théorie
considérée.

En réalité, toute théorie mathématique dont les théorémes
sont demontrés d'une facon compléte contient, comme celle
que nous venons de prendre pour exemple, un certain
nombre de termes (qui peuvent étre des expressions emprun-
tées au langage ordinaire ou n'importe quels autres sym-
boles) caractérisés par la circonstance sutvante : pour la com-
pléte validité de la théorie, il n'est pas nécessaire d'atiribuer
a ces termes, que nous appellerons termes techniques de la
théorie, en réservant la dénomination de termes courants
aux autres termes, un certain sens parfaitement déterminé a
lexclusion de tout autre, il faut seulement et il suffit que les
terimes considérés soient interprétés de la facon voulue, pour
que les prémisses sotent des propositions vrazes.

Telle est la propriété fondamentale des théories mathéma-
tiques qui constituera le point de départ des considérations
ultérieures.

Il est évident que tout terme, introduit dans une théorie
au moyen d’une définition, estun terme technique de celle-ci,
mais les termes techniques les plus fondamentaux sont ceux
qui sont dépourvus de définitions; nous les appellerons
termes techniques essentiels de la théorie correspondante.
Les termes techniques essentiels ne peuvent pas étre élimi-
nés de la théorie, comme ceux qui ont des définitions par le
procédé indiqué au § 2; en outre, lorsque, dans les bornes
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imposées par la condition de respecter I'exactitude des preé-
misses, on a choisi une signification particuliére pour les
termes techniques essentiels, les définitions ne laissent plus
subsister rien d’arbitraive dans le sens que l'on peut atiri-
buer aux termes techniques qu’elles définissent.

Dans I'exemple considéré au début de ce paragraphe, le
symbole

I

et I’expression
un entier

sont évidemment des termes techniques essentiels.-

Il est aisé de s’expliquer a priori la possibilité de 'exis-
tence, dans les théories mathématiques, de termes techniques,
c’est-a-dire de termes dont le sens n'intervient pas dans les
démonstrations, et de Comprendre, en outre, pourquoi toute
théorie mathématique doit nécessairement contenir, en de-
hors des termes techniques, des termes courants : en effet,
il résulte des développements présentés dans les chapitres II1
et [V que la démonstration d'un théoreme n’exige que l'effec-
tuation, dans un certain ordre, d’opérations dont chacune est
de I'un des genres suivants :

1° Reconnaitre qu'une proposition exprime une partie de
ce qu’'exprime une autre proposition.

2° Reconnaitre que le sens d'une proposition est identique
a celui d'un certain ensemble d’autres propositions.

3° Constater qu'une proposition est la négation d’une cer-
taine autre proposition.

4° Constater 'identité du sens de deux proposilions.

5° Constater qu'une proposition est une proposition con-
ditionnelle, distinguer I'hypothése et la conclusion d’une
telle proposition et reconnaitre les indéterminées qu’elle
peut contenir.

6° Apprécier le résultat d’une substitution effectuée sur
les indéterminées d'une proposition conditionnelle.

Il est évident qu'aucune de ces opérations ne serait pos-
sible sans la connaissance du sens précis de certains termes,
d'ou 'existence nécessaire des termes courants.

D’autre part, il suffit de se reporter aux exemples qui ont
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été donnés plus haut a diverses occasions pour reconnaitre
qu’il peut y avoir des termes dont on n’a pas besoin de con-
naitre la signification précise pour étre a méme d’effectuer
chacune des opérations susdites, d’ot la possibilité de
I’existence des termes techniques.

§ 24. — Les faits mis en évidence au paragraphe précé-
dent nous induisent a adopter la convention suivante : -

Lorsque tous les termes qui entrent dans une proposition
(P) ainsi que dans les propositions formant un certain sys-
téeme (S) ont, exception faite de ceux qui appartiennent a un
certain ensemble (%), un sens bien délerminé et lorsqu’en
outre il est impossible d’interpréter les termes (%) de facon
que les propositions (S) soient vraies sans qu’'il en soit de
méme pour la proposition (P), nous dirons que, par rap-
port aux termes (®), pris pour termes techniques, la proposi-
tion (P) est une conséquence de l'ensemble des propositions (S).

Cette convention admise, nous devons examiner par quels
moyens on pourrait résoudre la question suivante :

V. — Une proposition donnée (P) est-elle, par rapport & un
systeme donné de termes (%), pris pour termes techniques,
une conséquence d'un systéeme donné de propositions (S)?

S’il arrive qu’en adoptant pour postulats d’une théorie,
admettant pour termes techniques les termes (%), le systeme
de propositions (S) ou celui que I'on obtient en adjoignant
aux propositions (S) un nombre quelconque d’autres proposi-
tions, surement vraies quelle que soit U'interprétation adoptée
pour les termes (), on réussisse a construire, conformément
aux principes exposés aux chapitres III et IV, une démons-
tration de la proposition (P), on aura évidemment établi que
la question V comporte une réponse affirmative. Si au con-
traire on avait trouvé une interprétation telle des termes
(B) que, avec cette interprétation de ces termes, les proposi-
tions (S) solent des propositions vraies, mais la proposition
(P), une proposition fausse, on aurait constaté par cela méme
que la question V comporte, dans le cas considéré, une
réponse négative.

Dans 'exemple considéré au début du paragraphe précé-
dent, la proposition (T) est une conséquence de la proposi-
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tion (1) par rapport au symbole

et a I'expression
un entier

pris pour termes techniques. Cet exemple est un exemple
du cas ou le systéme (S) (qui se réduit ici a la seule propo-
sition (1)) constitue un systeme suffisant de prémisses pour
démontrer la proposition (P).

Un exemple d’'une autre nature est celul que nous avons
envisagé au § 22. Le lecteur s'assurera que, dans ce cas, la
proposition (P) est une conséquence des propositions (1) et
(2) par rapport au terme '

« la convention (C)» ,

pris pour terme technique; mais il constatera que les pro-
positions (1) et (2) ne constituent pas un systeme suffisant de
prémisses pour établir la proposition (P); pour obtenir un
tel systeme de prémisses, il faut adjoindre aux propositions
(1) et (2) certaines propositions empruntées a la théorie des
permutations, propositions qui restent vraies quel que soit
le sens du terme

« la convention (C)» .

Pour donner un exemple du cas ou la question V com-
porte une réponse négative, considérons les deux proposi-
tions suivantes :

(A) Lorsque trois nombres entiers, a, 0, ¢, satisfont aux
relations

on a

(B) Lorsque deux nombres entiers x et y satisfont a la
relation

8
|

Yo
on a
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Il est aisé de voir que, par rapport au symbole

—_—

pris pour terme technique, la proposition (B) n’est pas une
conséquence de la proposition (A).
En effet, regardons le symbole

comme ayant la signification attribuée ordinairement au
symbole
<.

Dans ce cas la proposition (A) sera vraie, mais la proposi-
tion (B), fausse ; et cela suflit pour justifier ce que nous avons
annonce. ~

Nous laisserons au lecteur le soin de confirmer par des
exemples (qu'il est particulierement aisé de tirer de 'arith-
métique) une prévision qui se présente d'elle-méme a 'es-
prit et que l'on peut énoncer de la facon suivante :

Etant donné une proposition ‘P) et un systeme (S) d’autres
propositions, il peut étre possible de choisir arbitrairement
entre certaines limites (que nous ne chercherons d’ailleurs
pas a préciser) un certain ensemble (@) de termes parmi ceux
qui servent a exprimer les propositions (P) et (S), pour exa-
miner ensuite si la proposition (P) est une conséquence du
systeme (S) par rapport aux termes (%), pris pour termes
techniques; dans ces conditions, le résultat de 1'examen
pourra dépendre du choix des termes ().

§ 25. — Les notions acquises dans les deux paragraphes
précédents permettent de préciser, plus complétement que
nous ne l'avons pu faire jusqu’a présent, la portée des théo-
ries mathématiques et de tirer de la une indication impor-
tante relative a I’élaboration de ces théories.

Supposons que, dans une théorie (T), un certain ensemble
de termes (%) soit un ensemble de termes techniques essen-
tiels (§ 23) et admettons, en outre, que l'on ait constaté intui-
tivement ou de quelque autre facon le fait suivant : lorsque
les termes (%) sont regardés comme les noms de certaines
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choses (C), bien déterminées, tous les postulats de la théorie
deviennent des propositions vraies. Dans ces conditions, la
théorie (T) pourra étre regardée comme une théorie des
choses (C) et, au moins en ce qui concerne ces choses-la,
elle ne contiendra certainement pas d'autres jugements
intuitifs que ceux qui consistent a affirmer l'exactitude des
postulats (TI) dont les énoncés .contiennent les noms des
choses considérées. Nous dirons que l'ensemble des pos-
tulats (I1) est 'ensemble des postulats spécifiques de la théo-
rie considérée des choses (C). 1l est clair que tout théoreme
de cette théorie des choses (C) sera, par rapport aux termes
(B), pris pour termes techniques (§ 24), une conséquence des
postulats spécifiques. | | ,

Voici l'indication fondamentale que 'on peut tirer de cé
qul précede :

Lorsqu’on veut constituer une théorie mathématique d'un
ensemble de choses, on doit chercher a la constituer de
facon que les noms de ces choses aient le caractére de termes
techniques. |

Ce résultat étant atteint, les choses dont les noms se trou-
veront étre des termes techniques essentiels, représenteront
évidemment les éléments fondamentaux de la théorie et les
postulats spécifiques feront cennaitre la part de l'intuition
dans les jugements relatifs & ces éléments fondamenltaux.

Si je ne me trompe, les notions présentées jusqu’ici dans
ce chapitre n’ont jamais encore éié mises en évidence d’une
facon explicite, mais I'étude des travaux modernes relatifs
aux fondements des branches essentielles des mathématiques
ameéne a la conclusion que, sous une forme plus ou moins
nette, ces notions existalent dans 'esprit des auteurs. Cest
ainsi que, dans les recherches relatives aux fondements de
la Géométrie, les termes tels que :

point; ligne droite; plan et quelques autres, jouent en
réalité le role des termes techniques essentiels, et ce que
'on donne comme I’ensemble des postulats de la Géométrie
ne peut étre regardé que comme devant étre, dans l'esprit
des auteurs, I'ensemble des postulats spécifiques de la théo-
rie qu’ils exposent; ce dernier point apparait trés nettement
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quand on tient compte de ce fait que, dans les travaux dont
1l vient d’étre question, on n’énonce aucune prémisse de
PArithmétique et pourtant, dans les démonstrations, on fait
un large usage de I'Arithmétique et méme de I'Analyse
mathématique.

§ 26. — Il résulte de ce qui a été exposé au paragraphe
précédent que les conditions I et I, énoncées au § 22, doivent
étre regardées comme se rapportantau systéme des postulats
spécifiques d’une théorie et que, dés lors, la liste des termes
techniques essentiels de cette théorie doit constituer une
donnée du probléeme qui consiste & vérifier si les conditions
I et IT du § 22 sont remplies. Cela étant, la question I11 du
§ 22 doit étre regardée comme une forme abrégée de la ques-
tion V du § 24 et, quand on aura a se la poser a l'effet de
s'assurer si 'une des conditions I ou II du § 22 est vérifiée,
'ensemble des termes (%) devra coincider avec 'ensemble
des termes techniques essentiels de la théorie correspon-
dante.

Les considérations précédentes nous amenent tout natu-
rellement a formuler les regles suivantes:

Pour s’assurer si les postulats spécifiques d’une théorie
mathématique satisfont a la condition 1 du § 22, en d’autres
termes, pourreconnaitre s’ils sont compatibles, on cherchera
4 trouver une interprétation telle des termes techniques
essentiels que, avec cette interprétation de ces termes, cha-
cun des postulats devienne une proposition vraie; silony
réussit, la compatibilité des postulats considérés sera par
cela méme établie ; si au contraire on avait constaté que la
négation de l'un des postulats est, par rapport aux termes
techniques essentiels, une conséquence (§ 24) des autres pos-
tulats, on aurait fourni la preuve de l'incompatibilité des
postulats considérés.

Quant a la condition II du §22, celle de I'indépendance
des postulats, on ne '’examinera que dans le cas ou leur
compatibilité aura été préalablement reconnue et 'on pourra
alors procéder de la facon suivante: on envisagera succes-
sivement chaque postulat et chaque fois on cherchera a inter-
préter les termes techniques essentiels de fagon que le pos-
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tulat -considéré momentanément devienne une proposition
fausse et que, en méme temps, tous les autres postulats
deviennent des propositions vraies ; la réussite de toutes ces
opérations constituera la preuve de l'indépendance des pos-
tulats considérés ; si au contraire on avait constaté que, par
rapport aux termes techniques essentiels, 'un des postu-
lats est une conséquence (§ 24) des autres postulats, on
aurait démontré par cela méme que les postulats considéreés
ne sont pas indépendants.

Dans la pratique, la question de savoir si les postulats spe-
cifiques d’une théorie sont compatibles, ne donne pas lieu,
ordinairement du moins, a des difficultés, et cela parce que,
ordinairement, en constituant la théorie, on connait d’avance
une interprétation des termes techniques essentiels pour
laquelle les postulats deviennent des propositions vraies. Au
contraire, il est souvent si difficile de résoudre la question
de I'indépendance des postulats que I'on est obligé d’y renon-
cer complétement, ou de se contenter d’une solution partielle
qui consiste & prouver que certains des postulats sont indé-
pendants des autres, c’est-a-dire tels qu’aucun d’eux n’est,
par rapport aux termes techniques essentiels, une consé-
quence (§ 24) des autres postulats. J'ajoute que, dans certains
cas, I’énoncé II donné au § 22 de la condition de 'indépen-
dance des postulats peut étre inadmissible parce que les
énoncés de certains postulats peuvent impliquer 'exactitude
de certains autres, énoncés antérieurement.

Lorsque cette circonstance se présente, on partage les
postulats en un certain nombre de classes et l'on fixe un
certain ordre de succession de ces classes de-facon a pouvoir
procéder (lorsque les difficultés ne sont pas trop grandes)de
la facon suivante : on s’assure d'abord, en appliquant la
méthode indiquée plus haut, que les postulats de la premiére
classe sont indépendants et, en considérant ensuite, dans
l'ordre adopté, les autres classes on opére comme il suit : on
envisage successivementchaque postulat de la classe momen-
tanément considérée et, chaque fois, on essaie d’interpréter
les termes techniques essentiels de telle facon que le pos-
tulat considéré devienne faux et, qu'en méme temps, tous
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les autres postulats de la classe considérée et tous ceux des
classes qui la précedent deviennent des propositions vraies.

Si I'on réussit a effectuer toutes ces opérations, on dit que,
par rapport au classement adopte les postulals consideéres
sont indépendants. | |

Pour terminer, nous allons donner un exemple simple
du cas ou la compatibilité et I'indépendance d'un systéme
de postulats peut étre aisément établie. A cet effet, spécifions
que le symbole |

et 'expression ,
élément de l'ensemble (E)

seront les termes techniques essentiels de la théorie que
nous allons considérer et adoptons pour postulats spéci-
fiques de cette théorie les trois propositions suivantes :

(A). Lorsque le symbole a est un élément de I'ensemble (E)
on a

a — a .

(B) Lorsque les symboles a et b représentent deux élé-
ments de I'ensemble (E) tels que 'on ait

a—5b ,
on a aussi ‘
b—a . :

(C) Lorsque les symboles «, b et c représentent trois élé-
ments de 'ensemble (E), tels que 'on ait

a=—15b et b=c,
on a aussl
a—~«c¢ .

Pour reconnaitre la compatibilité des trois postulats pré-
cédents, il suflit de remarquer qu’ils deviennent des propo-
sitions vraies dans le cas ou I'expression

un élément de I'ensemble (E)
est considérée comme ayant le sens de

un nombre entier |,
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le symbole

étant en méme temps interprété comme on l'interpréte ordi-
nairement en arithmétique.

Pour établir I'indépendance de nos trois postulats, 1l faut,
d’apréslaregle générale, établir les trois lemmes qui suivent:

Lemme 1. 1l est possible d’interpréter les termes techniques
de facon que la proposition (A) soit fausse et chacune des pro-
positions (B) et (C), une proposition vraie.

En effet, regardons 'expression

un élément de I'ensemble (E)

comme ayant le sens de

un nombre entier

et, en modifiant le sens habituel du symbole

dans une phrase symbolique de la forme
x=y,

ou x et y représentent des nombres entiers, convenons de
regarder cette phrase symbolique comme exprimant a la fois
les deux choses suivantes:

1° Aucun des symboles x et ¥ ne représente 'unité ;

2° les symboles x et ¥ sont ceux d’'un méme nombre entier.

Avec cette interprétation des termes techniques, chacune
des propositions (B) et (C) sera vraie mais la proposition (A)
sera fausse puisque, pour qu’elle fit vraie, il faudrait que
Von efit, pour fout nombre entier «, |

a—a
etil n'en est pas ainsi puisque, avec le sens attribué par nous

au symbole

on n’'a pas
1=1 .

Lemme I1. On peut interpréter les termes techniques de
facon que la proposition (B) soit fausse et, qu’en méme temps,
. chacune des propositions (A) et (C) soit vraie.
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En effet, il suffit, pour cela, de donner au terme
un élément de 'ensemble (E)

le sens que nous lui avons donné pour établir le Lemme I
en convenant, en méme temps, de donner au symbole

le sens habituellement attribué en arithmétique au symbole
<.

Lemme I11. On peut interpréter les termes techniques de
fagon que la proposition (C) soit fausse et, qu’en méme temps,
chacune des propositions (A) et (B) soit vraie.

En effet, continuons a regarder 'expression

un élément de l'ensemble (E)

comme désignant un nombre entier, mais donnons une nou-
velle interprétation au symbole

_ ’

en convenant de regarder la proposition symbolique

x :3 ,
lorsque x et y représentent des nombres entiers, comme
exprimant ce qui, dans la terminologie classique, pourrait
étre exprimeé en disant que les nombres x et ¥ sont ou égaux

bl ® . )
ou tels que le plus grand d’entre eux ne differe que d’une
unité de l'autre. Ces conventions adoptées, les propositions
(A) et (B) seront évidemment vraies, mais la proposition (C)
ne le sera pas car, bien que, en vertu de nos conventions,
I'on ait en particulier

1 =2 et 2=3,

il résulte des mémes conventions que 'on n’a pas

1=3.

Nos trois lemmes étant établis, 'indépendance des trois
postulats ’est aussi.

En résumé, les postulats (A) (B) et (C) sont compatibles et
indépendants.

Genéve, décembre 1915.
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