
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 18 (1916)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ESSAI SUR LA THÉORIE DE LA DÉMONSTRATION DANS LES
SCIENCES MATHÉMATIQUES

Autor: Zaremba, S.

DOI: https://doi.org/10.5169/seals-16869

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 20.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-16869
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


ESSAI SUR LA THÉORIE DE LA DÉMONSTRATION

DANS LES SCIENCES MATHÉMATIQUES

PAR

S. Zaremba, professeur à l'Université de Gracovie.

Introduction.

Les paradoxes apparents qui surgissent dans les sciences
mathématiques à mesure que les questions étudiées croissent
en généralité et en abstraction, ont induit les mathématiciens

à apporter une rigueur toujours plus grande dans les
démonstrations et à faire un sujet spécial d'étude de la forme
savante qu'assume la méthode déductive dans leur science.
Mais, jusqu'à présent, on s'est plutôt appliqué à rechercher
les éléments les plus simples en lesquels le raisonnement
peut être décomposé, à classer ces éléments et à imaginer
des systèmes de symboles propres à les représenter avec
brièveté et précision, qu'à étudier la démonstration comme
un tout. C'est par exemple dans ce sens qu'ont été dirigés
les travaux fondamentaux de M. Peano et de ses élèves. Or,
il me semble que, pour l'intelligence et la critique des branches

les plus délicates et les plus abstraites des mathématiques

modernes, comme par exemple la recherche des fondements

de la Géométrie ou de l'Arithmétique, ou encore la
théorie des Ensembles, il est nécessaire de connaître, dans
leurs traits essentiels, la structure et les propriétés de la
démonstration mathématique, ainsi que les applications de
ces notions au problème délicat de la compatibilité et de
l'indépendance d'un système de propositions données.

C'est précisément à l'étude de ces questions que je
consacre le présent travail.
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Je ne ferai usage d'aucun système particulier de symboles,
mais j'ose espérer que cette circonstance ne nuira en rien à

la clarté et à la précision de l'exposition.
Loin de chercher à épuiser le sujet, je me suis efforcé de

me borner aux questions auxquelles je croyais pouvoir
répondre avec sûreté.

Bien que le domaine que j'étudie appartienne presque
entièrement à celui de la logique générale, je ne donne, à

dessein, que des exemples tirés des éléments des mathématiques.

Ces exemples sont peut-être moins simples que
d'autres qu'il serait aisé d'imaginer mais, à cause de la
précision de tout ce qui est du domaine des mathématiques, je
les crois particulièrement adaptés au but que j'avais en vue.

Dans un travail comme celui-ci, il est impossible de
préciser les influences variées sous lesquelles se sont développées

les idées que l'on expose, mais je dois dire que je dois
beaucoup à mon distingué collègue M. Jean Sleszynski,
lequel ne s'est pas encore décidé à publier ses longues et
profondes recherches dans le domaine de la logique, mais
se fait un plaisir d'en faire part à ses amis dans des conversations

privées.
J'ajoute que je reproduis, dans ce travail, avec quelques

perfectionnements, l'aperçu que j'ai placé au début du
premier volume de mon Introduction à l'Analyse publiée en
langue polonaise à Varsovie.

I. — Postulats, définitions, théorèmes.

§ 1. — Les propositions dont l'ensemble exprime tout ce

qui est affirmé dans une théorie déductive et, par conséquent,
dans toute théorie mathématique se divisent en deux
catégories, à savoir :

1° Les propositions regardées comme vraies sans aucune
démonstration et que, à défaut d'un terme classique,
j'appellerai prémisses ;

2° les théorèmes ou propositions appuyées de démonstrations.
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§ 2. — Il existe une catégorie particulière de prémisses
appelées définitions. On entend par «définition» toute
proposition qui exprime une convention en vertu de laquelle le

sens d'une expression (qui peut être un mot, une phrase ou

quelque autre symbole) devra être considéré comme
identique à celui d'une certaine autre expression plus ou moins

compliquée, mais uniquement formée de termes considérés

comme clairs par eux-mêmes ou définis antérieurement.
Voici par exemple la définition ordinaire des droites parallèles

: « l'assertion que deux droites indéfinies sont parallèles
exprime que ces droites sont situées dans un même plan et

n'ont aucun point commun».
D'après ce qui précède on peut, sans altérer en rien le

contenu d'une théorie, supprimer toute prémisse qui est une
définition à condition de remplacer partout l'expression dont
le sens est déterminé au moyen de la définition, parla phrase
qui, aux termes de celle-ci, a le sens de l'expression
considérée. Cette remarque permet de constater qu'une prémisse
peut, comme une définition, être une proposition vraie seulement

parce que l'on est convenu d'interpréter un certain
terme de façon qu'il en soit ainsi, sans que la prémisse
considérée soit une définition au sens précis que nous avons
attribué à ce mot. Ainsi, par exemple, si en énonçant les
prémisses de la Géométrie, on disait que le mot « droite »

sera considéré comme ayant le sens voulu pour que la
proposition « deux droites qui ont deux points communs se
confondent» soit une proposition vraie, on énoncerait une
prémisse qui ne pourrait pas être regardée comme une définition,
même dans le cas où elle exprimerait tout ce qui est affirmé
en Géométrie sans démonstration au sujet des droites. En
effet, la prémisse que nous venons de considérer ne permettrait

pas, comme devrait le permettre une véritable définition,

de faire disparaître, dans la Géométrie, le mot « droite »,
en le remplaçant par une périphrase convenable.

Toute prémisse qui n'est pas une définition s'appelle
postulat.

§ 3. — Il est utile d'insister un peu sur la notion de
définition. Il est tout d'abord évident qu'il serait parfaitement
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absurde de rechercher la démonstration d'une définition,
mais il ne faudrait pas en conclure que les définitions puissent

être posées d'une façon absolument arbitraire. Une
définition peut devoir être écartée non seulement à cause de
son peu de fécondité, mais encore parce qu'elle peut être
absurde et dès lors absolument inadmissible. En effet, il peut
arriver qu'il soit impossible d'attribuer à une expression le
sens voulu par la définition correspondante parce que la
chose que cette expression devrait désigner n'existe pas:
j'ajoute que, dans la pratique, c'est ordinairement de là que
dérive l'inadmissibilité des définitions incorrectes. Par
conséquent, l'existence de la chose que doit désigner une expression

en vertu de sa définition doit être ou un théorème
dûment démontré, ou un postulat.

D'ailleurs, lorsqu'une définition ne donne pas lieu à

l'objection précédente et lorsque, de plus, l'expression qu'elle
définit n'a pas été précédemment employée, la définition
considérée peut être plus ou moins heureusement choisie, mais
elle peut sûrement être adoptée sans contrevenir aux règles
de la logique.

§ 4. — 11 importe de faire remarquer que, dans les démonstrations,

le rôle des définitions ne diffère en rien de celui des

postulats. Ainsi par exemple, dans la démonstration d'un
théorème relatif aux droites parallèles, on n'a nullement à

tenir compte du fait que l'équivalence des deux propositions
suivantes : « deux droites sont parallèles » et « deux droites
sont situées dans un même plan et n'ont aucun point commun

», dérive d'une convention; la seule chose qui importe
est cette équivalence elle-même.

§ 5. — Il est aisé de comprendre pourquoi les théories dé-
ductives, relativement parfaites, sont hérissées de définitions.
En effet, la précision d'une proposition est une condition
nécessaire (quoique insuffisante) de son exactitude, car l'épi-
thète de vraie ou fausse ne peut évidemment être attribuée à

une proposition que dans le cas où l'on sait bien ce qui est
affirmé par cette proposition. Il est donc indiqué d'éviter,
dans la mesure du possible, l'emploi d'expressions (ou
d'autres symboles) dont le sens exact n'aurait pas été déler-
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miné au moyen de définitions. Toutefois, il est impossible
de se passer de termes non définis, considérés par conséquent

comme clairs et précis par eux-mêmes. En effet, dans

toute théorie, il devra y avoir une définition qui précède
toutes les autres et, dans celle-ci, le terme défini par elle

devra l'être au moyen de termes non définis.
§ 6. — Pour terminer ces considérations sommaires sur

les prémisses d'une théorie, nous allons mettre en évidence
la relativité des notions de définition, de postulat et de

théorème. Lorsqu'une théorie (T) fait suite à d'autres théories

(T), on peut à volonté considérer la théorie (T) comme un

tout isolé ou comme une partie d'une théorie plus étendue,

englobant la théorie (T) et les théories (T'). Dans le
premier cas, les postulats de la théorie (T) comprendront en
particulier tous les théorèmes des théories (T'), dans le second

cas, au contraire, aucun théorème de la théorie (T') ne fera

partie de l'ensemble des postulats de la théorie formée par
la réunion des théories (T) et (T').

Il peut arriver aussi que, étant donné une théorie (T), 011

en isole momentanément une partie (T0) pour l'étudier comme
un tout. Dans ce cas, les théorèmes qui, dans la théorie (T),
précèdent la partie (T0) de celle-ci, devront être considérés
comme faisant partie des postulats de la théorie (T0). Ainsi
par exemple, quand on veut soumettre la démonstration d'un
théorème particulier d'une théorie à une étude approfondie,
on regarde ce théorème et sa démonstration comme formant
une théorie à part, et alors tout théorème antérieurement
démontré et intervenant dans la démonstration du théorème
considéré acquiert le caractère d'un postulat.

La relativité de la notion de postulat apparaît encore à un
tout autre point de vue. Ayant une théorie à exposer, on
peut, sans altérer en rien les résultats de celle-ci et sans
contrevenir aux règles de la logique la plus impeccable,
adopter au choix différents systèmes de postulats et suivant
que l'on aura choisi l'un ou l'autre système de postulats, une
même proposition pourra acquérir le caractère d'un postulat
ou d'un théorème.

Naturellement il ne résulte pas de là que, pour constituer
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une théorie mathématique, on puisse raisonnablement
adopter l'un quelconque des systèmes logiquement possibles
de postulats. En réalité on doit tenir compte d'une foule de
circonstances telles que le degré d'évidence des postulats,
la simplicité plus ou moins grande des démonstrations selon
le système de postulats adoptés, etc. Mais, dans cet ordre
de choses, les préférences personnelles ne peuvent jamais
être complètement écartées et, en outre, l'évolution de la
science nous apprend qu'il est souvent utile de remanier les
théories précédemment élaborées en substituant aux
postulats adoptés d'abord, un autre système de postulats. Il va
sans dire qu'un remaniement d'une théorie peut porter non
seulement sur les postulats, mais encore sur les définitions,
et alors une proposition qui, dans un mode d'exposition,
est vraie par définition peut, dans un autre mode d'exposition
acquérir le caractère d'un postulat ou celui d'un théorème.

Plus tard, au § 18, nous aurons l'occasion de constater la

relativité des notions de postulat et de définition encore à un
nouveau point de vue.

II. — Propositions conditionnelles. Indéterminées pouvant
ENTRER DANS UNE PROPOSITION CONDITIONNELLE. PROPOSITIONS

CONDITIONNELLES ILLUSOIRES.

§ 7> — Nous appellerons proposition conditionnelle toute
proposition exprimant une relation de la forme suivante :

lorsqu'une certaine proposition (H) est vraie, une certaine
autre proposition (C) est vraie aussi ; la proposition (H)
s'appellera hypothèse et la proposition (C), conclusion de la

proposition conditionnelle. Toute proposition non conditionnelle
s'appellera proposition catégorique.

La précédente division des propositions en deux
catégories porte en réalité sur la forme de celles-ci et non sur
le sens, car le sens d'une proposition catégorique peut
toujours être rendu au moyen d'une proposition conditionnelle.
Ainsi par exemple la proposition « le nombre 7 est un nombre

premier» est une proposition catégorique mais, au fond,
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elle n'exprime pas autre chose que la proposition conditionnelle

suivante : « lorsqu'un symbole a représente le nombre 7,

il représente un nombre premier ».

Bien qu'il n'y ait qu'une différence de forme entre les

propositions conditionnelles et les propositions catégoriques, la

distinction de ces deux genres de propositions est
fondamentale pour nous à cause du caractère formel des démonstrations

déductives en général et des démonstrations
mathématiques en particulier.

§ 8. — Une proposition conditionnelle peut contenir un
certain nombre de symboles, que nous appellerons indéterminées

de la proposition, offrant cela de particulier que le

sens de la proposition ne serait pas altéré si l'on remplaçait
ces symboles par n'importe quels nouveaux symboles, pourvu
que ces nouveaux symboles soient différents entre eux et
différents des autres symboles entrant dans la proposition
considérée. Voici un exemple d'une proposition conditionnelle

contenant des indéterminées :

« Lorsque a et b représentent deux nombres réels ou
complexes, l'égalité suivante:

a2 — b2 — (a + b) (a — b)

a lieu ».

Il est évident que, au sens indiqué plus haut, la proposition

précédente contient deux indéterminées, à savoir a et b.

Il arrive souvent que, pour abréger, on énonce une proposition

conditionnelle contenant des indéterminées sans mettre
celles-ci explicitement en évidence. Ainsi, par exemple,
quand on dit que « deux droites dont chacune est parallèle
à une troisième sont parallèles entre elles », on énonce une
proposition conditionnelle contenant en réalité trois
indéterminées sous-entendues qui, d'après l'hypothèse de la
proposition conditionnelle considérée, représentent trois droites
dont deux sont parallèles à la troisième. Nous admettrons,
dans la suite, que les indéterminées de chaque proposition
conditionnelle qui en contient ont été mises explicitement en
évidence.

On verra, dans les chapitres suivants, combien est impor-
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tant le rôle des propositions conditionnelles dans les démonstrations

mathématiques.
§9. — Les propositions conditionnelles que l'on rencontre

ordinairement dans les théories mathématiques contiennent
des indéterminées et cela de telle façon qu'il est possible
d'attribuer à celles-ci à volonté, soit un sens tel que l'hypothèse

devienne une proposition vraie, soit tel que l'hypothèse
devienne fausse. C'est ainsi que, dans le premier exemple
considéré au paragraphe précédent, l'hypothèse est
constituée par la proposition suivante : « les symboles u et v

représentent deux nombres réels ou complexes», et cette proposition

pourra être vraie ou fausse selon la signification
particulière attribuée aux indéterminées. Mais il peut arriver
que l'hypothèse d'une proposition conditionnelle soit inexacte
dans tous les cas et cela soit parce qu'il est impossible
d'attribuer aux indéterminées, quand il y en a, une signification
telle que l'hypothèse devienne une proposition vraie, soit

parce qu'il n'y a pas d'indéterminées et qu'en même temps
l'hypothèse de la proposition conditionnelle considérée constitue

une affirmation inexacte.
Nous dirons qu'une proposition conditionnelle dont

l'hypothèse est inexacte est une proposition illusoire.
Dès que l'on a constaté qu'une proposition conditionnelle

est illusoire, celle-ci perd évidemment tout intérêt, mais il
en est tout autrement tant que cette circonstance n'a pas été
établie et c'est ce qui fait que, dans la pratique, on est
souvent conduit à considérer momentanément des propositions
conditionnelles que l'on reconnaît plus tard être des
propositions illusoires. Ainsi par exemple, dans la théorie des

parallèles, telle qu'elle est exposée dans de nombreux traités,
on rencontre, au cours d'une démonstration, la proposition
illusoire suivante :

« Si deux droites, situées dans un même plan et
perpendiculaires à une troisième droite, située dans ce plan,
n'étaient pas parallèles, il existerait un point par lequel passeraient

deux perpendiculaires à la troisième droite».
Il est aisé de voir qu'une proposition conditionnelle

illusoire ne peut en réalité jamais être ni vraie ni fausse. En
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effet, aucune proposition conditionnelle ne contient un jugement

relatif à la vérité ou à la fausseté de l'hypothèse ; le

jugement exprimé par une proposition conditionnelle se

rapporte exclusivement au cas où l'hypothèse est vérifiée.
Or, pour une proposition illusoire, ce cas ne se présente pas.
Donc, malgré l'apparence contraire, celle-ci n'exprime en
réalité aucun jugement et, dès lors, elle ne peut être ni vraie
ni fausse.

Toutefois, lorsque, sans, se demander si une proposition
conditionnelle donnée est illusoire, on cherche à la démontrer

suivant les règles ordinaires, on peut réussir même dans
le cas où la proposition considérée est en réalité illusoire.
Gela éiant, nous conviendrons, comme on le fait, au moins
implicitement, dans tous les traités de mathématiques, de

regarder l'ensemble des propositions illusoires comme une
classe particulière de propositions vraies. Cette convention
ne nous expose à aucune contradiction parce qu'une proposition

illusoire, ne contenant en réalité aucun jugement, ne
peut être en contradiction avec quelque autre proposition
qu'en apparence, mais jamais en réalité ; s'il arrive par exemple
que, sans tenir compte de ce qu'une proposition conditionnelle

peut être illusoire, on ait démontré deux propositions
conditionnelles ayant même hypothèse mais telles qu'il y ait
contradictions entre les conclusions, on n'aura nullement
démontré deux propositions conditionnelles qui se contredisent

; en réalité, on aura simplement établi que chacune
des deux propositions considérées est illusoire ; en d'autres
termes, on aura démontré l'inexactitude de l'hypothèse
commune des deux propositions conditionnelles.

III. — Chaînon logique. Démonstrations affectant la forme
D'UNE SIMPLE SUITE DE CHAINONS LOGIQUES. DÉMONSTRATIONS
RAMIFIÉES.

§ 10. — Avant d'aborder le sujet propre de ce chapitre,
nous allons définir une expression qui permettra d'abréger
beaucoup le langage dans la suite.
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Lorsque, en envisageant une proposition (T) dans une
théorie, nous dirons qu'une autre proposition (P) est une
proposition reconnue vraie précédemment, nous entendrons
exprimer parla qu'elle satisfait à l'une des trois conditions
suivantes :

1° Elle se confond soit avec une des prémisses énoncées
avant la proposition (T), soit avec un théorème démontré avant
d'énoncer cette proposition ;

2° Elle exprime une partie de tout ce qui est affirmé dans
l'une des propositions qui satisfont à la condition précédente ;

3° Elle exprime la même chose que l'ensemble de certaines
propositions dont chacune satisfait à l'une des deux conditions

précédentes.
Ainsi par exemple, lorsqu'en développant un traité

d'arithmétique, on a déjà établi chacune des deux propositions

suivantes :

(a) chacun des nombres 2, 3, 5 et 7 est un nombre premier ;

(ß) le nombre 11 est un nombre premier,
dans ce cas, on pourra non seulement affirmer que

chacune de ces deux propositions a déjà été reconnue vraie,
mais encore on aura le droit de dire que, parmi les propositions

reconnues vraies, il y a des propositions comme, par
exemple, les suivantes :

« Le nombre 3 est un nombre premier»;
« chacun des nombres 2 et 11 est un nombre premier » ;

etc.
§ 11. — Supposons qu'en développant une théorie

mathématique (T) on veuille démontrer un certain théorème (A0).
On pourra alors rechercher si, parmi les propositions reconnues

vraies (§ 10) précédemment, il se trouve une proposition
conditionnelle (C4) ou bien telle que sa conclusion coïncide
avec la proposition (A0), ou telle qu'elle contienne au moins
une indéterminée et puisse, au moyen de la substitution de

symboles convenables aux indéterminées, être transformée
en une proposition (G\) ayant pour conclusion la proposition
(A0). Supposons que l'une des conditions précédentes se
vérifie et, selon que la première ou la seconde d'entre elles
se présenterait, désignons par (AJ la proposition qui cons-



THÉORIE DE LA DEMONSTRATION 15

titue l'hypothèse de la proposition (CJ ou de sa transformée

(C,).
S'il arrive que la proposition (Ad) est une proposition reconnue

vraie (§ 10) précédemment, la proposition (A0) devra
évidemment être regardée comme démontrée. Nous dirons
que l'ensemble des trois propositions (AJ, (C4) et (A0) constitue

un chaînon logique ayant pour première prémisse la

proposition (A4), pour seconde prémisse la proposition (CJ et

pour conclusion la proposition (A0).
Le lecteur n'aura pas de peine à constater que le syllogisme

classique peut être regardé comme un chaînon logique de

nature particulière.
§ 12. —« Reprenons les notations du paragraphe précédent

mais, sans rien changer aux autres hypothèses, ne supposons
plus que la proposition (A4) soit une proposition reconnue
vraie (§ 10) antérieurement. Dans ce cas, la démonstration de
la proposition (A0) aura été ramenée à celle de la proposition
(A4) et l'on pourra chercher à démontrer la proposition (A4)

par la méthode que l'on avait essayé d'appliquer à la recherche

de la démonstration de la proposition (A0). Sans qu'il soit
nécessaire d'insister, on conçoit comment on peut être amené
à découvrir une suite de chaînons logiques vérifiant les
conditions suivantes :

1° La première prémisse du premier chaînon fait partie
de l'ensemble des propositions reconnues vraies antérieurement;

2° la première prémisse de chaque chaînon, à partir du
second, coïncide avec la conclusion de celui qui le précède
immédiatement ;

3° la conclusion du dernier chaînon coïncide avec la
proposition qu'il s'agissait de démontrer;

4° la seconde prémisse de chaque chaînon fait partie de
l'ensemble des propositions reconnues vraies (§ 10)
précédemment.

Lorsqu'une suite de chaînons logiques vérifie ces quatre
conditions, elle constitue évidemment une démonstration de
la proposition que l'on voulait établir et cette démonstration
aura la forme d'une simple suite de chaînons logiques.
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Pour présenter un exemple simple du type précédent,
observons que, d'après les éléments de l'Arithmétique, on a

les propositions suivantes :

(A2) Chacun des symboles 3 et 7 représente un entier
impair.

(C2) Lorsque chacun des symboles a et b représente un
entier impair, le symbole 1

(a -J- b)

représente un entier pair.
(C^ Lorsque le symbole c représente un entier pair, le

symbole c2 représente un entier divisible par 4.
Ces propositions admises à titre de postulats, proposons-

nous de démontrer le théorème suivant :

(A0) Le symbole
(3 + 7)2

représente un entier divisible par 4.
A cet effet, observons que, à la suite de la substitution du

symbole
(3 + 7)

à l'indéterminée c de la proposition conditionnelle (C^, la
conclusion de celle-ci vient coïncider avec la proposition
(A0) qu'il s'agit précisément de démontrer, tandis que
l'hypothèse de la proposition conditionnelle considérée prend
la forme suivante :

(Ad) Le symbole
(3 + 7)

représente un entier pair.
Or, il suffit de substituer aux indéterminées a et b de la

proposition conditionnelle (C2) les symboles 3 et 7 pour que
la conclusion vienne coïncider avec la proposition (Ad) et
l'hypothèse — avec la prémisse (A2). Par conséquent, la
démonstration du théorème (A0) se présente sous la forme
d'une simple suite de chaînons logiques et peut être résumée

1 Nous conserverons los parenthèses même là, où, d'ordinaire, on ne les emploie pas, pour
n'avoir pas à nous appuyer sur les prémisses relatives à leur usage.
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comme il suit : Il résulte des propositions (A2) et (C2) que la

proposition (AJ est vraie et les propositions „(Ad) et (GJ

entraînent la proposition (A0) qu'il s'agissait précisément de

démontrer.
§ 13.^— Lorsque le procédé exposé au § 12 ne permet pas

d'arriver à là démonstration demandée, on peut quelquefois
réussir à découvrir cette démonstration en combinant ce
procédé avec la remarque suivante: s'il arrive que le sens d'une
proposition coïncide avec celui de l'ensemble (S) de certaines
autres propositions, il suffit, pour la démonstration, d'établir

chacune des propositions du système (S). La démonstration

que l'on obtient de cette façon ne se réduit plus à une
simple suite de chaînons logiques et prend la forme d'une
combinaison d'un certain nombre de suites de ce genre. Il
est naturel d'appeler démonstrations ramifiées les démonstrations

de ce type.
Pour donner un exemple d'une démonstration ramifiée,

adoptons, à titre de prémisses, les propositions suivantes :

(1) Lorsque trois entiers, a, b et c, vérifient les égalités

a — b et b — c

on a

a — c

(2) Lorsque les symboles a et b représentent deux entiers,
le symbole 1

[a -j- b)

est aussi le symbole d'un nombre entier.
(3) Lorsque quatre entiers a, h, a', b' vérifient les égalités

a — a' et b z=z 1/

on a

(a -f- b) — [a' -j- br)

1 Pour éviter d'énoncer les prémisses relatives à l'emploi des crochets, nous conservons
ceux-ci comme nous avons eu déjà l'occasion de le faire dans un autre exemple, même là où
il est d'usage de s'en passer.

L'Enseignement mathém., 18e année; 1916 2
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(4) Le symbole 3 représente un entier.
(5) » 7 » »

(6) » 8 » »

(7) )> 5 » »

(8) » 10 » »

» »(9) » 13

(10) » 23

(11) On a

(12) On a

(13) On a

»

(3 + 7) 10

(8 + 5) 13

(10 + 13) 23

Gela posé, nous allons démontrer le théorème suivant :

(A) On a

(3 4* ?} -h (8 -f- 5) 23

Démonstration.
Lemrue I 1. Le symbole

(3 + 7)

est celui d'un entier.
En effet, après la substitution des symboles 3 et 7 aux

indéterminées a et b de la prémisse (2), l'hypothèse de
celle-ci devient, en vertu des prémisses (4) et (5), une
proposition vraie et la conclusion, une proposition qui coïncide
avec celle qu'il s'agissait d'établir.

Lemme II. Le symbole
(8 + 5)

est celui d'un entier.
En effet, après la substitution des symboles 8 et 5 aux

indéterminées a et b de la prémisse (2), l'hypothèse de celle-ci
devient, en vertu des prémisses (6) et (7), une proposition
vraie et la conclusion coïncide avec celle qu'il s'agissait de
démontrer.

1 On appelle lemme tout théorème intermédiaire qui se présente dans la démonstration
d'un autre théorème, considéré comme formant l'objet propre du raisonnement que l'on
développe.
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I Lemme III. Le symbole

((3 + 7) + (8 + 5))

If est celui d'un nombre entier.

f| En effet, après la substitution des symboles

if! (3 +7; et (8 +5)

;..f aux indéterminées a et b de la prémisse (2), l'hypothèse de

celle-ci devient, en vertu des lemmes I et II, une proposition
^ vraie et la conclusion, une proposition qui coïncide avec celle
•fi qu'il s'agissait de démontrer,
il Lemme IV. Le symbole

(io + 13)

1 est celui d'un nombre entier.
1 En effet, après la substitution des symboles

m 10 et 13

r\ aux indéterminées a et b de la prémisse (2), l'hypothèse de

1 celle-ci devient, en vertu des prémisses (8) et (9), une pro-
1 position vraie et la conclusion, une proposition qui coïncide

I avec celle qu'il s'agissait d'établir.
II Lemme V. On a

1 ((3 + 7) + (8 + 5)) (tO + 13)

+ En effet, après la substitution des symboles

J (3 + 7) (8 + 5) 10 et 13

1 aux indéterminées
+ a b a' b'

l de la prémisse (3), l'hypothèse de celle-ci, devient, en vertu
des lemmes I et II et des prémisses (8), (9), (11) et (12) une
proposition vraie et la conclusion, une proposition qui coïn-
cide avec celle que nous voulions établir.

+ Actuellement, il est aisé de démontrer la proposition (A)
+f elle-même. En effet, en substituant dans la prémisse (1), aux
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indéterminées
a b c

les symboles

((3 + 7) + (8 + 5)) (10 4- 13) et 23

on constate que, dans cette proposition, l'hypothèse devient,
en vertu des lemmes III et IV, de la prémisse (10), du
lemme V et de la prémisse (13) une proposition vraie, la

conclusion venant coïncider alors avec la proposition (A) qu'il
s'agissait justement de démontrer.

Le diagramme ci-joint permettra de se faire une idée
d'ensemble de la démonstration précédente.

Dans ce diagramme, les chiffres arabes l'envoient aux
prémisses et les chiffres romains, aux lemmes ; les flèches
figurent le rôle des propositions conditionnelles indiquées
par les chiffres arabes écrits à côté de celles-ci ; enfin les
traits qui n'affectent pas la forme de flèches servent à mettre
en évidence les combinaisons dans lesquelles les prémisses
et les lemmes entrent dans chaque chaînon logique.
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if
C IV. — Procédé particulier applicable a la demonstration
-4 DES PROPOSITIONS CONDITIONNELLES. MÉTHODE D'INDUCTION

MATHÉMATIQUE. MÉTHODE DE LA RÉDUCTION A L'ABSURDE.

POSTULATS HYPOTHÉTIQUES.

§ 14. — Contrairement à ce que l'on pourrait croire au pre-
; mier abord, les propositions catégoriques ne sont pas les
1 seules dont la démonstration puisse affecter l'une des formes

considérées au chapitre précédent. Pour s'en convaincre, il
; suffit de considérer que l'hypothèse et la conclusion d'une

proposition conditionnelle peuvent être elles-mêmes des

propositions conditionnelles.
Voici d'ailleurs un exemple simple où la démonstration

d'une proposition conditionnelle est effectuée au moyen d'un
chaînon logique, formé de la façon expliquée au § 11. Adoptons,

à titre de prémisses, les deux propositions suivantes :

(AJ Lorsque les symboles l, m, n représentent trois entiers
quelconques, on a :

l -f- m -f- n — I -f- (m -j- n)

(C) Lorsque, pour un ensemble (E), la proposition suivante
: est vraie :

(P4) Pourvu que l'on désigne par «, b et c trois éléments
quelconques de l'ensemble (E), on a :

a -|— b —]— c —; ci -j- b —j— c

dans ce cas, pour l'ensemble considéré, sera vraie aussi la

proposition que voici :

(P2) Pourvu que l'on désigne par x, y, z, t quatre éléments
quelconques de l'ensemble (E), 011 a :

x -f* $ z + * — x + (j + s + ê •

Ceci admis, il est aisé de démontrer le théorème suivant:
(A0) Lorsque les symboles />, q, /*, 61 représentent quatre

entiers quelconques, on a :

p + q + r + .s p 4- (q + r + s)
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En effet, substituons aux indéterminées:

élément de l'ensemble (E) a b c «r y z t

de la proposition conditionnelle (C), les éléments suivants :

un entier, l m n p q r 5

Dans ce cas, l'hypothèse (P4) et la conclusion (P2) de la
proposition conditionnelle (C) se transformeront en deux propositions

exprimant respectivement les mêmes choses que les

propositions (AJ et (A0). La première de ces propositions
étant vraie (puisqu'elle est une prémisse), la seconde le sera
nécessairement, comme il s'agissait de le démontrer.

§ 15. — Bien que, d'après ce qui précède, il puisse arriver
que la démonstration d'une proposition conditionnelle assume
l'une des formes considérées au chapitre précédent, ce cas

ne se présente, dans la pratique, que d'une façon exceptionnelle.

Ordinairement on est obligé de recourir à l'artifice
suivant: on adjoint momentanément l'hypothèse du théorème

que l'on veut établir à l'ensemble des prémisses et l'on cherche

à démontrer la proposition qui constitue la conclusion
du théorème au moyen des procédés étudiés au chapitre
précédent ; si l'on y parvient, on aura évidemment démontré

par le fait le théorème lui-même qu'il s'agissait d'établir.
Pour donner un exemple simple de l'application de cette

méthode, adoptons à titre de prémisse la proposition suivante :

(1) Lorsque les symboles <2, 6, c représentent trois entiers
vérifiant les relations

a — b et b — c

on a
a — c

Gela posé, proposons-nous de démontrer le théorème
suivant:

(T). Lorsque les symboles /;, g, r, s représentent des entiers
vérifiant les relations

p — q q — r r ~ s

on a

p s
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* Conformément aux prescriptions de la méthode,

adjoignons à la prémisse (1), à titre de prémisse provisoire, l'hy-
- pothèse du théorème (T) ; en d'autres termes, regardons

provisoirement comme vraies les sept propositions sui-
- vantes :

(2) Le symbole p représente un entier.
(3) » » q » » »

(4) » » /• » » »

" (5) » » s » » »

I (6) On a p q
i (7) On a q /•.

(8) On a r s
Lemme I. On a p r.
En effet, en substituant aux indéterminées

a b c

de la proposition (1), les symboles /?, q, r, on transforme
l'hypothèse de celle-ci en une proposition vraie comme équi-
valente, quant au sens, à l'ensemble des prémisses (2), (3),

: (4), (6) et (7). D'autre part, dans les mêmes conditions, la
J conclusion de la proposition (1) vient coïncider avec le lemme

que nous voulions établir. Donc, ce lemme est démontré.
Cela posé, il suffit de substituer aux indéterminées

a b c

I de la proposition (1) les symboles

P r s

; pour constater que l'ensemble des prémisses (2), (4), (5), avec
le lemme I et la prémisse (8) d'une part, et la proposition (1)

C d'autre part, constituent la première et la seconde prémisses
;; d'un chaînon logique qui a pour conclusion la relation

"5 (T'j p s

Or, cette relation représente la conclusion du théorème (T) ;

donc, d'après les principes généraux exposés plus haut, le
r théorème (T) lui-même doit être regardé comme démontré.
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On peut, suivant le procédé employé déjà au § 13,
représenter, au moyen du diagramme ci-joint, la déduction de

l'égalité (T) des propositions

(1) > (2) (3) (4) (5) (6) (7) (8)

§ 16. — Le procédé de démonstration connu sous le nom
de méthode d'induction mathématique rentre, comme on le

verra, dans la catégorie de ceux que nous avons déjà étudiés
mais, à cause du postulat remarquable sur lequel il repose
et de sa fécondité, il mérite d'être étudié à part, bien qu'il ne
soit applicable qu'à une classe particulière de théorèmes.
Cette classe de théorèmes est constituée par ceux dont
l'énoncé peut être mis sous la forme générale suivante :

I. Lorsqu'un symbole n représente un nombre entier non
inférieur à un nombre entier donné k, une certaine proposition

(P), dont l'énoncé contient le symbole /?, est vraie.
Tout théorème de cette forme est évidemment une proposition

conditionnelle qui a la proposition (P) pour conclusion
et, pour hypothèse, la suivante :

Le symbole n représente un nombre entier non inférieur
à l'entier donné k,
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1 Voici, à titre d'exemple, l'énoncé d'un théorème de la
te classe considérée :

t. Lorsque le symbole a représente un nombre entier non
y inférieur au nombre 2, la somme sn de tous les entiers de

y 1 ä il inclusivement vérifie l'égalité suivante :

\ 2-5,, ~ n- (n + 1) •

y Dans les traités de mathématiques, on présente ordinaire-
ci ment la démonstration d'un théorème du type l de la façon

<: suivante :

te On démontre d'abord, au moyen des procédés étudiés
précédemment, les deux propositions suivantes :

(1) La proposition (P*) en laquelle se transforme la proposition

(P), à la suite de la substitution du nombre k au symbole

n, est vraie.
(2) Si la proposition (P?) en laquelle se transformerait la

proposition P à la suite de la substitution au symbole n d'un
entier q, non inférieur à &, était vraie, la proposition ÇPq + i),
obtenue en substituant l'entier q + i à n dans la proposition
(P), serait vraie aussi.

Gela posé, on termine la démonstration par l'affirmation
: suivante :

y (C) Donc, la proposition (P) est vraie pour toute valeur
te entière de n non inférieure à k comme il fallait le démontrer,
te Quelquefois, on fait précéder la proposition (G) par les
te! paroles suivantes : « la proposition (P) étant vraie pour

n — k

elle le sera, en vertu de (2), pour
î n k -(- 1 ;

étant vraie pour
n — k -j- 1

; la proposition (P) lesera encore, en vertu de (2), pour

n — k -j- 2

etc. »

Telles sont précisément les démonstrations cpie l'on dit

ï
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être effectuées par la méthode d'induction mathématique et

que l'on appelle aussi démonstrations par induction.
Il est aisé de voir que, en réalité, dans une démonstration

de la forme précédente, le théorème qu'il s'agissait d'établir
se présente comme la conclusion d'un chaînon logique dont
la première prémisse est formée par l'ensemble des propositions

(1) et (2) et la seconde, par le postulat, évidemment
vrai, que voici :

(A) Lorsqu'un entier p fait partie d'un certain ensemble (E),
lorsqu'en outre il suffît qu'un entier r, non inférieur à p,
fasse partie de Vensemble (E) pour que Ventier

r + 1

fasse aussi partie de cet ensemble, dans ce cas, tout entier
non inférieur à p fait partie de l'ensemble (E).

En effet, substituons aux indéterminées :

p ; un certain ensemble (E) ; /*,

de la proposition (A) les expressions suivantes :

k;
ensemble des valeurs de n pour lesquelles la proposition

(P) est vraie ;

q '

Après cette substitution, l'hypothèse de la proposition (A)

se transformera en une proposition qui exprimera la même
chose que l'ensemble des propositions (1) et (2) et la conclusion,

en une proposition équivalente, quant au sens, au théorème

(T) que l'on voulait démontrer.
En résumé, on voit que les démonstrations « par induction

» ne sont pas, quant à leur structure, différentes de
celles qui ont été étudiées précédemment ; ce qui caractérise
ces démonstrations, c'est l'emploi du remarquable
postulat (A).

D'ailleurs la « méthode d'induction mathématique » est
tellement importante que Poincaré y voyait la principale
source de la fécondité des sciences mathématiques1.

Les exemples de l'application de cette méthode dans les

1 Poincaré. La Science et l'Hypothèse.
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traités de Mathématiques sont si fréquents qu'il nous a paru
superflu d'en donner un dans ce travail.

En terminant ce paragraphe, il convient défaire remarquer
que la méthode d'induction mathématique diffère essentiellement

de la méthode inductive des sciences expérimentales.
A la vérité il y a bien, dans les deux cas, un passage du

particulier au général mais il repose, dans ces deux cas, sur
des bases tout à fait différentes.

§ 17. — La méthode de démonstration, appelée méthode de

réduction à l'absurde, est intimement liée à la méthode de
démonstration des propositions conditionnelles exposée au
§ 15. Voici en quoi consiste la méthode de réduction à

l'absurde : pour établir un théorème (T), on adjoint provisoirement
à l'ensemble des propositions reconnues vraies précér

demment (§ 10) la proposition (T') qui exprime la négation
de l'exactitude de la proposition (T) et, en se servant des

procédés de démonstration exposés plus haut, on démontre
une proposition (P') qui exprime la négation de l'exactitude
d'une proposition (P) que l'on sait être vraie; ce résultat
obtenu, on conclut que la proposition (T') est fausse et que,
par conséque nt, la proposition (T) qu'il s'agissait de démontrer

est vraie-
Celte façom de procéder revient à établir d'abord, au

moyen de Patrlifice exposé au § 15, la proposition
conditionnelle suiwante : « si la proposition (T') était vraie, la

proposition (P') lie serait aussi1 », et à démontrer ensuite, par
une méthode que nous avons déjà étudiée au chapitre précédent,

le théoirème (T) en utilisant les postulats, évidemment
vrais, que vo>ici :

(1) Lorsqu'une proposition (P') constitue la négation d'une
proposition v/raie (P), elle est fausse.

(2) Lorsqiue, dans une proposition conditionnelle vraie, la

conclusion (P5') est fausse, l'hypothèse (T') de la proposition
conditionnellle considérée est fausse aussi.

1 I.a proposition pplaccé dans le texte entre des guillemets est en réalité une proposition
illusoire (j'J»; on vroit donc ici comment des propositions de ce genre peuvent apparaître
momentanément dnins los théories mathématiques.
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(3) Lorsque la négation (T') d'une proposition (T) est fausse,
la proposition (T) est vraie.

En résumé, la démonstration d'un théorème par « la réduction

à l'absurde » ne diffère pas, quant à sa structure, des
formes de démonstrations considérées précédemment et son
caractère propre tient en réalité seulement à la nature
particulière de certains postulats qu'elle fait intervenir.

| 18. — Il arrive souvent qu'une théorie mathématique,
comme par exemple la géométrie non euclidienne, a pour
but l'étude de ce qui arriverait dans le cas où certaines
conditions (G) seraient vérifiées. J1 est évident que les théorèmes
d'une théorie de ce genre sont en réalité des propositions
conditionnelles dont les hypothèses contiennent l'ensemble
(E) des propositions exprimant que les conditions (G) sont
vérifiées.

Pour appliquer à la démonstration de ces théorèmes la

méthode du § 15 et pour éviter des longueurs inutiles, on
regarde les propositions de l'ensemble (E) comme faisant
partie des postulats de la théorie. Dans ce cas, les propositions

de l'ensemble (E) constituent une catégorie de postulats

qui ont cela de particulier que, en réalité, on ne se

prononce nullement sur la question de savoir si ces postulats
sont des propositions vraies. Il semble naturel de donner à

ces postulats le nom de postulats hypothétiques en réservant
aux autres postulats le nom d'axiomes. On peut, soit dit en

passant, diviser les axiomes en axiomes relatifs et axiomes
absolus en convenant de regarder un axiome comme faisant
partie de la première ou de la seconde catégorie selon qu'il
existe une théorie où l'axiome considéré est une proposition
ayaqt le caractère d'un théorème, ou que cette circonstance
ne se présente pas.

Il est évident que toute définition peut être considérée
comme un postulat hypothétique; ainsi par exemple la
définition ordinaire des droites parallèles peut être regardée
comme exprimant l'hypothèse de l'identité du sens de
l'assertion que deux droites sont parallèles et de l'assertion que
les droites considérées sont situées dans un même plan sans
avoir aucun point commun.
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En rapprochant ces remarques de celles qui ont été faites

au § 6, on arrive à la conclusion que les différentes subdivisions

des prémisses d'une théorie, si importantes qu'elles
soient quant à la façon de concevoir l'ensemble de la théorie,
ont un caractère éminemment subjectif. Mais il importe de

faire remarquer que cette circonstance n'affaiblit en rien la

puissance des démonstrations comme moyen de provoque]1
la conviction et cela pour la raison suivante : ainsi que nous
l'avons annoncé au § 4 et comme cela résulte des développements

présentés au chapitre précédent et dans le chapitre
actuel, la seule division des propositions formant une théorie
mathématique qui soit importante au point de vue de la

structure des démonstrations est la division de ces propositions

en prémisses et en théorèmes. Or, pour toute théorie
déjà constituée, cette division repose sur un caractère qui
ne dépend pas du point de vue où l'on se place et elle est
d'une parfaite netteté.

V. — Examen critique des vues précédentes.

§ 19. — i 1 est tout d'abord naturel de se demander si toute
démonstration mathématique rentre nécessairement dans les
cadres sommairement tracés dans les deux chapitres précédents.

Nous croyons, sans pouvoir appuyer notre opinion d'une
démonstration, qu'il en est bien ainsi pour toute démonstration

complète (c'est-à-dire développée d'une façon tout à

fait détaillée) à condition de tenir compte de ce fait que, en
dehors des ramifications explicitement considérées au § 13,
la démonstration d'un théorème peut en contenir d'autres
provenant de la démonstration de propositions conditionnelles

qui forment les secondes prémisses de certains chaînons

logiques se présentant dans la démonstration du théorème

considéré.
§20. — Actuellement nous allons examiner une objection

grave qu'il est possible de soulever contre les démonstrations

mathématiques et que l'on peut présenter de la manière
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suivante : le but des démonstrations mathématiques est,
semble-t-il, de borner le rôle de l'intuition à l'appréciation
de la correction des postulats; or, elles n'atteignent pas ce
but. En effet, c'est par l'intuition que l'on est obligé déjuger
si, au sens du 5 10, une proposition fait partie de celles qui,
au point considéré de la théorie, forment l'ensemble des

propositions reconnues vraies précédemment; en outre,
quand on forme un chaînon logique, c'est par l'intuition que
l'on reconnaît les indéterminées qui peuvent figurer dans la

proposition conditionnelle que l'on emploie et c'est encore
par l'intuition que l'on apprécie le résultat (hune substitution
effectuée sur les indéterminées. A la vérité, étant donné la
démonstration d'un théorème, on peut la compléter en
démontrant la justesse des jugements intuitils qui s'y
rencontrent sans figurer sur la liste des postulats, mais, alors,
on introduira de nouveaux chaînons logiques avec leur
cortège de nouveaux jugements intuitifs. En résumé, toute
théorie mathématique, si détaillées que soient les démonstrations,

contiendra des jugements intuitifs, non prévus sur
la liste des prémisses.

Il est certainement impossible de nier la réalité de ce fait,
toutefois nous verrons au § 25, après avoir pris connaissance
d'une remarquable propriété des théories mathématiques,
que, dans chacune d'elles, il existe un ensemble de choses

que l'on peut indiquer avec sûreté et qui est tel que tout
jugement intuitif relatif à Tune quelconque de ces choses
est, s'il se présente dans la théorie, explicitement énoncé
dans les postulats. D'ailleurs il importe de noter le fait capital

suivant : en étudiant les théories mathématiques, on
constate, a posteriori, que les démonstrations mathématiques
complètes (§ 19) ne laissent subsister aucun doute dans
l'esprit.

§ 21. — Dans la pratique, on ne développe presque jamais
complètement les démonstrations dans les théories
mathématiques à cause de leur grande longueur. Cette façon de

procéder est légitime quand on donne des indications
suffisantes pour que le lecteur puisse, sans trop de peine, combler

lui-même toutes les lacunes.
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Malheureusement, il arrive trop souvent que les abréviations

sont poussées beaucoup plus loin et cela donne lieu,
non seulement à de grandes difficultés pour le lecteur, mais

encore à de graves erreurs, car le souci de la brièveté
empêche l'auteur, plus souvent qu'on ne le croit, de s'apercevoir

que lui-même ne saurait pas rétablir les chaînons

manquant, et c'est ainsi que des propositions fausses sont
quelquefois présentées comme des théorèmes démontrés.

YI. — Compatibilité et indépendance d'un système de

postulats. Termes techniques et termes courants. Postulats
SPÉCIFIQUES D'UNE THÉORIE.

§ 22. — Il est évident que, pour la correction d'une théorie
mathématique (et plus généralement, de n'importe quelle
théorie déductive), il est nécessaire que les postulats de
celle-ci soient compatibles ; en d'autres termes, la condition
suivante doit être remplie :

I. Lorsqu'une proposition (P) est la négation d'un postulat
de la théorie, elle ne doit pas être une conséquence des autres
postulats de la théorie considérée.

En dehors de cette condition, il en est une autre qui,
sans être comme la précédente, une condition de validité de
la théorie, en est certainement une condition de perfection:
les postulats de la théorie doivent être indépendants ; en
d'autres termes :

II. Aucun postulat de la théorie ne doit être une
conséquence des autres postulats de celle-ci.

La question de savoir si un système donné de postulats
vérifie l'une quelconque des deux conditions qui viennent
d'être énoncées se ramène évidemment à la suivante :

III. Une proposition donnée (P) est-elle une conséquence
d'un système donné (S) d'autres propositions

On pourrait être tenté de regarder cette question comme
équivalente à la suivante :

IV. Le système de propositions (S) constitue-t-il un ensemble
suffisant de prémisses pour démontrer, d'après les principes
exposés aux chapitres III et IV, la proposition (P)
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Cette interprétation de la question III offrirait le grand
avantage de fournir (au moins théoriquement) un critérium
général pour la résoudre ; en effet, il est aisé de voir qu'un
nombre fini d'essais (pouvant, il est vrai, être très grand)
conduirait nécessairement au but. Mais, en réalité,
l'interprétation précédente de la question III ne satisferait pas aux
besoins de la science (et elle ne coïncide pas avec celle que
l'on adopte dans les travaux modernes). En effet, on peut
d'abord se demander s'il n'existe pas quelque procédé de

démonstration deductive essentiellement différent de ceux
qui ont été considérés aux chapitres IV et V; en outre, même
si Ton admet avec nous qu'un tel procédé n'existe pas, on se
heurte à une autre difficulté qu'un exemple particulier fera
bien comprendre.

Envisageons les trois propositions suivantes :

(1) A toute suite finie de nombres entiers il correspond, en
vertu d'une convention (C), un point parfaitement déterminé.

(2) Lorsqu'une suite finie (s) de nombres entiers est le
résultat de la transposition de deux termes consécutifs dans

une seconde suite finie (V) de nombres entiers, les points
qui correspondent, en vertu de la convention (G), aux suites
(s) et (s'), sont confondus.

(Pj Lorsque les termes de deux suites finies (c) et (<?') de
nombres entiers sont constitués par les éléments d'un même
ensemble de nombres entiers et ne diffèrent par conséquent
que par l'ordre dans lequel sont rangés, dans chacune
d'elles, les nombres appartenant à l'ensemble considéré, les

points qui correspondent aux suites (c) et (<7'), en vertu de la

convention (C), sont confondus.
Gela posé, considérons la question suivante:
(Q) La proposition (P) est-elle une conséquence des

propositions (1) et (2)

Tout mathématicien répondra à cette question par
l'affirmation et, si l'on le prie de justifier sa réponse, il démontrera
la proposition (P) en plaçant parmi les prémisses les
propositions (1) et (2) mais l'ensemble des prémisses qu'il aura
adoptées comprendra, en dehors des propositions (1) et (2),

d'autres propositions encore.
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Si Ton objectait à notre mathématicien que les propositions

(1) et (2) ne constituent pas tout l'ensemble des
prémisses sur lesquelles repose sa démonstration, il ne nierait
pas ce fait, mais il ajouterait qu'il a rigoureusement établi
que les propositions (1) et (2) ne peuvent être vraies sans que
la proposition (P) ne le soit aussi et que, dès lors, il a justifié
sa réponse d'une façon complète.

En résumé, la question 111 est loin d'être simple et claire
par elle-même ; pour l'interpréter d'une façon satisfaisante,
il est nécessaire d'étudier d'abord une propriété remarquable

des théories mathématiques.
§ 23. — Pour mettre cette propriété en évidence,

adressons-nous à un exemple particulier en reprenant celui qui,
dans un tout autre but, a été déjà présenté au § 15. Dans cet
exemple, nous avons adopté pour unique prémisse la proposition

suivante :

(1) Lorsque les symboles a, b, c représentent des entiers
vérifiant les relations

a — b et
on a

Gela posé, nous avons démontré le théorème suivant :

(T) Lorsque les symboles /?, q, r, s représentent des
H entiers vérifiant les relations :

p — q q — r et r s

on a

Pour peu que l'on prenne la peine de repasser attentivement

toute la petite théorie ainsi constituée, on constatera
que, pour la complète validité de celle-ci, il n'est pas nécessaire

que le symbole

(ou l'expression équivalente « est égal ») ait, dans son application

aux nombres entiers, la signification habituelle ; en réalité,

il est nécessaire et suffisant que ce symbole ait le sens
voulu pour que la proposition (1) soit vraie. Ainsi par exemple,.

L'Enseignement mathém., 18« année; 1916. 3I
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si l'on attribuait au symbole considéré le sens que l'on donne
habituellement au symbole

<
le théorème (T) et sa démonstration subsisteraient sans
aucune modification. J'ajoute que l'expression

« un entier »

donne lieu à une remarque du même genre : on pourrait
attribuer à cette expression le sens de

« un élément d'un certain ensemble (E) »

sans avoir à apporter la moindre modification à la théorie
considérée.

En réalité, toute théorie mathématique dont les théorèmes
sont démontrés d'une façon complète contient, comme celle

que nous venons de prendre pour exemple, un certain
nombre de termes (qui peuvent être des expressions empruntées

au langage ordinaire ou n'importe quels autres
symboles) caractérisés par la circonstance suivante : pour la

complète validité de la théorie, il n'est pas nécessaire d'attribuer
cl ces termes, que nous appellerons termes techniques de la

théorie, en réservant la dénomination de termes courants
aux autres termes, un certain sens parfaitement déterminé à

Vexclusion de tout autre, il faut seulement et il suffit que les

termes considérés soient interprétés de la façon voulue, pour
que les prémisses soient des propositions vraies.

Telle est la propriété fondamentale des théories mathématiques

qui constituera le point de départ des considérations
ultérieures.

Il est évident que tout terme, introduit dans une théorie
au moyen d'une définition, est un terme technique de celle-ci,
mais les termes techniques les plus fondamentaux sont ceux
qui sont dépourvus de définitions ; nous les appellerons
termes techniques essentiels de la théorie correspondante.
-Les termes techniques essentiels ne peuvent pas être éliminés

de la théorie, comme ceux qui ont des définitions par le

procédé indiqué au § 2 ; en outre, lorsque, dans les bornes
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imposées par la condition de respecter l'exactitude des

prémisses, on a choisi une signification particulière pour les

termes techniques essentiels, les définitions ne laissent plus
subsister rien d'arbitraire dans le sens que l'on peut attribuer

aux termes techniques qu'elles définissent.
Dans l'exemple considéré au début de ce paragraphe, le

symbole

et l'expression
un entier

sont évidemment des termes techniques essentiels.
Il est aisé de s'expliquer a priori la possibilité de l'existence,

dans les théories mathématiques, de termes techniques,
c'est-à-dire de termes dont le sens n'intervient pas dans les
démonstrations, et de comprendre, en outre, pourquoi toute
théorie mathématique doit nécessairement contenir, en
dehors des termes techniques, des termes courants : en effet,
il résulte des développements présentés dans les chapitres III
et IV que la démonstration d'un théorème n'exige que l'effec-
tuation, dans uncertain ordre, d'opérations dont chacune est
de l'un des genres suivants :

1° Reconnaître qu'une proposition exprime une partie de
ce qu'exprime une autre proposition.

2° Reconnaître que le sens d'une proposition est identique
à celui d'un certain ensemble d'autres propositions.

3° Constater qu'une proposition est la négation d'une
certaine autre proposition.

4° Constater l'identité du sens de deux propositions.
5° Constater qu'une proposition est une proposition

conditionnelle, distinguer l'hypothèse et la conclusion d'une
telle proposition et reconnaître les indéterminées qu'elle
peut contenir.

6° Apprécier le résultat d'une substitution effectuée sur
les indéterminées d'une proposition conditionnelle.

Il est évident qu'aucune de ces opérations ne serait
possible sans la connaissance du sens précis de certains termes,
d'où l'existence nécessaire des termes courants.

D'autre part, il suffit de se reporter aux exemples qui ont
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été donnés plus haut à diverses occasions pour reconnaître
qu'il peut y avoir des termes dont on n'a pas besoin de
connaître la signification précise pour être à même d'effectuer
chacune des opérations susdites, d'où la possibilité de
l'existence des termes techniques.

§ 24. — Les faits mis en évidence au paragraphe précédent

nous induisent à adopter la convention suivante :

Lorsque tous les termes qui entrent dans une proposition
(P) ainsi que dans les propositions formant un certain
système (S) ont, exception faite de ceux qui appartiennent à un
certain ensemble (©), un sens bien déterminé et lorsqu'en
outre il est impossible d'interpréter les termes (©} de façon
que les propositions (S) soient vraies sans qu'il en soit de

même pour la proposition (P), nous dirons que, par rapport

aux termes (©), pris pour termes techniques, la proposition

(P) est une conséquence de Vensemble des propositions (S).
Cette convention admise, nous devons examiner par quels

moyens on pourrait résoudre la question suivante :

V. — Une proposition donnée (P) est-elle, par rapport à un
système donné de termes (fë), pris pour termes techniques,
une conséquence d'un système donné de propositions (S)

S'il arrive qu'en adoptant pour postulats d'une théorie,
admettant pour termes techniques les termes (®), le système
de propositions (S) ou celui que l'on obtient en adjoignant
aux propositions (S) un nombre quelconque d'autres propositions,

sûrement vraies quelle que soit Vinterprétation adoptée

pour les termes (©), on réussisse à construire, conformément
aux principes exposés aux chapitres III et IV, une démonstration

de la proposition (P), on aura évidemment établi que
la question V comporte une réponse affirmative. Si au
contraire on avait trouvé une interprétation telle des termes
(©) que, avec cette interprétation de ces termes, les propositions

(S) soient des propositions vraies, mais la proposition
(P), une proposition fausse, on aurait constaté par cela même

que la question V comporte, dans le cas considéré, une
réponse négative.

Dans l'exemple considéré au début du paragraphe précédent,

la proposition (T) est une conséquence de la proposi-
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tion (1) par rapport au symbole
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et à l'expression
un entier

pris pour termes techniques. Cet exemple est un exemple
du cas où le système (S) (qui se réduit ici à la seule proposition

(1)) constitue un système suffisant de prémisses pour
démontrer la proposition (P).

Un exemple d'une autre nature est celui que nous avons
envisagé au § 22. Le lecteur s'assurera que, dans ce cas, la

proposition (P) est une conséquence des propositions (1) et
(2) par rapport au terme

« la convention (G) »

pris pour terme technique ; mais il constatera que les
propositions (1) et (2) ne constituent pas un système suffisant de

prémisses pour établir la proposition (P) ; pour obtenir un
tel système de prémisses, il faut adjoindre aux propositions
(1) et (2) certaines propositions empruntées à la théorie des

permutations, propositions qui restent vraies quel que soit
le sens du terme

« la convention (G) »

Pour donner un exemple du cas où la question Y
comporte une réponse négative, considérons les deux propositions

suivantes :

(A) Lorsque trois nombres entiers, a, b, c9 satisfont aux
relations

a — b et b c

on a

a — c

(B) Lorsque deux nombres entiers x et y satisfont a la
relation

x y
on a

y — x



38 s. ZAREMBA

Il est aisé de voir que, par rapport au symbole

pris pour terme technique, la proposition (B) n'est pas une
conséquence de la proposition (A).

En effet, regardons le symbole

comme ayant la signification attribuée ordinairement au
symbole

<

Dans ce cas la proposition (A) sera vraie, mais la proposition

(B), fausse ; et cela suffit pour justifier ce que nous avons
annoncé.

Nous laisserons au lecteur le soin de confirmer par des
exemples (qu'il est particulièrement aisé de tirer de
l'arithmétique) une prévision qui se présente d'elle-même à l'esprit

et q.ue l'on peut énoncer de la façon suivante :

Etant donné une proposition P) et un système (S) d'autres
propositions, il peut être possible de choisir arbitrairement
entre certaines limites (que nous ne chercherons d'ailleurs
pas à préciser) un certain ensemble {©) de termes parmi ceux
qui servent à exprimer les propositions (P) et (S), pour
examiner ensuite si la proposition (P) est une conséquence du
système (S) par rapport aux termes (©), pris pour termes
techniques; dans ces conditions, le résultat de l'examen

pourra dépendre du choix des termes (©).
§ *25. — Les notions acquises dans les deux paragraphes

précédents permettent de préciser, plus complètement que
nous ne Pavons pu faire jusqu'à présent, la portée des théories

mathématiques et de tirer de là une indication importante

relative à l'élaboration de ces théories.
Supposons que, dans une théorie (T), un certain ensemble

de termes {%) soit un ensemble de termes techniques essentiels

(§ 23) et admettons, en outre, que l'on ait constaté
intuitivement ou de quelque autre façon le fait suivant : lorsque
les termes (S) sont regardé.s comme les noms de certaines
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choses (C), bien déterminées, tous les postulats de la théorie
deviennent des propositions vraies. Dans ces conditions, la

théorie (T) pourra être regardée comme une théorie des

choses (C) et, au moins en ce qui concerne ces choses-là,
I? elle ne contiendra certainement pas d'autres jugements

intuitifs que ceux qui consistent à affirmer l'exactitude des
& postulats (ÏI) dont les énoncés contiennent les noms des
k choses considérées. Nous dirons que l'ensemble des pos-

tulats (n) est l'ensemble des postulats spécifiques de la théo-
rie considérée des choses (G). Il est clair que tout théorème
de cette théorie des choses (G) sera, par rapport aux termes
(®), pris pour termes techniques (§ 24), une conséquence des

p; postulats spécifiques.
Voici l'indication fondamentale que l'on peut tirer de cé

fi qui précède :

Lorsqu'on veut constituer une théorie mathématique d'un
ensemble de choses, on doit chercher à la constituer de

iy façon que les noms de ces choses aient le caractère de termes
G techniques.
h Ce résultat étant atteint, les choses dont les noms se trou-
ii veront être des termes techniques essentiels, représenteront
f\ évidemment les éléments fondamentaux de la théorie et les
f\ postulats spécifiques feront connaître la part de l'intuition
if! dans les jugements relatifs à ces éléments fondamentaux,
j^j Si je ne me trompe, les notions présentées jusqu'ici dans

ce chapitre n'ont jamais encore été mises en évidence d'une
f4 façon explicite, mais l'étude des travaux modernes relatifs
f aux fondements des branchés essentielles des mathématiques

amène à la conclusion que, sous une forme plus ou moins
G nette, ces notions existaient dans l'esprit des auteurs. C'est
y ainsi que, dans les recherches relatives aux fondements de
;• la Géométrie, les termes tels que :

çj point; ligne droite; plan et quelques autres, jouent en
V réalité le rôle des termes techniques essentiels, et ce que
n; l'on donne comme l'ensemble des postulats de la Géométrie
pi ne peut être regardé que comme devant être, dans l'esprit
V des auteurs, l'ensemble des postulats spécifiques de la théo-

rie qu'ils exposent; ce dernier point apparaît très nettement
A
%
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quand on tient compte de ce fait que, dans les travaux dont
il vient d'être question, on n'énonce aucune prémisse de

l'Arithmétique et pourtant, dans les démonstrations, on fait
un large usage de l'Arithmétique et même de l'Analyse
mathématique.

§ 26. — Il résulte de ce qui a été exposé au paragraphe
précédent que les conditions I et II, énoncées au § 22, doivent
être regardées comme se rapportant au système des postulats
spécifiques d'une théorie et que, dès lors, la liste des termes
techniques essentiels de cette théorie doit constituer une
donnée du problème qui consiste à vérifier si les conditions
I et II du § 22 sont remplies. Gela étant, la question III du
§ 22 doit être regardée comme une forme abrégée de la question

V du § 24 et, quand on aura à se la poser à l'effet de
s'assurer si l'une des conditions I ou II du §22 est vérifiée,
l'ensemble des termes (®) devra coïncider avec l'ensemble
des termes techniques essentiels de la théorie correspondante.

Les considérations précédentes nous amènent tout
naturellement à formuler les règles suivantes :

Pour s'assurer si les postulats spécifiques d'une théorie
mathématique satisfont à la condition 1 du § 22, en d'autres
termes, pour reconnaître s'ils sont compatibles, on cherchera
à trouver une interprétation telle des termes techniques
essentiels que, avec cette interprétation de ces termes, chacun

des postulats devienne une proposition vraie ; si l'on y
réussit, la compatibilité des postulats considérés sera par
cela même établie ; si au contraire on avait constaté que la

négation de l'un des postulats est, par rapport aux termes
techniques essentiels, une conséquence (§ 24) des autres
postulats, on aurait fourni la preuve de l'incompatibilité des

postulats considérés.
Quant à la condition II du § 22, celle de l'indépendance

des postulats, on ne l'examinera que dans le cas où leur
compatibilité aura été préalablement reconnue et l'on pourra
alors procéder de la façon suivante : on envisagera
successivement chaque postulat et chaque fois on cherchera à

interpréter les termes techniques essentiels de façon que le pos-
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tulat considéré momentanément devienne une proposition
fausse et que, en même temps, tous les autres postulats
deviennent des propositions vraies ; la réussite de toutes ces

opérations constituera la preuve de l'indépendance des
postulats considérés ; si au contraire on avait constaté que, par
rapport aux termes techniques essentiels, l'un des postulats

est une conséquence (§ 24) des autres postulats, on
aurait démontré par cela même que les postulats considérés
ne sont pas indépendants.

Dans la pratique, la question de savoir si les postulats
spécifiques d'une théorie sont compatibles, ne donne pas lieu,
ordinairement du moins, à des difficultés, et cela parce que,
ordinairement, en constituant la théorie, on connaît d'avance

une interprétation des termes techniques essentiels pour
laquelle les postulats deviennent des propositions vraies. Au
contraire, il est souvent si difficile de résoudre la question
de l'indépendance des postulats que l'on est obligé d'y renoncer

complètement, ou de se contenter d'une solution partielle
qui consiste à prouver que certains des postulats sont
indépendants des autres, c'est-à-dire tels qu'aucun d'eux n'est,
par rapport aux termes techniques essentiels, une
conséquence (§ 24) des autres postulats. J'ajoute que, dans certains
cas, l'énoncé II donné au § 22 de la condition de l'indépendance

des postulats peut être inadmissible parce que les
énoncés de certains postulats peuvent impliquer l'exactitude
de certains autres, énoncés antérieurement.

Lorsque cette circonstance se présente, on partage les
postulats en un certain nombre de classes et l'on fixe un
certain ordre de succession de ces classes de façon à pouvoir
procéder (lorsque les difficultés ne sont pas trop grandes) de
la façon suivante : on s'assure d'abord, en appliquant la
méthode indiquée plus haut, que les postulats de la première
classe sont indépendants et, en considérant ensuite, dans
l'ordre adopté, les autres classes on opère comme il suit : on
envisage successivement chaque postulat de la classe
momentanément considérée et, chaque fois, on essaie d'interpréter
les termes techniques essentiels de telle façon que le
postulat considéré devienne faux et, qu'en même temps, tous
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les autres postulats de la classe considérée et tous ceux des
classes qui la précèdent deviennent des propositions vraies.

Si I on réussit à effectuer toutes ces opérations, on dit que,
par rapport au classement adopté, les postulats considères
sont indépendants.

Pour terminer, nous allons donner un exemple simple
du cas où la compatibilité et l'indépendance d'un système
de postulats peut être aisément établie. A cet effet, spécifions
que le symbole

et l'expression
élément de l'ensemble (E)

seront les termes techniques essentiels de la théorie que
nous allons considérer et adoptons pour postulats
spécifiques de cette théorie les trois propositions suivantes :

(A). Lorsque le symbole a est un élément de l'ensemble (E)

on a

a — a

(B) Lorsque les symboles a et b représentent deux
éléments de l'ensemble (E) tels que l'on ait

a =: b

on a aussi
b z=z a

(G) Lorsque les symboles a, b et c représentent trois
éléments de l'ensemble (E), tels que l'on ait

a — b et b c

on a aussi
a r= c

Pour reconnaître la compatibilité des trois postulats
précédents, il suffit de remarquer qu'ils deviennent des propositions

vraies dans le cas où l'expression

un élément de l'ensemble (E)

est considérée comme ayant le sens de

un nombre entier
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le symbole

étant en même temps interprété comme on l'interprète
ordinairement en arithmétique.

Pour établir l'indépendance de nos trois postulats, il faut,
d'après la règle générale, établir les trois lemmes qui suivent :

Lemme I. 11 est possible d'interpréter les termes techniques
de façon que la proposition (A) soit fausse et chacune des

propositions (B) et (G), une proposition vraie.
En effet, regardons l'expression

un élément de l'ensemble (E)

comme ayant le sens de

un nombre entier

et, en modifiant le sens habituel du symbole

dans une phrase symbolique de la forme

où x et y représentent des nombres entiers, convenons de

regarder cette phrase symbolique comme exprimant à la fois
les deux choses suivantes :

1° Aucun des symboles x et y ne représente l'unité ;

2° les symboles x et y sont ceux d'un même nombre entier.
Avec cette interprétation des termes techniques, chacune

des propositions (B) et (G) sera vraie mais la proposition (A)
sera fausse puisque, pour qu'elle fût vraie, il faudrait que
l'on eût, pour tout nombre entier a,

a — a

et il n'en est pas ainsi puisque, avec le sens attribué par nous
au symbole

on na pas
1 1

Lemme II. On peut interpréter les termes techniques de
façon que la proposition (B) soit fausse et, qu'en même temps,
chacune des propositions (A) et (G) soit vraie.
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En effet, il suffît, pour cela, de donner au terme

un élément de l'ensemble (E)

le sens que nous lui avons donné pour établir le Lemme I
en convenant, en même temps, de donner au symbole

le sens habituellement attribué en arithmétique au symbole
<£

Lemme III. On peut interpréter les termes techniques de

façon que la proposition (G) soit fausse et, qu'en même temps,
chacune des propositions (A) et (B) soit vraie.

En effet, continuons à regarder l'expression
un élément de l'ensemble (E)

comme désignant un nombre entier, mais donnons une
nouvelle interprétation au symbole

en convenant de regarder la proposition symbolique

* y '

lorsque x et y représentent des nombres entiers, comme
exprimant ce qui, dans la terminologie classique, pourrait
être exprimé en disant que les nombres x et y sont ou égaux
ou tels que le plus grand d'entre eux ne diffère que d'une
unité de l'autre. Ces conventions adoptées, les propositions
(A) et (B) seront évidemment vraies, mais la proposition (G)

ne le sera pas car, bien que, en vertu de nos conventions,
l'on ait en particulier

1=2 et 2 3,
il résulte des mêmes conventions que Ton n'a pas

1 3.
Nos trois lemmes étant établis, l'indépendance des trois

postulats l'est aussi.
En résumé, les postulats (A) (B) et (C) sont compatibles et

indépendants.

Genève, décembre 1915.
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