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NOTIONS D'ARITHMOGEOMETRIE

PAR

Emile Turrière (Montpellier).

1. — J'ai réuni, dans le présent travail, quelques remarques
bien simples dont l'ensemble constitue la première étude
systématique de la géométrie élémentaire des nombres
rationnels. Dans ce premier article, j'ai cru devoir me borner
aux seules figures qui sont en étroite connexion avec le cercle
ou la sphère, réservant d'autres recherches pour un Mémoire
ultérieur qui sera consacré aux arithmoconiques (c'est-à-dire
à l'étude géométrique des équations indéterminées du genre
de celles de Brahmagupta et Fermât) et aux courbes d'ordre
supérieur.

Les arithmotriangles héroniens occupent dans ce travail
une place importante. J'ai pensé, en effet, que ces triangles
qui possèdent un grand nombre de lignes rationnelles et
dont la détermination a jusqu'ici donné lieu à quelques
recherches isolées méritaient d'être étudiés d'une manière
beaucoup plus approfondie.

Les éléments de l'Arithmogéométrie.

2. — Qu'il s'agisse du plan ou de l'espace, j'appellerai
point rationnel ou arithmopoint tout point dont les
coordonnées cartésiennes rectangulaires sont des nombres
rationnels. Sur une droite quelconque, il peut y avoir, selon
les cas, zéro point rationnel, un point rationnel ou une infinité

de points rationnels; c'est ce que prouvent les trois
exemples suivants de droites représentées par les équations
respectives :

x — - x — y \/ 2 x — 3y

L'Enseignement mathém., 18e année; 1916. 6
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Dès qu'il existe, sur une droite, un couple d'arithmopoints
distincts, il existe une infinité de points de cette nature sur
la droite : ce sont les points qui divisent rationnellement, en
un rapport arbitraire, le segment défini par les deux
premiers points rationnels. Il n'y a d'ailleurs, sur cette même
droite, pas d'autre arithmopoint que ceux obtenus par le

procédé précédent. Je dirai, dans le cas d'une droite de cette
nature, que c'est une cirithmodroite.

En géométrie plane, l'équation d'une arithmodroite générale

est de la forme ax + by -f- c 0, 6, c étant des
nombres algébriques arbitraires mais rationnels; cette même
arithmodroite peut aussi être représentée par un système
de deux équations linéaires à coefficients rationnels.

Parmi les arithmodroites du plan, celles pour lesquelles
l'expression a2 + b2 est le carré d'un nombre rationnel
présentent une importance toute spéciale (c. f. le problème des
distances rationnelles, § 18). Je les désignerai donc par la
dénomination d"arithmodirigée. Ces arithmodirigées jouissent
de propriétés simples qu'il est utile de mentionner:

La distance de deux arithmopoints quelconques d'une
arithmodirigée est mesurée par un nombre rationnel.
Réciproquement, si la distance de deux arithmopoints particuliers

d'une arithmodroite est rationnelle, il en est de même de

tout autre couple d'arithmopoints de cette arithmodroite, qui
est dès lors une arithmodirigée.

La distance de tout arithmopoint du plan à une arithmodirigée

est rationnelle. Réciproquement, si la distance d'un
arithmopoint particulier du plan à une arithmodroite est
rationnelle et non nulle, il en est de même de tout arithmopoint

du plan et Varithmodroite considérée est une arithmodirigée.

Cette propriété place les arithmodirigées parmi les courbes
de direction du plan qui jouissent, on le sait, de la propriété
caractéristique de décomposition en deux équations rationnelles

de l'équation dé chacune de leurs courbes parallèles.
D'après ce qui vient d'être écrit, le lieu des points du plan
qui sont à une distance rationnelle donnée d'une arithmodroite

se compose de deux droites parallèles dont les deux
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équations ne se séparent pas en général, sous le point de

vue des nombres rationnels. Cette distinction est caractéristique

des arithmodirigées.
Les nombres trigonométriques de l'angle formé par deux

arithmodirigées sont tous rationnels ; la tangente trigonome-
trique de la moitié de cet angle est rationnelle. Il en résulte

que la représentation la plus générale d'une arithmodirigée
est

x cos © -f- y sin © 7=z W

tg I* étant un nombre rationnel t, ainsi que la distance w à

l'origine 0 des coordonnées rectangulaires (Ox, Oy); on
peut encore poser

x — u. cos © -j- a

y v sin ©-}-/>,

a, 6, tang | étant des nombres rationnels donnés et u étant

un paramètre rationnel.
En ce qui concerne le plan, il y aura sur lui zéro point

rationnel, un point rationnel, une infinité de points rationnels

alignés (sur une arithmodroite) ou enfin une infinité
d'arithmopoints non alignés. Dès qu'il existe, en effet, un
couple d'arithmopoints dans un plan, il en existe une infinité

: ceux de l'arithmodroite qui joint les deux premiers.
S'il existe trois arithmopoints, sommets d'un véritable
triangle, il en existe une infinité : ce sont les centres des
distances proportionnelles des trois premiers, respectivement
affectés de coefficients algébriques rationnels et absolument
arbitraires. Je dirai que, dans ce dernier cas, le plan, qui
contient une infinité d'arithmodroites, est un arithnioplan.

D'une manière générale, j'appellerai arithmocourbe, en
géométrie plane ou en géométrie spatiale indifféremment,
toute courbe qui satisfera aux conditions simultanées
suivantes :

a) la courbe est algébrique et unicursale;
'b) les coefficients des polynômes constitutifs des fractions

rationnelles qui expriment rationnellement et paramétrique-
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ment les coordonnées cartésiennes d'un point courant de
cette courbe sont des nombres rationnels.

Dans ces conditions, une arithmocourbe admet une infinité
d'arithmopoints : ce sont tous ceux qui correspondent aux
valeurs rationnelles des paramètres de représentation.
Réciproquement, tout arithmopoint d'une arithmocourbe correspond

à une valeur rationnelle du paramètre.
Une surface algébrique sera de même appelée une arith-

mosurface si elle est susceptible d'être représentée par trois
fonctions rationnelles de deux paramètres, tous les coefficients

étant des nombres rationnels. A chaque couple de
valeurs rationnelles de deux paramètres de représentation,
correspond un arithmopoint de la surface. Mais il conviendra
essentiellement de s'assurer, dans le cas d'une surface, que,
réciproquement, les formules adoptées représentent l'a ri th-
mopoint le plus général de la surface étudiée. Les exemples
(examinés au § 8) de la représentation géographique
(représentation impropre) et de la représentation stéréographique
(représentation propre) de l'arithmosphère à rayon rationnel
montrent suffisamment l'intérêt qu'il y aura à mettre en
évidence des représentations propres des arithmosurfaces.

3. — Arithmocercle. Un cercle quelconque peut n'avoir
aucun point rationnel, ou bien en posséder un seul, deux
ou une infinité. Dès qu'il en possède trois, en effet, il en
possède une infinité : c'est alors un cercle que nous nommerons

un arithmocercle.
L'équation d'un arilhmocercle a nécessairement tous les

coefficients de son équation rationnels, puisque ces coefficients

satisfont à trois équations linéaires rationnelles. Le
centre d'un arilhmocercle est donc toujours un arithmopoint
du plan : on pourra l'appeler Va/ïthmocentre. 11 est important

d'observer, en vue des applications, que, réciproquement,

un cercle à équation rationnelle et qui possède en
outre un arithmopoint est nécessairement un arithmocercle.
L'arithmopoint courant d'un tel arithmocercle s'obtient
comme intersection de l'arithmocercle avec; une arithmo-
droite quelconque pivotant autour de l'arithmopoint connu
a priori.
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4. — Arithmocercle a rayon rationnel. Arithmotriangles
pythagoriques. La représentation d'un arithmocercle à rayon
rationnel est immédiate ; l'équation d'un tel arithmocercle
étant

x2 -j- y2 R2

il suffit d'introduire comme paramètre de représentation la

tangente trigonométrique de la moitié de l'azimut

6

tang"2 *

et de poser
x R cos 6 y z=z R sin 6

pour avoir la représentation générale désirée de l'arithmo-
point courant de cet arithmocercle :

__
R (1 — i2) _ 2R£

x ~ i +12 ' y ~ r+T2

A cette théorie des arithmocercles à rayon rationnel est
intimement liée celle des arithmotriangles pythagoriques.
Nous désignerons sous cette dernière dénomination ceux
des triangles rectangles dont les trois côtés sont mesurés

par des nombres rationnels; ils sont semblables, et dans des

rapports rationnels de similitude, aux triangles pythagoriques

proprement dits, c'est-à-dire à ceux des triangles
rectangles à côtés entiers.

L'arithmotriangle pythagorique est susceptible d'être
représenté par un arithmopoint quelconque d'un arithmocercle

à rayon rationnel. Les formules de correspondance
entre l'hypoténuse les cathètes b et c d'un tel arithmo-
triangle pythagorique et les coordonnées de l'arithmopoint
sont

a — R b — x c ~ y

C'est à cette même considération des arithmocercles à

rayon rationnel que se rattache la représentation déjà indiquée

au § 2 des arithmodirigées.
5. — Arithmocercle quelconque. Il s'agit de décomposer

un nombre rationnel p en une somme de carrés de deux
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nombres rationnels x et y% Le cas où p est lui-même un
carré parfait vient d'être traité; tout facteur entier carré de
l'un des deux termes de la fraction p pouvant être absorbé
dans x et y, nous devons nous borner au seul cas où les
deux termes de la fraction irréductible p sont à facteurs
simples.

Les identités

permettent en outre de réduire l'étude de la décomposition
en deux carrés d'un nombre rationnel p au cas particulier
où p est entier, puisqu'elles expriment que le produit ou le
quotient de deux nombres pi, pü décomposables en deux carrés

sont de la même nature.
Etant donné le nombre rationnel p, on devra donc considérer

les facteurs premiers de son dénominateur et de son
numérateur, après suppression des facteurs qui
interviennent au carré. La condition nécessaire et suffisante pour
que le cercle considéré soit un arithmocercle est alors la
suivante : aucun de ces facteurs n'est de la forme 4k — 1.

Supposons donc que les seuls facteurs considérés sont le
nombre 2 et des nombres entiers de la forme 44; -f- 1. Le
cercle est alors un arithmocercle; par tâtonnements et à

l'aide d'une table de décomposition des nombres 44; -f- 1 en

sommes de deux carrés, on déterminera un arithmopoint
particulier de cet arithmocercle. La connaissance d'un
arithmopoint particulier entraîne alors celle d'une infinité
d'autres arithmopoints. Soit, en effet, M0 [xQ yQ) un arithmopoint

de l'arithmocercle. Une arithmodroite quelconque issue
de cet arithmopoint rencontre à nouveau l'arithmocirconfé-
rence en un point M1 dont les coordonnées sont nécessairement

des nombres rationnels. Réciproquement tout arithmopoint

de l'arithmocercle, autre que M0, est susceptible d'être
obtenu par ce procédé, car la droite M0M1 est une arithmodroite.

Pratiquement, les coordonnées de l'arithmopoint

K-r2 + v/ + K*r2 — LtxS K* + 3\) • K + r22!
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connu a priori étant x0, yQ, les coordonnées
arithmopoint de l'arithmocercle sont:

x ~ x0 cos 0 -f- j0 sin 0

y -— x0 sin 0 — y0 cos 0 ;

0 est un azimut dont la tangente trigonométrique de la moitié
est un nombre rationnel arbitraire.

C'est ainsi que le cercle représenté par l'équation
x2-\-y2 2 est nécessairement un arithmocercle, puisqu'il
passe par l'arithmopoint x0 — 1, yQ ~ 1. La représentation
rationnelle de cet arithmocercle est

1 21 — X2 — 1 + 2X + X2

•r — 1 X2 ' y ~~ 1 + X2

6. — Arithmotriangles automédians. De même qu'à
l'arithmocercle d'équation x2, + y2 i se rattachent les

arithmotriangles pythagoriques, il est possible d'associer
diverses classes de triangles particuliers à d'autres arithmo-
cercles. C'est ainsi, en premier lieu, qu'à l'arithmocercle
x2 + y2 2 se rattachent les arithmotriangles automédians.
Ce sont, par définition, les triangles à côtés rationnels liés
par la relation a2 + c2 2b2.

Les côtés <2, è, c d'un triangle se présentant dans l'ordre
a > b > ç, les médianes sont nécessairement dans l'ordre
ma < nib < /72c. Pour que ces médianes aient des longueurs
proportionnelles à celles des côtés, il faut et il suffit que
celles-ci soient liées par la relation

2/,2 «2 + c2 ;

on a alors :

2ma — Xc 2zzz Xb 2mc, Xa

avec X \/3 En d'autres termes, ma, mb, mc ont alors
les longueurs qu'elles auraient respectivement dans trois
triangles équilatéraux de côtés c, b et a. La condition
d'égale inclinaison de deux médianes sur les côtés
correspondants conduit aussi aux mêmes triangles.

Ces triangles tels que 2b2 — a2 + c2 ont été signalés par

87

courantes d'un
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E. Lemoine (A. F. A. S., Toulouse, 1887) et par M. J. Neuberg
(.Mathésis> 1889, question n° 661, pp. 261-264) et étudiés par
M. J. Déprez (Mathésis, 1903, pp. 196-200, 226-230, 245-248);
ils ont été nommés triangles automédians. Pour avoir la

représentation générale des côtés d'un arithmotriangle
automédian, il suffit de poser

conformément à la théorie de l'arithmocercle x 2 + ^ 2,

passant par l'arithmopoint (1, 1), et d'introduire le para-

1 est un paramètre rationnel de similitude; c'est du
paramètre t seul que dépend la forme du triangle. Reste à

préciser les limites dans lesquelles doit être compris ce dernier
paramètre t pour que les trois expressions ci-dessus
représentent réellement les côtés d'un triangle. Une discussion
simple prouve que l'on doit prendre

si t est négatif, l'ordre des côtés est a b < c; si / est
positif, l'ordre est inverse. Il est encore possible de présenter
la double condition précédente sous la forme suivante,
équivalente mais plus expressive :

A côté des arithmotriangles automédians, il convient de

placer les arithmotriangles satisfaisant à la relation

a — b (cos 6 + sin 6)

c — b(cos 6 — sin 6)

mètre t tg-^ On obtient ainsi

X > o [/'S — 2 < * < 2 — [/3 ;

également signalée par M. J. Neuberg. Ces arithmotriangles
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sont encore liés à l'étude de l'arithmocercle x? + yi 2;
on posera :

/ x
a —

b

1 + 21 — t2 '

1 + i* '

X

1 — 2t—t*
1

ou encore

cos 6 + sin Ô ' cos ô — sin 9

la double condition d'existence du triangle est ici :

i/¥ — 1
0 < sin ô <

7. — Triangles a médianes orthogonales. L'étude des

triangles à côtés rationnels dont deux médianes sont
orthogonales est intimement liée à la théorie de l'arithmocercle

x* + y2 — 5 •

La relation moyennant laquelle, dans un triangle ABC de
côtés a, b, c, les médianes issues des sommets A et B sont
orthogonales est, en effet,

a2 + b2 5c2

c étant nécessairement le plus petit des trois côtés. Remarquons

que l'arithmocercle x2 + y2 — 5 passant par l'arithmo-
point (1, 2) a pour représentation paramétrique

x — cos 6 + 2sin 6

y — 2cos 6 — sin 9

Il en résulte pour l'arithmotriangle considéré les relations

a — c(cos 9 + 2sin 9)

b c (2cos 9 — sin 9)
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la représentation la plus générale de ce triangle est donc:

1 et t étant deux paramètres rationnels quelconques; le
premier est un paramètre de similitude ; c'est du second, /, que
dépend la forme du triangle. Une discussion simple prouve

Pour t < \/\\) — 3, Tordre des côtés est b > a > è; pour

Tordre des côtés est au contraire a > b c.
8. — Arithmosphère. Il s'agit d'étudier la décomposition

d'un nombre rationnel en une somme de trois carrés de

nombres rationnels. Un premier cas particulier de cette
étude des équations du type x2 -f y2 + z2 p est celui où p

est un carré : c'est le problème des parallélépipèdes
rectangles à arêtes et diagonales commensurables. L'équation
considérée est alors celle x2 + y2 + z2 R2 d'une arithmosphère

à rayon rationnel. Pour avoir un arithmopoint d une
telle arithmosphère à rayon rationnel, il suffit de considérer
un point de la sphère dont les tangentes trigonométriques
des demi-longitude et demi-latitude soient rationnelles; les
formules de représentation correspondantes sont :

x zzz R cos cp cos y R cos <p sin z ^ R sin cp

tang | et tang étant deux nombres rationnels arbitraires;

posant tang| tang-| c, il vient, en effet :

a =z X(l -f kt — i2)

b — Tk (1 — t — i2)

c =X{ 1 + t2)

1

que t doit être compris entre les limites 0 et g-.

|/'10- — 3 < t < i

Mais cette représentation paramétrique de la sphère est

impropre, en ce sens que si elle fait correspondre à tout



ARITHMOGÉOMÉTRIE 91

couple de valeurs rationnelles de (w, v) un arithmopoint de

la sphère, celui-ci n'est pas toutefois l'arithmopoint le plus
général de cette arithmosphère. Des formules

H ± \Zxà y2 uy
s

' V
z u[x — R)

il résulte que la représentation géographique laisse de côté
les arithmopoints de la sphère tels que leur distance à la

ligne des pôles 0z n'est pas rationnelle. C'est ainsi que
l'arithmopoint (1, 2, 2) de l'arithmosphère x2 + y2 z2 9

est représentée par les valeurs irrationnelles de u et de c.

Pour avoir une représentation propre, il suffit d'avoir
recours à la représentation stéréographique de la sphère
sur un plan. L'introduction de la transformation stéréographique

dans l'étude de cette même question conduit à des
formules plus simples et présente, en outre de l'avantage
essentiel de permettre de représenter l'arithmopoint le plus
général de l'arithmosphère, celui de transformer les courbes
algébriques tracées sur elle en des courbes planes
particulièrement simples le plus souvent. Prenant, en effet, le point
0, 0, Pi) pour point de vue et le plan z 0 pour plan de

projection, les formules

2r, P 4- rr — 1

* " rp + ïi*+T ' y rF+V-M ' 8 rPW+1 '

ç
x r

expriment les relations entre le point M(,r, y, z) de la sphère
et son image u(|, yj).

Il convient de rappeler ici que E. Catalan (Bulletin de

VAcadémie royale de Belgique, [3], t. 27, 1894), observe que
l'identité

(a2 + b2 4- c2f zzz (a2 + IA — c2)2 -j- (2ac)* + (26c)2

prouve que : sur la sphère dont Véquation est

+f + z*~l
il existe une infinité de points dont les coordonnées sont
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rationnelles. Il est manifeste que l'identité précédente n'est
autre précisément que celle,

{? + n* + î)« ee (Ç> + y]2 - i)2 + (2E)2 + .(2y])2

qui résulte des formules précédentes de la représentation
stéréographique.

Le cas d'une arithmosphère générale x2 H- y2 z2 p se
traite de la même manière que le cas d'un arithmocercle
quelconque; on absorbe dans x2, y2, z2 les facteurs carrés
de l'un ou l'autre terme de p et on ramène l'étude de la

question au cas où p est entier. Par tâtonnements, on détermine,

si elle existe, une solution particulière dans ce
dernier cas et on en déduit une double infinité d'arithmopoints
par l'intersection de la sphère et d'une arithmodroite
arbitraire issue de l'arithmopoint connu a priori.

9. — Arithmohypersphère : Toute hypersphère est une
arithmohypersphère. L'extension des considérations
précédentes au cas d'une hypersphère appartenant à un espace
à plus de trois dimensions s'effectue simplement. Il est utile
de l'indiquer, en vue de l'application de la considération
des arithmohypersphères à une classe spéciale de quadrilatères

inscriptibles intéressants (§ 14).

Soit, dans un espace à n dimensions, une hypersphère
représentée par l'équation

2 2 2 2 2

+ ^ + *, + R

R étant un nombre rationnel donné. Les équations

I xt — R sin 0A

Ix2

— R cos sin 02

xs — R cos Ot. cos 02. sin 03

x4 R cos 0t. cos 02. cos 03. sin 04

ocn__x R cos dt ..cos 0j. cos 08. cos 04 cos 0/? sin 0/z_1

X„ ~ R cos 0i. cos 0j. cos 0S. cos d4 cos 0 „ cos 0
\ n * • n—i n—l '

dans lesquelles on introduit des valeurs rationnelles de
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tang-^1, tang-^2, ...tang^-", représentent un point rationnel

de l'hypersphère.
Considérons maintenant le cas d'une hypersphère dont

l'équation est encore rationnelle, qui peut donc être réduite
à la forme

k=n
S 4 P >

*=i

par une simple translation rationnelle d'axes, mais dont le

rayon V/p est un nombre irrationnel. Il est essentiel
d'observer qu'alors que le cercle de l'espace à deux dimensions
et la sphère de l'espace ordinaire ne sont pas généralement
douées d'arithmopoints, même lorsque la rationalité des
coefficients de leurs équations respectives est assurée, il en
est différemment pour les hypersphères, dès l'espace à

quatre dimensions. Il résulte, en effet, du théorème de
Bachet (généralisé conformément aux considérations du

| 14) qu'une hypersphère représentée par une équation rationnelle

admet toujours un arithmopoint. Par suite, elle admet
une go"—1 d'arithmopoints; elle est alors une arithmohyper-
sphère. Soient .x°a x°fl) les coordonnées rationnelles
du point rationnel M0 connu a priori. Pour obtenir un autre
point rationnel, il suffit d'associer à l'équation de l'hypersphère

les n — 1 équations

x
° ° ° 0

d'une hyperdroite passant par le point M0 ; les ai an sont
n nombres rationnels arbitraires. Ceci revient à poser

^ — flix + + ,r2 an\ + Xn ;

1 est un nombre rationnel défini par la formule

0 0
i

0

I _ o "l3"! + + + a"X"
' 2

I
2

I |S '
°1 + ai+ ••• + U,i

Il est encore possible de présenter la solution de cette



94 E. TURRIÈRE

même question sous une autre forme, en introduisant les
n fonctions 04 0n suivantes et leurs dérivées partielles:

j ©i m sin 0t

©3 — cos 6j. sin 02

©3 — cos 0j. cos 02. sin 08

©4 — cos 0j. cos 0f. cos 03. sin 04

©n_t rz cos 0t. cos 02. cos 08. cos 04 cos 0rt_2 sin 0/t_|

© zi cos 0!. cos 0o. cos 03. cos 04 cos 0n_2 C0S ®/i_l >

les 9i 9a~i sont n — 1 paramètres arbitraires. On posera
alors :

0 r\ I
oö©t oö©i oö©i o ö©i

•ri •,«H< + äs + *5, + - + -

X
ö©yt n

* - + x*wz + -• +
-1

— xn®n + TT + TcT + + + x^ -7—-2 Ö0S
' '2 Ö08

et on introduira naturellement dans ces dernières formules
des paramètres rationnels arbitraires ti t2 tn—i respectivement

égaux aux tangentes des arcs moitiés

0i 0j On—1
tttang — tang - tang-y-

Ainsi donc, on peut représenter les coordonnées courantes
d'un point rationnel d'une arithmohypersphère par des
formules contenant les n indéterminées (ai an) sous forme
homogène, ou les n — 1 indéterminées tA 4—1.

Mais tandis que, dans le premier mode de représentation^
on obtient l arithmopoint le plus général de l'arithmosphère,
il n'en est nullement de même dans le second cas ; la
représentation au moyen des fonctions 0 est impropre, tout de
même que la représentation géographique de la sphère
ordinaire. Par une légère transformation de la première repré-
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sentation, il est possible, d'autre part, d'étendre aux hvper-
sphères les propriétés de la représentation stéréographique
qui est, elle aussi, une representation propre.

Les arithmotriangles héroniens.

10. — Le problème des arithmotriangles héroniens
consiste à déterminer les triangles tels que, les côtés étant
rationnels, la surface soit aussi un nombre rationnel. Il
résulte de cette définition que, dans tout arithmotriangle
héronien, les mesures des divers éléments linéaires
(longueurs des côtés, longueurs des hauteurs, rayons des cercles
inscrits et ex-inscrits, rayon du cercle circonscrit, segments
déterminés sur les côtés par les hauteurs) et enfin la surface
et les nombres trigonoméj/riques des angles du triangle
sont des nombres rationnels.

La détermination des arithmotriangles héroniens généraux
peut être effectuée de diverses manières. Il est d'abord
possible de faire dériver leur construction de celle des
arithmotriangles rectangles pythagoriques. Etant donnés, en effet,
deux arithmotriangles rectangles pythagoriques, on peut,
par similitudes convenables, rendre égales deux cathètes
appartenant respectivement aux deux triangles rectangles;
en juxtaposant ensuite les deux cathètes égales, de manière
que les deux autres cathètes soient alignées, on constitue
un arithmotriangle héronien acutangle et un arithmotriangle
héronien obtusangle, suivant que les deux triangles juxtaposés

sont de part et d'autre ou non de la cathète commune.
Une seconde méthode de construction générale des

arithmotriangles héroniens résulte de la rationalité du rayon du
cercle circonscrit et des nombres trigonométriques de ses
angles. Il suffit donc de se donner un premier nombre rationnel

R qui sera le rayon du cercle circonscrit, et deux autres
nombres y et z, rationnels tous deux et assujettis aux inégalités

suivantes :

4=>«>°. /ÎT? ;

|/3
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