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NOTIONS D’ARITHMOGEOMETRIE

PAR

Emile Turritre (Montpellier).

1. — Jairéuni, dans le présent travail, quelques remarques
bien simples dont I’ensemble constitue la premiére étude
systématique de la géométrie élémentaire des nombres ra-
tionnels. Dans ce premier article, j'ai cru devoir me borner
aux seules figures qui sont en étroite connexion avec le cercle
ou la sphere, réservant d’autres recherches pour un Mémoire
ultérieur qui sera consacré aux arithmoconiques (c’est-a-dire
a I'étude géométrique des équations indéterminées du genre
de celles de Brahmagupta et Fermat) et aux courbes d’ordre
supérieur.

Les arithmotriangles héroniens occupent dans ce travail
une place importante. J'al pensé, en effet, que ces triangles
qui possédent un grand nombre de lignes rationnelles et
dont la détermination a jusqu’ici donné lieu a quelques
recherches isolées méritaient d’étre étudiés d’une manieére
beaucoup plus approfondie.

Les éléments de 1'Arithmogéométrie.

2. — Qu'il s’agisse du plan ou de l’espace, jappellerai
point rationnel ou arithmopoint lout point dont les coor-
données cartésiennes rectangulaires sont des nombres ra-
tionnels. Sur une droite quelconque, il peut y avoir, selon
les cas, zéro point rationnel, un point rationnel ou une infi-
nité de points rationnels; c’est ce que prouvent les trois

exemples suivants de droites représentées par les équations
respectives :
xr=rx, x =52, x = 3y .

L’Enseignement mathém., 18° année; 1916. 6
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Des qu’il existe, sur une droite, un couple d’arithmopoints
distincts, 1l existe une infinité de points de cette nature sur
la droite : ce sont les points qui divisent rationnellement, en
un rapport arbitraire, le segment défini par les deux pre-
miers points rationnels. Il n'y a d’ailleurs, sur cette méme
droite, pas d’autre arithmopoint que ceux obtenus par le
procédé précédent. Je dirai, dans le cas d'une droite de cette
nature, que c'est une arithmodroite.

En géométrie plane, 'équation d’une arithmodroite géné-
rale est de la forme ar + by +c¢ =0, a, b, ¢ étant des
nombres algébriques arbitraires mais rationnels; cette méme
arithmodroite peut aussi étre représentée par un systéeme
de deux équations linéaires a coeflicients rationnels.

Parmi les arithmodroites du plan, celles pour lesquelles
Iexpression a? + b?* estle carré d'un nombre rationnel pré-
sentent une importance toute spéciale (c. f. le probléme des
distances rationnelles, §18). Je les désignerai donc par la dé-
nomination d'arithmodirigée. Ces arithmodirigées jouissent
de propriétés simples qu’il est utile de mentionner:

La distance de deux arithmopoints quelconques d’une
arithmodirigée est mesurée par un nombre rationnel. Réci-
proquement, si la distance de deux arithmopoints particu-
liers d’une arithmodroite est rationnelle, il en est de méme de
toul autre couple d’arithmopoints de cette arithmodroite, qu
est dés lors une arithmodirigée. |

La distance de tout arithmopoint du plan a une arithmo-
dirigée est rationnelle. Réciproquement, st la distance d’'un
arithmopoint particulier du plan a une arithmodroite est
rationnelle et non nulle, il en est de méme de tout arithmo-
point du plan et Uarithmodroite considérée est une arithmo-
dirigée.

Ciette propriété place les arithmodirigées parmi les courbes
de direction du plan qui jouissent, on le sait, de la propriété
caractéristique de décomposition en deux équations ration-
nelles de I'équation de chacune de leurs courbes paralléles.
D’aprés ce qui vient d’étre écrit, le lieu des points du plan
qui sont a une distance rationnelle donnée d’une arithmo-
droite se compose de deux droites paralleles dont les deux
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équations ne se séparent pas en général, sous le point de
vue des nombres rationnels. Cette distinction est caractéris-
tique des arithmodirigées.

Les nombres trigonométrigues de l'angle formé par deux
arithmodirigées sont tous rationnels ; la tangente trigonome-
trique de la moitié de cet angle est rationnelle. Il en résulte
que la représentation la plus générale d’une arithmodirigée
est

xcoso +ysing = W ,

o , . .. o . .
tg - étant un nombre rationnel 7, ainsi que la distance @ a

I'origine O des coordonnées rectangulaires (Ox, Oy); on
peut encore poser

X —u.coso -+ a,

y=v.sino 4+ b ,

o, . » ’
a, b, tang 5 élant des nombres rationnels donnés et u étant

uan parametre rationnel.

En ce qui concerne le plan, il y aura sur lui zéro point
rationnel, un point rationnel, une infinité de points ration-
nels alignés (sur une arithmodroite) ou enfin une infinité
d’arithmopoints non alignés. Des qu'il existe, en effet, un
couple d’arithmopoints dans un plan, il en existe une infi-
nité : ceux de l'arithmodroite qui joint les deux premiers.
S’il existe trois arithmopoints, sommets d'un véritable tri-
angle, il en existe une infinité : ce sont les centres des dis-
tances proportionnelles des trois premiers, respectivement
affectés de coeflicients algébriques rationnels et absolument
arbitraires. Je dirai que, dans ce dernier cas, le plan, qui
contient une infinité d’arithmodroites, est un arithmoplan.

D’une maniére générale, jappellerai arithmocourbe, en
géométrie plane ou en géométrie spatiale indifféremment,
toute courbe qui satisfera aux conditions simultanées sui-
vantes : :

a) la courbe est algébrique et unicursale;

b) les coeflicients des polynomes constitutifs des fractions
rationnelles qui expriment rationnellement et paramétrique-
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ment les coordonnées cartésiennes d’un point courant de
cette courbe sont des nombres rationnels.

Dans ces conditions, une arithmocourbe admet une infinité
d’arithmopoints: ce sont tous ceux qui correspondent aux
valeurs rationnelles des paramétres de représentation. Réci-
proquement, tout arithmopoint d’'une arithmocourbe corres-
pond a une valeur rationnelle du parameéetre.

Une surface algébrique sera de méme appelée une arith-
mosurface si elle est susceptible d’étre représentée par trois
fonctions rationnelles de deux parameétres, tous les coefli-
cients étant des nombres rationnels. A chaque couple de
valeurs rationnelles de deux parameétres de représentation,
correspond un arithmopoint de la surface. Mais il conviendra
essentiellement de s’assurer, dans le cas d’'une surface, que,
réciproquement, les formules adoptées représentent larith-
mopoint le plus général de la surface étudiée. Les exemples
(examinés au § 8) de la représentation géographique (repré-
sentation impropre) et de la représentation stéréographique
(représentation propre) de 'arithmosphére a rayon rationnel
montrent suffisamment l'intérét qu’il y aura a mettre en évi-
dence des représentations propres des arithmosurfaces.

3. — AriramoceErcLE. Un cercle quelconque peut n’avoir
aucun point rationnel, ou bien en posséder un seul, deux
ou une infinité. Des qu’il en posseéde trois, en effet, il en
posséde une infinité : c’est alors un cercle que nous nomme-
rons un arithmocercle.

L’équation d’un artihmocercle a nécessaitrement tous les
coeffictents de son €équation rationnels, puisque ces coefli-
cients satisfont a trois équations linéaires rationnelles. Le
centre d’un arithimocercle est donc toujours un arithmopoint
du plan: on pourra l'appeler Varithmocentre. 11 est impor-
tant d’observer, en vue des applications, que, réciproque-
ment, un cercle a équation rationnelle et qui posséde en
outre un arithmopoint est nécessairement un arithmocercle.
L’arithmopoint courant d'un tel arithmocercle s’obtient
comme intersection de l'arithmocercle avec une arithmo-
droite quelconque pivotant autour de I’arithmopoint connu
a priori.
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4, — ARITHMOCGERCLE A RAYON RATIONNEL. ARITHMOTRIANGLES
PYTHAGORIQUES. La représentation d’un arithmocercle a rayon
rationnel est immédiate; ’équation d’un tel arithmocercle

étant .
a? 4 9 = R?

il suffit d’introduire comme paramétre de représentation la
tangente trigonométrique de la moitié de I'azimut

0
tang—é- = i

et de poser
x — Rcosb , y = Rsinb ,

pour avoir la représentation générale désirée de l'arithmo-
point courant de cet arithmocercle :

R(1 — ¥ 2R¢

*EUye o YT ixe

A cette théorie des arithmocercles a rayon rationnel est
intimement liée celle des arithmotriangles pythagoriques.
Nous désignerons sous cette derniére dénomination ceux
des triangles rectangles dont les trois cotés sont mesurés
par des nombres rationnels; ils sont semblables, et dans des
rapports rationneis de similitude, aux triangles pythago-
riques proprement dits, c’'est-a-dire & ceux des triangles rec-
tangles a cotés entiers. | |

L’arithmotriangle pythagorique est susceptible d’étre re-
présenté par un arithmopoint quelconque d’un arithmo-
cercle a rayon rationnel. Les formules de correspondance
entre 'hypoténuse a, les cathetes b et ¢ d'un tel arithmo-
triangle pythagorique et les coordonnées de I'arithmopoint

sont
a = R , b — x ¢

I

C'est a cette méme considération des arithmocercles a
rayon rationnel que se rattache la représentation déja indi-
quée au § 2 des arithmodirigées.

5. — ARITHMOCERCLE QUELCONQUE. ll s’agit de décomposer
un nombre rationnel p en une somme de carrés de deux
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nombres rationnels x et y. Le cas ot p est lui-méme un
carré parfait vient d’étre traité; tout facteur entier carré de
I'un des deux termes de la fraction p pouvant étre absorbé
dans x et 7, nous devons nous borner au seul cas ou les
deux termes de la fraction irréductible p sont a facteurs
simples.

Les identités

(x1 x, + yiyz)z -+ (xlyz — 7, x2)2 = {x: + g‘j) . (x: -+ 3’:) )

2y 2 71 2__ 1
‘2 '2 + _2 ‘2 — .2 P ’
X+ e e

permettent en outre de réduire 'étude de la décomposition
en deux carrés d’'un nombre rationnel p au cas particulier
ou o est entier, puisqu’elles expriment que le produit ou le
quotient de deux nombres p,, p, décomposables en deux car-
rés sont de la méme nature.

Etant donné le nombre rationnel 5, on devra donc consi-
dérer les facteurs premiers de son dénominateur et de son
numérateur, aprés suppression des facteurs qui inter-
viennent au carré. La condilion nécessaire et suffisante pour
que le cercle considéré soit un arithmocercle est alors la
suivante : aucun de ces fucteurs n’est de la forme 4k — 1.

Supposons donc que les seuls facteurs considérés sont le
nombre 2 et des nombres entiers de la forme 4%k + 1. Le
cercle est alors un arithmocercle; par titonnements et a
I’aide d’une table de décomposition des nombres 44 4 1 en
sommes de deux carrés, on délerminera un arithmopoint
particulier de cet arithmocercle. La connaissance d'un
aritthmopoint particulier entraine alors celle d’une infinité
d’autres arithmopoints. Soil, en effet, M,(z,, 7, un arithmo-
point de I'arithmocercle. Une arithmodroite quelconque issue
de cet arithmopoint rencontre a nouveau l'arithmocirconfé-
rence en un point M, dont les coordonnées sont nécessaire-
ment des nombres rationnels. Réciproquement tout arithmo-
point de 'arithmocercle, autre que M,, est susceptible d’étre
obtenu par ce procédé, car la droite M, M, est une arithmo-
droite. Pratiquement, les coordonnées de l'arithmopoint
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. ., , | )
connu a priori étant x,, v,, les coordonnées courantes d'un
arithmopoint de 'arithmocercle sont:

x = x,cosf 4 y,sinf ,

y = &, sin0 — y,cos b ;

§ estun azimut dont la tangente trigonométrique de la moitié
est un nombre rationnel arbitraire.

C'est ainsi que le cercle représenté par l'équation
2% + y? = 2 est nécessairement un arithmocercle, puisqu’il
passe par 'arithmopoint x, =1, y,=1. La représentation
rationnelle de cet arithmocercle est

14 20 — 2 — 1 2
£ = — T = = .
1 - a2 J T »
6. — ARITHMOTRIANGLES AUTOMEDIANS. De méme qu’a
I'arithmocercle d’équation x% + y? = 1 se raltachent les

arithmotriangles pythagoriques, il est possible d'associer
diverses classes de triangles particuliers a d’autres arithmo-
cercles. Clest ainsi, en premier lieu, qu’a l'arithmocercle
x% 4+ y% == 2 se rattachent les arithmoltriangles automédians.
Ce sont, par définition, les triangles a cotés rationnels liés
par la relation a? 4 ¢ = 2%

Les cotés a, b, ¢ d’un triangle se présentant dans 'ordre
a> b > ¢, les médianes sont nécessairement dans l'ordre
mg < mp < m.. Pour que ces médianes aient des longueurs
proportionnelles a celles des cotés, il faut et il suffit que
celles-ci soient liées par la relation

202 = a* 4+ ¢ ;
on a alors :
2m, = ic , 2m, = b , 2m, = Aa

avec )‘:\/5. En d’autres termes, m,, m,, m, ont alors
les longueurs qu'elles auraient respeclivement dans trois
triangles équilatéraux de cotés ¢, b et a. La condition
d’égale inclinaison de deux médianes sur les cotés corres-
pondants conduit aussi aux mémes triangles.

Ces triangles tels que 20% == a® + ¢? ont éié signalés par
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E. LemoINe (A. F. A. S., Toulouse, 1887) et par M. J. NEUBERG
(Mathesis, 1889, question n°® 661, pp. 261-264) et étudiés par
M. J. DErrez (Mathésis. 1903, pp. 196-200, 226-230, 245-248);
ils ont été nommés triangles automédians. Pour avoir la
représentation générale des cotés d’un arithmotriangle auto-
médian, il suffit de poser

a = b(cos § + sinf) ,
c b

(cos 6§ — sin6) ,

conformément a la théorie de l'arithmocercle 2% + y? == 2,
passant par l'arithmopoint {1, 1), et d’introduire le para-

) b . ; )
metre { — tga . On obtient ainsi

a:)\(1+2t—t2) )

b = (1 4 % ,
¢ =l — 2% — 1 ;

A est un parameétre rationnel de similitude; c'est du para-
meétre ¢ seul que dépend la forme du triangle. Reste a pré-
ciser les limites dans lesquelles doit étre compris ce dernier
parameétre ¢ pour que les trois expressions ci-dessus repré-
sentent réellement les cotés d’un triangle. Une discussion
simple prouve que l'on doit prendre

A >0, V3 —2<Ct<C2—V3 ;

si ¢ est négatif, 'ordre des cotés est a« < b < c; sit est
positif, 'ordre estinverse. Il est encore possible de présenter
la double condition précédente sous la forme suivante, équi-
valente mais plus expressive:

— 5 <i<5-

A coté des arithmotriangles automédians, il convient de
placer les arithmotriangles satisfaisant a la relation

112
2T a=Tp0

également signalée par M. J. NEuBerG. Ces arithmotriangles

4
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sont encore liés a I'étude de l'arithmocercle x? 4+ y*=2;
on posera :

L A
CErTra—e
A
b —= —;
1TF &
e l .
=T "
ou encore ,
. b L b )
cos § 4+ sinh ’ €= Cos —sinb

la double condition d’existence du triangle est ici:

VT —1

O<sin6<—2——- .

7. — TRIANGLES A MEDIANES ORTHOGONALES. L’'étude des
triangles & cotés rationnels dont deux médianes sont ortho-
gonales est intimement liée a la théorie de 'arithmocercle

xt + 2=

La relation moyennant laquelle, dans un triangle ABC de
coOtés a, b, c, les médianes issues des sommets A et B sont
orthogonales est, en effet,

Y

& K R I T L T T S T T L T g i e A e e B BT e T Y e e
T T Y N T A T o o LT,

s
o

G Do 2 T3

a?® 4 b* = 5¢2

¢ étant nécessairement le plus petit des trois cotés. Remar-
quons que 'arithmocercle x? 4 y? = 5 passant par I'arithmo-
point (1, 2) a pour représentation paramétrique

x = cos 6 4 2sin 0 .

2cos § — sin 0 .

I

y
Il en résulte pour 'arithmotriangle considéré les relations

a = c(cos § + 2sin ) ;

I

¢(2cos 6 — sin 6) ;
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la représentation la plus générale de ce triangle est donc:

a=»Xx(14 4t — ¢*) ,
b = 201 — ¢t — 1% ,
c = A1 4+ t¥) ,

A el ¢ étant deux paramétres rationnels quelconques; le pre-
mier est un paramétre de similitude ; ¢’est du second, ¢, que
dépend la forme du triangle. Une discussion simple prouve

c . .. 1
que ¢ doit étre compris entre les limites 0 et .

Pour ¢ < V10 — 3, l'ordre des colés est b > « > ¢; pour
— 1
VM—3<t<?,

I'ordre des cotés esl au contraire a > b > c.

8. — ArirumosrHERE. Il s’agit d’étudier. la décomposition
d’un nombre ralionnel en une somme de trois carrés de
nombres rationnels. Un premier cas particulier de cette
étude des équations du type 22 4 y* 4 27 = p est celui ou g
est un carré: c’est le probleme des parallélépipedes rec-
tangles a arétes et diagonales commensurables. L’équation
considérée est alors celle % + y? 4+ 2% = R*? d’une arithmo-
spheére a rayon rationnel. Pour avoir un arithmopoint d'une
telle arithmospheére a rayon rationnel, il suffit de considérer
un point de la sphere dont les tangentes trigonométriques
des demi-longitude et demi-latitude soient rationnelles; les
formules de représentation correspondantes sont:

x = Rcosgcos{ , y = Rcosg¢sing , z = Rsing ,
! . o
*cang—;—> et tang—;— étant deux nombres rationnels arbitraires;
posant tang ; = u, tang%— = ¢, il vient, en effet:
(1 — u?) (1 — v ‘ v(1 — u?) u
= E y e IR - - —_—
* R (1 4+ «?) (1 4 ¥ J (1 + w?) (1 4 v¥ : 2R1 + u?

Mais cette représentation paraméirique de la sphére est
impropre, en ce sens que si elle fait correspondre a tout
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couple de valeurs rationnelles de (v, ¢) un arithmopoint de
la sphére, celui-ci n’est pas toutefois I'arithmopoint le plus
général de cette arithmosphére. Des formules

B R + 1/;‘_“1:? . wy

u —= , y

% Tz 4 u'(;c — R)

’

il résulte que la représentation géographique laisse de coté
les arithmopoints de la sphére tels que leur distance a la
ligne des poles Oz n’est pas rationnelle. C'est ainsi que
I'arithmopoint (1, 2, 2) de 'arithmosphére x? + y* 4 2°* =
est représentée par les valeurs irrationnelles de « et de o.

Pour avoir une représentation propre, il suflit d’avoir
recours a la représentation stéréographique de la sphere
sur un plan. L'introduction de la transformation stéréogra-
phique dans 1'étude de cette méme question conduit a des
formules plus simples et présente, en outre de l'avantage
essentiel de permettre de représenter l'arithmopoint le plus
général de l'arithmosphere, celui de transformer les courbes
algébriques tracées sur elle en des courbes planes particu-
lierement simples le plus souvent. Prenant, en effet, le point
0, 0, R) pour point de vue et le plan z =0 pour plan de
projection, les formules

p=Re— | y—Ro_ L _gitw—1
Freri YT ey L i
— :l" PR -,)
T_R_Z7 q_R__z’

expriment les relations entre le point M(x, v, z) de la sphere
et son image u(§, 7).

Il convient de rappeler ici que E. Cararan (Bulletin de
UAcadémie royale de Belgique, [3], 1. 27, 1894), observe que
I'identité

(a® 4 b 4 ¢)? = (a? + b — %)% 4 (2ac)® + (2bc)?

prouve que: sur la sphere dont l'équation est
22+ i =1,

il existe une infinité de points dont les coordonnées sont
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rationnelles. 1l est manifeste que 'identité précédente n’'est
autre précisément que celle,

E ot 1) = (0 — 1) (202 (207

qul résulte des formules précédentes de la représentation-
stéréographique.

Le cas d'une arithmospheére générale x? + y* 4 22 = p se
traite de la méme maniére que le cas d’un arithmocercle
quelconque; on absorbe dans x?, y?%, z% les facteurs carrés
de 'un ou l'autre terme de p et on rameéne l'étude de la
question au cas ou p est entier. Par taitonnements, on déter-
mine, si elle existe, une solution particuliere dans ce der-
nier cas et on en déduit une double infinité d’arithmopoints
par l'intersection de la sphere et d’'une arithmodroite arbi-
traire issue de l'arithmopoint connu a priori.

9. — ARITHMOHYPERSPHERE : TOUTE HYPERSPHERE EST UNE
ARITHMOHYPERSPHERE. L'extension des considérations précé-
dentes au cas d'une hypersphére appartenant a un espace
a plus de trois dimensions s’effectue simplement. Il est utile
de l'indiquer, en vue de l'application de la considération
des arithmohyperspheres a une classe spéciale de quadrila-
téres inscriptibles intéressants (§ 14).

Soit, dans un espace a n dimensions, une hypersphere
représentée par I’équation
2

2, 4+ a + x4 ..+ a, =R

R étant un nombre rationnel donné. Les équations

; x; — Rsin 0 ,
x; — R cos0;.sinfy ,
x; — R cos 0;. cos ;. sin 0; ,
xt — Rcosf;.cosf,.cosl;.sinf, ,
x,_; = Rcosf.cosf.cosb;.cosf, ... cosf, ,.sin 0,1
x, = Rcosf;.cosby. cosf;.cosf, ... cos 0, g.cosb, .,

dans lesquelles on introduit des valeurs rationnelles de
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0 0, — : . ,
tang%‘, tanga", tang—'g—’, représentent un point ration-

nel de ’hypersphére.

Considérons maintenant le cas d’'une hypersphére dont
I'équation est encore rationnelle, qui peut donc étre réduite
a la forme

par une simple translation rationnelle d’axes, mais dont le
rayon |/ p est un nombre irrationnel. Il est essentiel d’ob-
server qu'alors que le cercle de I'espace a deux dimensions
et la sphére de 'espace ordinaire ne sont pas généralement
douées d’arithmopoints, méme lorsque la rationalité des
coeflicients de leurs équations respectives est assurée, il en
est différemment pour les hyperspheres, dés l'espace a
quatre dimensions. Il résulte, en effet, du théoreme de
Bachet (généralisé conformément aux considérations du
§ 14) qu'une hypersphére représentée par une équation ration-
nelle admet toujours un arithmopornt. Par suite, elle admet
une oo"~' d'arithmopoints; elle est alors une arithmohyper-
sphére. Soient (af ;x5 ... x5) les coordonnées rationnelles
du point rationnel M, connu a priori. Pour obtenir un aulre
point rationnel, il suffit d’associer a I'équation de I'hyper-
sphere les n — 1 équations

d’une hyperdroite passant par le point M;; les «, ... @, sont
n nombres rationnels arbitraires. Ceci revient a poser

. 0 0 0
x, =ah+x , X, = ah+2x,, ... , x,=a,k+ x ;

2 est un nombre rationnel défini par la formule

0 0 0
a,x + P + o T ap Xy

A= — 9
aj—}—ai{—...%—a:‘

Il est encore possible de présenter la solution de cette
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méme question sous une autre forme, en introduisant les
n fonctions @, ... ®, suivantes et leurs dérivées partielles:

! ®; — sin 0, ,

®; — cos 0. sin 0, ,

®); = cos 0. cos 0,.sin 0, ,

™, = cos ;. cos B;. cos 0. sin O, ,

®,_, = cosbB.cosb,.cosb;.cos0;...cos6,_,sinf,_,,
. ®, =-cosb.cosf,.cosl;.cosb...cosl,  , cos 6;_1 ]

les 6, ... 6,_1 sont n — 1 paramétres arbitraires. On posera
alors :

0 00, 000, 000G 0 06,
xy —=a, 0 3 — £ — X — X _—
1 1" ( 1 + 1 691 + 2 bez + 3 063 + + n—1 ben—l
o6 WG] 06 NC)
0 0 k 0 k 0 k 0 k
Xy — e X, —— X — X, —— x _
- k xn Ok + 1 661 + 2 662 + 3 003 + + n..__‘l 60’l~1
NG (G G )
0 0 n 0 n 0 n 0 n
x = x X, — X —— X, —— X —_—
| & nOn + 2, 00, 1 00, T 00 T T ob,

et on introduira naturellement dans ces derniéres formules
des paramétres rationnels arbitraires ¢,¢, ... ,—, respective-
ment égaux aux tangentes des arcs moitiés

eu—l
2

B b
y = tang—2Jl . 1y = tang—25 ¥ sxx 3y t,_, = tang

Ainsi donc, on peut représenter les coordonnées courantes
d’un point rationnel d’une arithmohypersphére par des for-
mules contenant les n indéterminées (a, ... a@,) sous forme
homogéne, ou les n — 1 indéterminées ¢, ... ¢,_4.

Mais tandis que, dans le premier mode de représentation,
on obtient I'arithmopoint le plus général de l'arithmosphere,
il n’en est nullement de méme dans le second cas ; la repré-
sentation au moyen des fonctions ©® est impropre, tout de
méme que la représentation géographique de la sphere ordi-
naire. Par une légére transformation de la premiére repré-

7 AT % TR
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sentation, il est possible, d’autre part, d’étendre aux hyper-
sphéres les propriétés de la représentation stéréographique
qui est, elle aussi, une representation propre.

Les arithmotriangles héroniens.

10. — Le probléme des arithmotriangles héroniens con-
siste a déterminer les triangles tels que, les cotés étant
rationnels, la.surface soit aussi un nombre rationnel. Il
résulte de cette définition que, dans tout arithmotriangle
héronien, les mesures des divers éléments linéaires (lon-
gueurs des cotés, longueurs des hauteurs, rayons des cercles
inscrits et ex-inscrits, rayon du cercle circonserit, segments
déterminés sur les cotés par les hauteurs) et enfin la surface
et les nombres trigonométriques des angles du triangle
sont des nombres rationnels.

La détermination des arithmotriangles héroniens généraux
peut étre effectuée de diverses manieres. Il est d’abord pos-
sible de faire dériver leur construction de celle des arithmo-
triangles rectangles pythagoriques. Etant donnés, en effet,
deux arithmotriangles rectangles pythagoriques, on peut,
par similitudes convenables, rendre égales deux cathéetes
appartenant respectivement aux deux triangles rectangles;
en juxtaposant ensuite les deux cathétes égales, de maniére
que les deux autres catheétes soient alignées, on constitue
un arithmotriangle héronien acutangle et un arithmotriangle
héronien obtusangle, suivant que les deux triangles juxta-
posés sont de part et d'autre ou non de la cathéte commune.

Uneseconde méthode de construction générale des arithmo-
triangles héroniens résulte de la rationalité du rayon du
cercle circonscrit et des nombres trigonométriques de ses
angles. Il suffit donc de se donner un premier nombre ration-
nel R qui sera le rayon du cercle circonscrit, et deux autres
nombres y et z, rationnels tous deux et assujettis aux inéga-
lités suivantes :

1 ——
— >z >0, 1 4+ 22—z . ‘
e V >y >z
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