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NOTIONS D'ARITHMOGEOMETRIE

PAR

Emile Turrière (Montpellier).

1. — J'ai réuni, dans le présent travail, quelques remarques
bien simples dont l'ensemble constitue la première étude
systématique de la géométrie élémentaire des nombres
rationnels. Dans ce premier article, j'ai cru devoir me borner
aux seules figures qui sont en étroite connexion avec le cercle
ou la sphère, réservant d'autres recherches pour un Mémoire
ultérieur qui sera consacré aux arithmoconiques (c'est-à-dire
à l'étude géométrique des équations indéterminées du genre
de celles de Brahmagupta et Fermât) et aux courbes d'ordre
supérieur.

Les arithmotriangles héroniens occupent dans ce travail
une place importante. J'ai pensé, en effet, que ces triangles
qui possèdent un grand nombre de lignes rationnelles et
dont la détermination a jusqu'ici donné lieu à quelques
recherches isolées méritaient d'être étudiés d'une manière
beaucoup plus approfondie.

Les éléments de l'Arithmogéométrie.

2. — Qu'il s'agisse du plan ou de l'espace, j'appellerai
point rationnel ou arithmopoint tout point dont les
coordonnées cartésiennes rectangulaires sont des nombres
rationnels. Sur une droite quelconque, il peut y avoir, selon
les cas, zéro point rationnel, un point rationnel ou une infinité

de points rationnels; c'est ce que prouvent les trois
exemples suivants de droites représentées par les équations
respectives :

x — - x — y \/ 2 x — 3y

L'Enseignement mathém., 18e année; 1916. 6
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Dès qu'il existe, sur une droite, un couple d'arithmopoints
distincts, il existe une infinité de points de cette nature sur
la droite : ce sont les points qui divisent rationnellement, en
un rapport arbitraire, le segment défini par les deux
premiers points rationnels. Il n'y a d'ailleurs, sur cette même
droite, pas d'autre arithmopoint que ceux obtenus par le

procédé précédent. Je dirai, dans le cas d'une droite de cette
nature, que c'est une cirithmodroite.

En géométrie plane, l'équation d'une arithmodroite générale

est de la forme ax + by -f- c 0, 6, c étant des
nombres algébriques arbitraires mais rationnels; cette même
arithmodroite peut aussi être représentée par un système
de deux équations linéaires à coefficients rationnels.

Parmi les arithmodroites du plan, celles pour lesquelles
l'expression a2 + b2 est le carré d'un nombre rationnel
présentent une importance toute spéciale (c. f. le problème des
distances rationnelles, § 18). Je les désignerai donc par la
dénomination d"arithmodirigée. Ces arithmodirigées jouissent
de propriétés simples qu'il est utile de mentionner:

La distance de deux arithmopoints quelconques d'une
arithmodirigée est mesurée par un nombre rationnel.
Réciproquement, si la distance de deux arithmopoints particuliers

d'une arithmodroite est rationnelle, il en est de même de

tout autre couple d'arithmopoints de cette arithmodroite, qui
est dès lors une arithmodirigée.

La distance de tout arithmopoint du plan à une arithmodirigée

est rationnelle. Réciproquement, si la distance d'un
arithmopoint particulier du plan à une arithmodroite est
rationnelle et non nulle, il en est de même de tout arithmopoint

du plan et Varithmodroite considérée est une arithmodirigée.

Cette propriété place les arithmodirigées parmi les courbes
de direction du plan qui jouissent, on le sait, de la propriété
caractéristique de décomposition en deux équations rationnelles

de l'équation dé chacune de leurs courbes parallèles.
D'après ce qui vient d'être écrit, le lieu des points du plan
qui sont à une distance rationnelle donnée d'une arithmodroite

se compose de deux droites parallèles dont les deux
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équations ne se séparent pas en général, sous le point de

vue des nombres rationnels. Cette distinction est caractéristique

des arithmodirigées.
Les nombres trigonométriques de l'angle formé par deux

arithmodirigées sont tous rationnels ; la tangente trigonome-
trique de la moitié de cet angle est rationnelle. Il en résulte

que la représentation la plus générale d'une arithmodirigée
est

x cos © -f- y sin © 7=z W

tg I* étant un nombre rationnel t, ainsi que la distance w à

l'origine 0 des coordonnées rectangulaires (Ox, Oy); on
peut encore poser

x — u. cos © -j- a

y v sin ©-}-/>,

a, 6, tang | étant des nombres rationnels donnés et u étant

un paramètre rationnel.
En ce qui concerne le plan, il y aura sur lui zéro point

rationnel, un point rationnel, une infinité de points rationnels

alignés (sur une arithmodroite) ou enfin une infinité
d'arithmopoints non alignés. Dès qu'il existe, en effet, un
couple d'arithmopoints dans un plan, il en existe une infinité

: ceux de l'arithmodroite qui joint les deux premiers.
S'il existe trois arithmopoints, sommets d'un véritable
triangle, il en existe une infinité : ce sont les centres des
distances proportionnelles des trois premiers, respectivement
affectés de coefficients algébriques rationnels et absolument
arbitraires. Je dirai que, dans ce dernier cas, le plan, qui
contient une infinité d'arithmodroites, est un arithnioplan.

D'une manière générale, j'appellerai arithmocourbe, en
géométrie plane ou en géométrie spatiale indifféremment,
toute courbe qui satisfera aux conditions simultanées
suivantes :

a) la courbe est algébrique et unicursale;
'b) les coefficients des polynômes constitutifs des fractions

rationnelles qui expriment rationnellement et paramétrique-
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ment les coordonnées cartésiennes d'un point courant de
cette courbe sont des nombres rationnels.

Dans ces conditions, une arithmocourbe admet une infinité
d'arithmopoints : ce sont tous ceux qui correspondent aux
valeurs rationnelles des paramètres de représentation.
Réciproquement, tout arithmopoint d'une arithmocourbe correspond

à une valeur rationnelle du paramètre.
Une surface algébrique sera de même appelée une arith-

mosurface si elle est susceptible d'être représentée par trois
fonctions rationnelles de deux paramètres, tous les coefficients

étant des nombres rationnels. A chaque couple de
valeurs rationnelles de deux paramètres de représentation,
correspond un arithmopoint de la surface. Mais il conviendra
essentiellement de s'assurer, dans le cas d'une surface, que,
réciproquement, les formules adoptées représentent l'a ri th-
mopoint le plus général de la surface étudiée. Les exemples
(examinés au § 8) de la représentation géographique
(représentation impropre) et de la représentation stéréographique
(représentation propre) de l'arithmosphère à rayon rationnel
montrent suffisamment l'intérêt qu'il y aura à mettre en
évidence des représentations propres des arithmosurfaces.

3. — Arithmocercle. Un cercle quelconque peut n'avoir
aucun point rationnel, ou bien en posséder un seul, deux
ou une infinité. Dès qu'il en possède trois, en effet, il en
possède une infinité : c'est alors un cercle que nous nommerons

un arithmocercle.
L'équation d'un arilhmocercle a nécessairement tous les

coefficients de son équation rationnels, puisque ces coefficients

satisfont à trois équations linéaires rationnelles. Le
centre d'un arilhmocercle est donc toujours un arithmopoint
du plan : on pourra l'appeler Va/ïthmocentre. 11 est important

d'observer, en vue des applications, que, réciproquement,

un cercle à équation rationnelle et qui possède en
outre un arithmopoint est nécessairement un arithmocercle.
L'arithmopoint courant d'un tel arithmocercle s'obtient
comme intersection de l'arithmocercle avec; une arithmo-
droite quelconque pivotant autour de l'arithmopoint connu
a priori.
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4. — Arithmocercle a rayon rationnel. Arithmotriangles
pythagoriques. La représentation d'un arithmocercle à rayon
rationnel est immédiate ; l'équation d'un tel arithmocercle
étant

x2 -j- y2 R2

il suffit d'introduire comme paramètre de représentation la

tangente trigonométrique de la moitié de l'azimut

6

tang"2 *

et de poser
x R cos 6 y z=z R sin 6

pour avoir la représentation générale désirée de l'arithmo-
point courant de cet arithmocercle :

__
R (1 — i2) _ 2R£

x ~ i +12 ' y ~ r+T2

A cette théorie des arithmocercles à rayon rationnel est
intimement liée celle des arithmotriangles pythagoriques.
Nous désignerons sous cette dernière dénomination ceux
des triangles rectangles dont les trois côtés sont mesurés

par des nombres rationnels; ils sont semblables, et dans des

rapports rationnels de similitude, aux triangles pythagoriques

proprement dits, c'est-à-dire à ceux des triangles
rectangles à côtés entiers.

L'arithmotriangle pythagorique est susceptible d'être
représenté par un arithmopoint quelconque d'un arithmocercle

à rayon rationnel. Les formules de correspondance
entre l'hypoténuse les cathètes b et c d'un tel arithmo-
triangle pythagorique et les coordonnées de l'arithmopoint
sont

a — R b — x c ~ y

C'est à cette même considération des arithmocercles à

rayon rationnel que se rattache la représentation déjà indiquée

au § 2 des arithmodirigées.
5. — Arithmocercle quelconque. Il s'agit de décomposer

un nombre rationnel p en une somme de carrés de deux
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nombres rationnels x et y% Le cas où p est lui-même un
carré parfait vient d'être traité; tout facteur entier carré de
l'un des deux termes de la fraction p pouvant être absorbé
dans x et y, nous devons nous borner au seul cas où les
deux termes de la fraction irréductible p sont à facteurs
simples.

Les identités

permettent en outre de réduire l'étude de la décomposition
en deux carrés d'un nombre rationnel p au cas particulier
où p est entier, puisqu'elles expriment que le produit ou le
quotient de deux nombres pi, pü décomposables en deux carrés

sont de la même nature.
Etant donné le nombre rationnel p, on devra donc considérer

les facteurs premiers de son dénominateur et de son
numérateur, après suppression des facteurs qui
interviennent au carré. La condition nécessaire et suffisante pour
que le cercle considéré soit un arithmocercle est alors la
suivante : aucun de ces facteurs n'est de la forme 4k — 1.

Supposons donc que les seuls facteurs considérés sont le
nombre 2 et des nombres entiers de la forme 44; -f- 1. Le
cercle est alors un arithmocercle; par tâtonnements et à

l'aide d'une table de décomposition des nombres 44; -f- 1 en

sommes de deux carrés, on déterminera un arithmopoint
particulier de cet arithmocercle. La connaissance d'un
arithmopoint particulier entraîne alors celle d'une infinité
d'autres arithmopoints. Soit, en effet, M0 [xQ yQ) un arithmopoint

de l'arithmocercle. Une arithmodroite quelconque issue
de cet arithmopoint rencontre à nouveau l'arithmocirconfé-
rence en un point M1 dont les coordonnées sont nécessairement

des nombres rationnels. Réciproquement tout arithmopoint

de l'arithmocercle, autre que M0, est susceptible d'être
obtenu par ce procédé, car la droite M0M1 est une arithmodroite.

Pratiquement, les coordonnées de l'arithmopoint

K-r2 + v/ + K*r2 — LtxS K* + 3\) • K + r22!
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connu a priori étant x0, yQ, les coordonnées
arithmopoint de l'arithmocercle sont:

x ~ x0 cos 0 -f- j0 sin 0

y -— x0 sin 0 — y0 cos 0 ;

0 est un azimut dont la tangente trigonométrique de la moitié
est un nombre rationnel arbitraire.

C'est ainsi que le cercle représenté par l'équation
x2-\-y2 2 est nécessairement un arithmocercle, puisqu'il
passe par l'arithmopoint x0 — 1, yQ ~ 1. La représentation
rationnelle de cet arithmocercle est

1 21 — X2 — 1 + 2X + X2

•r — 1 X2 ' y ~~ 1 + X2

6. — Arithmotriangles automédians. De même qu'à
l'arithmocercle d'équation x2, + y2 i se rattachent les

arithmotriangles pythagoriques, il est possible d'associer
diverses classes de triangles particuliers à d'autres arithmo-
cercles. C'est ainsi, en premier lieu, qu'à l'arithmocercle
x2 + y2 2 se rattachent les arithmotriangles automédians.
Ce sont, par définition, les triangles à côtés rationnels liés
par la relation a2 + c2 2b2.

Les côtés <2, è, c d'un triangle se présentant dans l'ordre
a > b > ç, les médianes sont nécessairement dans l'ordre
ma < nib < /72c. Pour que ces médianes aient des longueurs
proportionnelles à celles des côtés, il faut et il suffit que
celles-ci soient liées par la relation

2/,2 «2 + c2 ;

on a alors :

2ma — Xc 2zzz Xb 2mc, Xa

avec X \/3 En d'autres termes, ma, mb, mc ont alors
les longueurs qu'elles auraient respectivement dans trois
triangles équilatéraux de côtés c, b et a. La condition
d'égale inclinaison de deux médianes sur les côtés
correspondants conduit aussi aux mêmes triangles.

Ces triangles tels que 2b2 — a2 + c2 ont été signalés par

87

courantes d'un
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E. Lemoine (A. F. A. S., Toulouse, 1887) et par M. J. Neuberg
(.Mathésis> 1889, question n° 661, pp. 261-264) et étudiés par
M. J. Déprez (Mathésis, 1903, pp. 196-200, 226-230, 245-248);
ils ont été nommés triangles automédians. Pour avoir la

représentation générale des côtés d'un arithmotriangle
automédian, il suffit de poser

conformément à la théorie de l'arithmocercle x 2 + ^ 2,

passant par l'arithmopoint (1, 1), et d'introduire le para-

1 est un paramètre rationnel de similitude; c'est du
paramètre t seul que dépend la forme du triangle. Reste à

préciser les limites dans lesquelles doit être compris ce dernier
paramètre t pour que les trois expressions ci-dessus
représentent réellement les côtés d'un triangle. Une discussion
simple prouve que l'on doit prendre

si t est négatif, l'ordre des côtés est a b < c; si / est
positif, l'ordre est inverse. Il est encore possible de présenter
la double condition précédente sous la forme suivante,
équivalente mais plus expressive :

A côté des arithmotriangles automédians, il convient de

placer les arithmotriangles satisfaisant à la relation

a — b (cos 6 + sin 6)

c — b(cos 6 — sin 6)

mètre t tg-^ On obtient ainsi

X > o [/'S — 2 < * < 2 — [/3 ;

également signalée par M. J. Neuberg. Ces arithmotriangles
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sont encore liés à l'étude de l'arithmocercle x? + yi 2;
on posera :

/ x
a —

b

1 + 21 — t2 '

1 + i* '

X

1 — 2t—t*
1

ou encore

cos 6 + sin Ô ' cos ô — sin 9

la double condition d'existence du triangle est ici :

i/¥ — 1
0 < sin ô <

7. — Triangles a médianes orthogonales. L'étude des

triangles à côtés rationnels dont deux médianes sont
orthogonales est intimement liée à la théorie de l'arithmocercle

x* + y2 — 5 •

La relation moyennant laquelle, dans un triangle ABC de
côtés a, b, c, les médianes issues des sommets A et B sont
orthogonales est, en effet,

a2 + b2 5c2

c étant nécessairement le plus petit des trois côtés. Remarquons

que l'arithmocercle x2 + y2 — 5 passant par l'arithmo-
point (1, 2) a pour représentation paramétrique

x — cos 6 + 2sin 6

y — 2cos 6 — sin 9

Il en résulte pour l'arithmotriangle considéré les relations

a — c(cos 9 + 2sin 9)

b c (2cos 9 — sin 9)
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la représentation la plus générale de ce triangle est donc:

1 et t étant deux paramètres rationnels quelconques; le
premier est un paramètre de similitude ; c'est du second, /, que
dépend la forme du triangle. Une discussion simple prouve

Pour t < \/\\) — 3, Tordre des côtés est b > a > è; pour

Tordre des côtés est au contraire a > b c.
8. — Arithmosphère. Il s'agit d'étudier la décomposition

d'un nombre rationnel en une somme de trois carrés de

nombres rationnels. Un premier cas particulier de cette
étude des équations du type x2 -f y2 + z2 p est celui où p

est un carré : c'est le problème des parallélépipèdes
rectangles à arêtes et diagonales commensurables. L'équation
considérée est alors celle x2 + y2 + z2 R2 d'une arithmosphère

à rayon rationnel. Pour avoir un arithmopoint d une
telle arithmosphère à rayon rationnel, il suffit de considérer
un point de la sphère dont les tangentes trigonométriques
des demi-longitude et demi-latitude soient rationnelles; les
formules de représentation correspondantes sont :

x zzz R cos cp cos y R cos <p sin z ^ R sin cp

tang | et tang étant deux nombres rationnels arbitraires;

posant tang| tang-| c, il vient, en effet :

a =z X(l -f kt — i2)

b — Tk (1 — t — i2)

c =X{ 1 + t2)

1

que t doit être compris entre les limites 0 et g-.

|/'10- — 3 < t < i

Mais cette représentation paramétrique de la sphère est

impropre, en ce sens que si elle fait correspondre à tout
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couple de valeurs rationnelles de (w, v) un arithmopoint de

la sphère, celui-ci n'est pas toutefois l'arithmopoint le plus
général de cette arithmosphère. Des formules

H ± \Zxà y2 uy
s

' V
z u[x — R)

il résulte que la représentation géographique laisse de côté
les arithmopoints de la sphère tels que leur distance à la

ligne des pôles 0z n'est pas rationnelle. C'est ainsi que
l'arithmopoint (1, 2, 2) de l'arithmosphère x2 + y2 z2 9

est représentée par les valeurs irrationnelles de u et de c.

Pour avoir une représentation propre, il suffit d'avoir
recours à la représentation stéréographique de la sphère
sur un plan. L'introduction de la transformation stéréographique

dans l'étude de cette même question conduit à des
formules plus simples et présente, en outre de l'avantage
essentiel de permettre de représenter l'arithmopoint le plus
général de l'arithmosphère, celui de transformer les courbes
algébriques tracées sur elle en des courbes planes
particulièrement simples le plus souvent. Prenant, en effet, le point
0, 0, Pi) pour point de vue et le plan z 0 pour plan de

projection, les formules

2r, P 4- rr — 1

* " rp + ïi*+T ' y rF+V-M ' 8 rPW+1 '

ç
x r

expriment les relations entre le point M(,r, y, z) de la sphère
et son image u(|, yj).

Il convient de rappeler ici que E. Catalan (Bulletin de

VAcadémie royale de Belgique, [3], t. 27, 1894), observe que
l'identité

(a2 + b2 4- c2f zzz (a2 + IA — c2)2 -j- (2ac)* + (26c)2

prouve que : sur la sphère dont Véquation est

+f + z*~l
il existe une infinité de points dont les coordonnées sont
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rationnelles. Il est manifeste que l'identité précédente n'est
autre précisément que celle,

{? + n* + î)« ee (Ç> + y]2 - i)2 + (2E)2 + .(2y])2

qui résulte des formules précédentes de la représentation
stéréographique.

Le cas d'une arithmosphère générale x2 H- y2 z2 p se
traite de la même manière que le cas d'un arithmocercle
quelconque; on absorbe dans x2, y2, z2 les facteurs carrés
de l'un ou l'autre terme de p et on ramène l'étude de la

question au cas où p est entier. Par tâtonnements, on détermine,

si elle existe, une solution particulière dans ce
dernier cas et on en déduit une double infinité d'arithmopoints
par l'intersection de la sphère et d'une arithmodroite
arbitraire issue de l'arithmopoint connu a priori.

9. — Arithmohypersphère : Toute hypersphère est une
arithmohypersphère. L'extension des considérations
précédentes au cas d'une hypersphère appartenant à un espace
à plus de trois dimensions s'effectue simplement. Il est utile
de l'indiquer, en vue de l'application de la considération
des arithmohypersphères à une classe spéciale de quadrilatères

inscriptibles intéressants (§ 14).

Soit, dans un espace à n dimensions, une hypersphère
représentée par l'équation

2 2 2 2 2

+ ^ + *, + R

R étant un nombre rationnel donné. Les équations

I xt — R sin 0A

Ix2

— R cos sin 02

xs — R cos Ot. cos 02. sin 03

x4 R cos 0t. cos 02. cos 03. sin 04

ocn__x R cos dt ..cos 0j. cos 08. cos 04 cos 0/? sin 0/z_1

X„ ~ R cos 0i. cos 0j. cos 0S. cos d4 cos 0 „ cos 0
\ n * • n—i n—l '

dans lesquelles on introduit des valeurs rationnelles de
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tang-^1, tang-^2, ...tang^-", représentent un point rationnel

de l'hypersphère.
Considérons maintenant le cas d'une hypersphère dont

l'équation est encore rationnelle, qui peut donc être réduite
à la forme

k=n
S 4 P >

*=i

par une simple translation rationnelle d'axes, mais dont le

rayon V/p est un nombre irrationnel. Il est essentiel
d'observer qu'alors que le cercle de l'espace à deux dimensions
et la sphère de l'espace ordinaire ne sont pas généralement
douées d'arithmopoints, même lorsque la rationalité des
coefficients de leurs équations respectives est assurée, il en
est différemment pour les hypersphères, dès l'espace à

quatre dimensions. Il résulte, en effet, du théorème de
Bachet (généralisé conformément aux considérations du

| 14) qu'une hypersphère représentée par une équation rationnelle

admet toujours un arithmopoint. Par suite, elle admet
une go"—1 d'arithmopoints; elle est alors une arithmohyper-
sphère. Soient .x°a x°fl) les coordonnées rationnelles
du point rationnel M0 connu a priori. Pour obtenir un autre
point rationnel, il suffit d'associer à l'équation de l'hypersphère

les n — 1 équations

x
° ° ° 0

d'une hyperdroite passant par le point M0 ; les ai an sont
n nombres rationnels arbitraires. Ceci revient à poser

^ — flix + + ,r2 an\ + Xn ;

1 est un nombre rationnel défini par la formule

0 0
i

0

I _ o "l3"! + + + a"X"
' 2

I
2

I |S '
°1 + ai+ ••• + U,i

Il est encore possible de présenter la solution de cette



94 E. TURRIÈRE

même question sous une autre forme, en introduisant les
n fonctions 04 0n suivantes et leurs dérivées partielles:

j ©i m sin 0t

©3 — cos 6j. sin 02

©3 — cos 0j. cos 02. sin 08

©4 — cos 0j. cos 0f. cos 03. sin 04

©n_t rz cos 0t. cos 02. cos 08. cos 04 cos 0rt_2 sin 0/t_|

© zi cos 0!. cos 0o. cos 03. cos 04 cos 0n_2 C0S ®/i_l >

les 9i 9a~i sont n — 1 paramètres arbitraires. On posera
alors :

0 r\ I
oö©t oö©i oö©i o ö©i

•ri •,«H< + äs + *5, + - + -

X
ö©yt n

* - + x*wz + -• +
-1

— xn®n + TT + TcT + + + x^ -7—-2 Ö0S
' '2 Ö08

et on introduira naturellement dans ces dernières formules
des paramètres rationnels arbitraires ti t2 tn—i respectivement

égaux aux tangentes des arcs moitiés

0i 0j On—1
tttang — tang - tang-y-

Ainsi donc, on peut représenter les coordonnées courantes
d'un point rationnel d'une arithmohypersphère par des
formules contenant les n indéterminées (ai an) sous forme
homogène, ou les n — 1 indéterminées tA 4—1.

Mais tandis que, dans le premier mode de représentation^
on obtient l arithmopoint le plus général de l'arithmosphère,
il n'en est nullement de même dans le second cas ; la
représentation au moyen des fonctions 0 est impropre, tout de
même que la représentation géographique de la sphère
ordinaire. Par une légère transformation de la première repré-
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sentation, il est possible, d'autre part, d'étendre aux hvper-
sphères les propriétés de la représentation stéréographique
qui est, elle aussi, une representation propre.

Les arithmotriangles héroniens.

10. — Le problème des arithmotriangles héroniens
consiste à déterminer les triangles tels que, les côtés étant
rationnels, la surface soit aussi un nombre rationnel. Il
résulte de cette définition que, dans tout arithmotriangle
héronien, les mesures des divers éléments linéaires
(longueurs des côtés, longueurs des hauteurs, rayons des cercles
inscrits et ex-inscrits, rayon du cercle circonscrit, segments
déterminés sur les côtés par les hauteurs) et enfin la surface
et les nombres trigonoméj/riques des angles du triangle
sont des nombres rationnels.

La détermination des arithmotriangles héroniens généraux
peut être effectuée de diverses manières. Il est d'abord
possible de faire dériver leur construction de celle des
arithmotriangles rectangles pythagoriques. Etant donnés, en effet,
deux arithmotriangles rectangles pythagoriques, on peut,
par similitudes convenables, rendre égales deux cathètes
appartenant respectivement aux deux triangles rectangles;
en juxtaposant ensuite les deux cathètes égales, de manière
que les deux autres cathètes soient alignées, on constitue
un arithmotriangle héronien acutangle et un arithmotriangle
héronien obtusangle, suivant que les deux triangles juxtaposés

sont de part et d'autre ou non de la cathète commune.
Une seconde méthode de construction générale des

arithmotriangles héroniens résulte de la rationalité du rayon du
cercle circonscrit et des nombres trigonométriques de ses
angles. Il suffit donc de se donner un premier nombre rationnel

R qui sera le rayon du cercle circonscrit, et deux autres
nombres y et z, rationnels tous deux et assujettis aux inégalités

suivantes :

4=>«>°. /ÎT? ;

|/3
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en posant alors :

1 YZ
tang A : 2 — —, tang B : 2 y tang G : 2 — z

on obtient un arithmotriangle héronien dont les côtés ont
pour expressions :

„ - 4R (y + «) Il - xz) h_4R y c _ 4R
»

~ '
(1 + f)(1 +z') •

les inégalités imposées aux nombres rationnels y et z sont
celles qui assurent l'ordre suivant des côtés du triangle :

a > b > c ;

cet avantage des formules précédentes, qui permettent d'obtenir

tous les arithmotriangles héroniens au moyen de trois
nombres rationnels R, y et z, quelconques et uniquement
assujettis à des conditions de grandeur, compense largement
l'inconvénient qui résulte de la dissymétrie de ces formules.

11. — Arithmotriangles a cotés en progression
arithmétique. La méthode qui vient d'être indiquée pour déterminer

tous les arithmotriangles héroniens permet de
résoudre simplement une question qu'il est tout naturel de se

poser. On sait, en effet, que tous les arithmotriangles pytha-
goriques à côtés en progression arithmétique sont semblables
au triangle rectangle de côtés 3, 4 et 5 des harpedonaptes
égyptiens et qui fut initialement considéré par Pythagore.
C'est d'autre part à un triangle de côtés 13, 14, 15 que Héron
d'Alexandrie appliqua pour la première fois la formule, par
lui découverte, exprimant la surface d'un triangle en fonction

des mesures des côtés. Ce même triangle de côtés 13,

14, 15 figure aussi dans l'une des questions posées en 1536

par Zuane di Coi à Tartaglia, l'intérêt de cette question
résidant précisément dans le fait que diverses lignes tracées
dans le triangle considéré sont mesurées par des nombres
rationnels.

11 est donc intéressant de déterminer la formule générale
donnant tous les arithmotriangles héroniens à côtés en pro-
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gression arithmétique. La condition est, pour l'ordre a^> 6 > c

des côtés,
2b a c ;

par l'utilisation des formules précédentes, cette condition
devient :

2y 3 fy -j- z) (1 —yz)
1 -f y* - 1 + s2 + (i + f)[\ + **) '

c'est-à-dire :

23
J ~~ 1 -f 372 '

Les inégalités
t/r+T* - 3 > y > 3

1
sont ici satisfaites, sous les seules conditions > z > 0.

Il existe donc une infinité d'arithmotriangles héroniens à
côtés en progression arithmétique et dissemblables entre eux.
Ces triangles dépendent du paramètre rationnel arbitraire z,
uniquement assujetti à la double condition d'être positif et

inférieur à

42. — Une troisième méthode de détermination des arithmo-
triangles héroniens, générale et respectant la symétrie entre
les éléments, consiste à rattacher la théorie de ces triangles
à celle des arithmocercles. J'observerai, en effet, que la
formule bien connue qui donne l'aire d'un triangle en fonction
des coordonnées des sommets, sous la forme d'un déterminant,

conduit à des triangles dont l'aire est rationnelle si les
coordonnées des sommets sont six nombres rationnels. 11

reste donc à assurer la rationalité des longueurs des trois
côtés d'un tel triangle. En d'autres termes, puisqu'un cercle
est un arithmocercle dès qu'il possède trois points rationnels,
il faut se donner tout d'abord un arithmocercle quelconque
du rayon rationnel, dans le plan. Ce cercle sera, par exemple,
défini par son centre 0 et par un point A quelconque du
plan, ces deux points O et A étant tous deux rationnels. 11

s'agit maintenant de trouver, parmi l'infinité de points rationnels

de la circonférence de cet arithmocercle, un groupe de

1/F.nseignement mathém., 18e année; 1916 7
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trois points M1, M2 et M3 dont les mesures des distances
mutuelles soient des nombres rationnels.

Supposons que le rayon OA ait été choisi comme origine
des arcs sur cette circonférence ; les points M2 et M3

seront alors repérés par des arcs 0i, 02 et 03. Ces trois points
étant rationnels, les tangentes des arcs moitiés seront des
nombres rationnels ; mais cette triple condition n'assure
point la rationalité des mesures des distances mutuelles
des trois arithmopoints : il faut aussi que les sinus des moitiés

des trois différences de ces arcs pris deux à deux soient
des nombres rationnels, c'est-à-dire encore que tous les

6 0 6

nombres trigonométriques des arcs ^ soient rationnels.

La condition pour qu'il en soit ainsi est que les tan-
0 0 0

gentes des arcs ^ soient rationnelles, et réciproquement

d'ailleurs.
Nous arrivons ainsi à la construction définitive de ces

arithmotriangles héroniens : On se donnera un arithmocercle
quelconque de rayon rationnel, sur lequel on marquera un
point rationnel A arbitraire. Cet arithmopoint A servant
d'origine des arcs, sur la circonférence, on marquera les

trois points M,, M2 et M3 de cette circonférence repérés par
trois azimuts 9i, 02 et 03 satisfaisant à l'unique condition
que les tangentes trigonométriques de leurs quarts soient des
nombres rationnels arbitrairement choisis.

Les formules symétriques, qui correspondent à ce mode
général de construction des triangles héroniens, s'obtiennent
aisément. Il suffit de se donner quatre nombres rationnels
quelconques R, X2 et X3; le premier, essentiellement
positif et différent de zéro, sera le rayon du cercle circonscrit ;

les trois autres seront les nombres :

^1
"S öl Ûj

Ai tang - Aj tang — a8 tang -

La longueur du côté M5, par exemple, est
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c'est-à-dire :

MTM, 4R
(1 + *!) (1 + \)

Les deux autres côtés ont des expressions qui se déduisent
de celle-ci par permutations circulaires. Quant aux angles
de l'arithmotriangle héronien, ils seront déterminés par des

formules telles que les suivantes :

/\ 1 M,
M, - | 62 — 0! | tang y

Xi

1 + XA.

Ces considérations permettent d'établir la proposition
suivante relative à la déformation continue des arithmotriangles
héroniens et à l'existence d'un arithmotriangle héronien
aussi voisin qu'on le veut d'un triangle imposé : Etant donnés
trois cercles arbitrairement et indépendamment choisis dans
le plan, de rayons aussi petits qu on le veut, il est toujours
possible de trouver trois arithmopoints respectivement
intérieurs aux trois cercles imposés et qui soient les sommets d'un
arithmotriangle héronien. En d'autres termes : Etant donné
un triangle quelconque, il existe toujours un arithmotriangle
héronien dont les côtés soient aussi voisins qu'on le désire de

ceux du triangle imposé.
Pour établir cette proposition, je supposerai tout d'abord

que les centres al, «2, oc3 des trois petits cercles sont trois
arithmopoinls. Par eux passe une circonférence qui est
nécessairement une arithmocirconférence ; elle peut d'ailleurs
dégénérer en une arithmodroite. Si le rayon est rationnel,
il sera possible de trouver sur cette circonférence trois points

0 0 6

repérés par les azimuts 0A 02 et 03 tels que tg ^, tg~, tg-^

soient des nombres rationnels et respectivement aussi
rapprochés qu'on le désirera des trois centres des cercles
imposés. Les trois points ainsi déterminés seront alors les
sommets d'un arithmotriangle héronien satisfaisant à la

question.
Si, au contraire, le rayon de l'arithmocercle passant par
i a2, a3 n'est pas un nombre rationnel, soit s l'écart mini-
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mum imposé entre les centres «t, «2, «3 des trois cercles
imposés et les sommets de l'arithmotriangle héronien désiré.
Il suffit de substituer au cercle passant par a, a.2 a3 un cercle
concentrique à rayon rationnel différent du rayon du précé-
dent de moins de —e ; soient alors ßi, /32, ß3 les points de la

nouvelle circonférence qui sont les plus rapprochés de at,
a2, a3. Sur cet arithmocercle de rayon rationnel, on pourra
toujours trouver trois arithmopoints repérés par des azimuts
dont les tangentes des quarts soient rationnelles et tels que
Ton ait :

| > Miß« < | MTFs < \ ;

ces trois points Md M2M3 sont alors respectivement situés à

des distances de «j «2 «3 inférieures à e; de sorte que
l'arithmotriangle héronien M2 M3 répond à la question.

Reste enfin le cas où les trois centres cci, a2, a3 des trois
cercles imposés ne sont pas des arithmopoints. Il suffira de

leur substituer trois arithmopoints ol\ a 2, a'3 respectivement

intérieurs aux cercles imposés. De ces points aù, a'3

comme centres, on décrira trois cercles respectivement
intérieurs aux trois premiers et à rayons rationnels. Le problème,
étant possible pour l'ensemble de ces derniers trois cercles,
le sera a fortiori pour les cercles primitivement donnés.

Arithmotriangles héroniens particuliers.

13. — Il est possible de rattacher, de deux manières
distinctes, les arithmotriangles héroniens particuliers, tels que
les quatre facteurs p, p — ci, p — b et p — c qui figurent
dans l'expression classique

S2 p.. (p — a) .(p — b) .(p — c)

du carré de la surface d'un triangle de côtés a, b et c soient
les carrés de quatre nombres rationnels, à la théorie des

points rationnels de l'arithmosphère.
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Première représentation de ces triangles héroniens. Posons,

en mettant en évidence les racines supposées rationnelles
des segments déterminés sur les côtés par les points de contact

avec le cercle inscrit :

R, x, y, z sont quatre nombres rationnels positifs, par
hypothèse, évidemment reliés par la relation unique :

x2 + y2 ^ z2
m

Tout aritJimotriangle héronien de Vespèce envisagée est
donc associable à un point rationnel de la partie, située dans
le trièdre des directions positives des axes coordonnés, d'une
arithrnosphère de centre 0 et de rayon rationnel.

Par une projection stéréographique, il est donc possible
d'établir une correspondance entre tout point rationnel du
plan et un arithmotriangle héronien de l'espèce considérée.

Les formules de représentation de ces arithmotriangles
héroniens sont, en fonction des coordonnées £ et y? du point
image du plan &)£/? :

_ T)2 ^ + I2 + 1Î* - w _ P*h2 + (5 + 1)2J h2 + iE - 1)21- (H2 -4- n2 + i,2 - 4- n2 + i)2

_ (£2 + + 'J-'2 - W __ p2 1? + in + i)2] [£2 + h - i)a]
/C2 I v>2 I 4 >2

rV • /M I I A \ 2 >

elles permettent de discuter l'ordre de grandeur des côtés
du triangle héronien d'après la position du point image dans
le plan &)£•/?. Les régions correspondantes aux divers cas pos-

p — R2 p — a — x- p — b — y2 p — c — z-

(?* + *)2 + l)2

De ces formules résultent les suivantes :
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sibles sont séparées les unes des autres par des courbes très
simples : deux droites y? + £ — 0 et yj — £ 0, et quatre
circonférences :

P + Y]3 4- 2Y] — 1 — 0 Ç* -f Y]2 — 2r] — 1 — 0

Ç2 + -na + 2Ç — 1 0 p + Y]2 — 2£ — 1 — 0

14. — Extension à certains arithmoquadrilatères inscrip-
tibles. Aux arithmotriangles héroniens qui viennent d'être
déterminés se rattachent des quadrilatères inscriptibles à

surface rationnelle qui méritent d'être mentionnés ici.
Observons que la surface d'un quadrilatère plan, inscrip-

tible dans un cercle, est exprimée par la formule

S — [/{p — a) (p — b) {p — c) [p — d)

en fonction des côtés a, b, c, d. Il y a lieu de considérer,
au titre de généralisation des arithmotriangles précédents,
ceux des quadrilatères inscriptibles tels que les quatre
facteurs p — a, p — b, p — c, p — d soient simultanément
carrés parfaits. Posant

p — a — x1 p — b — y2 p — c — zl p — d — t2

on aura :

+ J2 + *2 + t2 - 2p

Dans ces conditions, donnons-nous un périmètre
arbitraire 2p et observons que le théorème de Bachet est
susceptible d'être étendu aux nombres rationnels. Le théorème
de Bachet proprement dit consiste dans le fait que tout
nombre entier N est de la forme en nombres entiers :

N =r x2 + f + z2 + t2 ;

il en résulte que l'inverse d'un entier est de la même forme
en nombres rationnels, en vertu de l'expression suivante

del:
1

_ 1 _( x \2+ / y
N x2 j2 -f- P + t2 V-*'2 + f + + ï1) \,x'2 + f + z'2 + l'

i y+ i ^
x2 + y1 + ~2 -f- t2/ \*'2 + y2 -f P + i
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on sait enfin que le produit de deux expressions algébriques
sommes de quatre carrés est lui aussi somme de quatre
carrés. Tout nombre rationnel est donc décomposable en
une somme de quatre carrés de nombres rationnels, cette

décomposition résultant de celles des divers facteurs qui
figurent aux deux termes du nombre rationnel considéré.

Nous supposons donc le périmètre 2p ainsi décomposé en

une somme de quatre carrés de nombres rationnels ; de cette
décomposition particulière il est aisé de déduire une
décomposition générale, car nous nous trouvons en présence d'une
arithmohypersphère de l'espace à quatre dimensions dont un
arithmopoint particulier est connu et à laquelle il suffit
d'appliquer les formules du § 9.

Il existe donc une infinité de quadrilatères inscriptibles de

Vespèce considérée, admettant un périmètre arbitrairement
imposé et dont la détermination s'effectue a l'aide du
théorème de Backet et de la considération d'une arithmohypersphère

(avec trois paramètres arbitraires, en plus du
périmètre).

15. — Deuxième méthode de détermination de ces triangles.
Leur construction géométrique. Donnons-nous un triangle
ABC, dans le plan de comparaison ; ce triangle est
quelconque, ses côtés a, b, c étant supposés toutefois mesurés
par des nombres rationnels. Il existe un système de trois
sphères, juxtaposées sur un plan horizontal qui leur est
tangent en A, B et G. Soient /3, y leurs centres respectifs;
leurs rayons sont définis par des formules :

c'est-à-dire encore

"ß

labe 2abc
4b2 ' Rï ~ 4c2

Le produit 2abc est ou non le carré d'un nombre rationnel.
En tous cas, une similitude permet de transformer le triangle
ABC en un triangle tel que 2abc soit carré d'un nombre
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rationnel : si l'on pose, en effet, a, In b{ — —
on a

2atbici ~ Iahe X3 ;

il suffit de prendre
X -iL

2 abc

k étant un nombre rationnel arbitraire, pour obtenir un
triangle semblable à ABC et tel que le produit 2aib^ci soit
carré. Je supposerai dorénavant que cette opération préliminaire

a été effectuée. De ce fait, les rayons des trois sphères
sont trois carrés de nombres rationnels. Le triangle aßy des
trois centres des sphères considérées est donc tel que les six

segments, deux à deux égaux, déterminés sur ses côtés par
les points de contact avec le cercle inscrit sont les carrés de
nombres rationnels. Pour qu'un tel triangle aßy soit de
l'espèce que j'étudie actuellement, il faut et il suffît, en outre,
que son demi-périmètre soit lui aussi carré d'un nombre
rationnel; l'expression

et, par suite, la somme des carrés des trois hauteurs du
triangle ABC doivent être les carrés de deux nombres rationnels.

D'où la construction suivante :

On considérera un point quelconque rationnel de la sphère

X2 + J2 -f s2 1
»

tel que ses trois coordonnées puissent être considérées comme
les trois hauteurs d'un triangle ; parmi les triangles
semblables à celui-ci, on en choisira un ABC à côtés rationnels et
dont le double produit de ces côtés soit le carré d'un nombre
rationnel. Le triangle des trois centres des sphères tangentes
deux ci deux et toutes trois tangentes au plan du triangle
ABC en ses sommets respectifs sera un arithmotriangle héro-
nien de l'espèce actuellement envisagée.

La construction géométrique des trois sphères est des

plus simples ; il suffît d'effectuer une inversion dont le pôle
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soit un sommet, A par exemple ; les sommets B et G

deviennent deux points B' et C'. On construit alors immédiatement

deux sphères tangentes entre elles, et toutes deux

tangentes respectivement en B' et C' au plan de comparaison.

Par la même inversion, le système constitué par ces
deux nouvelles sphères et par leur plan tangent commun
horizontal, autre que le plan de comparaison, se transforme
en les trois sphères désirées.

11 reste à discuter la possibilité de la construction du

triangle ABC défini par ses trois hauteurs, construction qui
se ramène immédiatement à celle d'un triangle connaissant
les trois côtés. Je supposerai que Tordre imposé aux côtés

a, b, c soit : a < b < c ; que x, y, z soient respectivement
les inverses de a, è, c et enfin que les relations entre la

sphère et sa représentation stéréographique soient exprimées

par les formules :

2£
__

2ri -

_ ?2 + YJ* — 1
' * - p + v + i ' - » + v 1

' * ~ p + v + * '

on doit donc discuter les inégalités : illx y ]> z 0 c a b ou — <[ \- —
s x y

qui donnent :

£>0 r) > 0 £ > 2^>P4-^_I>0 f

2Çrj<(Ç + r1)(P+.^-l) ;

finalement, l'image (£, yj) du point de la sphère doit être
intérieure à un certain triangle mixtiligne ocßy, ayant pour sommets

le point «(£ 1, yj 0), le point ß(ß y? y/^T) et

le point y{ 1, 1); ses côtés sont un segment ßy de la bissectrice

% n, un arc de cercle aß et enfin un arc ay de la
cubique circulaire représentée par l'équation

(Ç + -n) (£2 + Y)2 — 1) — 2ÇYJ o

16. — Les côtés a, è, c d'un triangle de l'espèce qui vient
d'être considérée dans les paragraphes précédents, c'est-à-
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dire tels que /?, p — a, p — bs p — c soient des carrés
parfaits étant reliés à un point (x, y, z) de la sphère d'équation

+ f + z* R*

par les formules

# — R2 — x2 b R2 — j3 c — R2 — s2

la condition
2/> — a -j- c

moyennant laquelle ces côtés seraient en progression
arithmétique devient :

2j2 + z2 ;

elle peut être écrite sous la forme équivalente :

3j2 R2

De l'impossibilité de cette dernière équation, il résulte donc
quHl n'existe aucun triangle de l'espèce considérée dont les
côtés soient en progression arithmétique.

Voici encore une curieuse proposition négative concernant

ces mêmes triangles. La condition pour que le triangle
de côtés a, 6, c soit rectangle,

a2 + 62 c2

devient ici
Rs — xy ;

la quartique gauche intersection du paraboloïde hyperbolique
représenté par cette équation et de la sphère x2y*z* — R2

a pour image, dans une projection stéréographique, une
quartique plane d'équation :

(Ç2 + ^2 _ 1 4Çri

La surface d'un triangle de la même nature est:

4£n(£z 4- n2 1)
s Vv\P — ")(P — b) [p-c) — R= R<.

^2 + 7)2 + 1)3
J

cette surface sera mesurée par un carré parfait si le nombre

?l[(ï2 + ri2)2- 1J
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est un carré. Il résulte de ces deux remarques que, si un
triangle de l'espèce considérée était rectangle, sa surface
serait mesurée par un carré parfait, ce qui serait contraire
à un théorème de Fermât sur les triangles pythagoriques.
Par suite :

Aucun triangle cle l'espèce considérée ne saurait être un
triangle rectangle.

Le problème des distances rationnelles.

17. — D'une façon générale, étant donnés, dans le plan ou
dans l'espace, une arithmocourbe (G) et un arithmopoint A,
j'appellerai problème des distances rationnelles relatif à

cette arithmocourbe et à l'arithmopoint donné le problème
suivant: déterminer parmi les arithmopoints de l'arithmo-
courbe (C) ceux qui sont situés à une distance rationnelle de

l'arithmopoint.
Tout d'abord, il v a lieu de se rendre compte de la réduction

du problème des distances rationnelles à l'étude
arithmogéométrique d'une autre courbe plane. Soient, en
effet, les expressions rationnelles en fonction d'un
paramètre G

x — x(t) y y(t) s — z(t)

des coordonnées de l'arithmopoint courant M de l'arithmo-
courbe (G); soient d'autre part a, b, c les coordonnées rationnelles

de l'arithmopoint imposé A. Les axes coordonnés
étant essentiellement rectangulaires, on posera :

ÂM* (x - «)» + (j - by + (z - cf [f(t)y. g(t)

f(t) et g(t) étant des fonctions rationnelles de t ; la seconde,
g(t), ne contient aucun facteur carré. De cette expression, il
résulte que le problème des distances rationnelles équivaut,
dans le cas le plus général, à la recherche des arithmopoints
de la courbe représentée par l'équation Y2 g(X).

18. — Le problème des distances rationnelles pour une
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arithmodroite. L'arithmodroite considérée sera supposée
représentée par les équations

x At -f A' y Bt + B' ;

de l'expression de AM2,

AM2 [At + A' — a)2 + [Bt -f B' — 6)2

il résulte que la question est réductible à l'étude arithmo-
géométrique de l'hyperbole représentée par l'équation :

Y2 — (A2 -\- B2) X2 —(- 2 [A (A7 — a) + B(B' — 1t)]X + (A' — a)2 + (B' — b)2

Une première conséquence de cette réductibilité à l'étude
arithmogéométrique d'une conique est que si, dans le cas
d'une arithmodroite, le problème des distances rationnelles

pour un arithmopoint donné admet une solution particulièrey
il en admet une infinité.

Lorsque l'arithmodroite imposée est une de celles que j'ai
nommées des arithmodirigées, la distance de tout point
rationnel du plan à une telle droite est toujours rationnelle
et cette propriété est caractéristique des arithmodirigées. Il
résulte de cette remarque que, dans le cas d'une arithmo-
dirigée, le problème des distances rationnelles admet
toujours une solution particulière : la projection de l'arithmo-
point A donné sur l'arithmodirigée, projection qui est
nécessairement un arithmopoint. D'après ce qui précède, le
problème des distances rationnelles relatifà une arithmodirigée
et à un arithmopoint quelconque est donc toujours possible
et admet une infinité de solutions.

19. — Le problème des distances rationnelles pour une
arithmodirigée et un arithmopoint pris sur elle est évidemment

résolu par tous les arithmopoints de l'arithmodirigée.
Cette propriété s'étend à d'autres arithmocourbes.

Soit, en effet, un arithmopoint imposé de coordonnées
(.r0, ?/o) ; 1b problème des distances rationnelles pour cet
arithmopoint et une arithmocourbe plane sera résolu par tous
les arithmopoints de cette arithmocourbe, si l'expression
(x — x0)2 -f- (y — yof est le carré d'une expression ration-
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nelle du paramètre rationnel t qui repère l'arithmopoint courant

de l'arithmocourbe. On devra donc avoir :

| ar .rö+(l-*«).A') »

|
y Jo + 2t.f(t) ;

ces formules dans lesquelles f(t) est une fonction rationnelle
quelconque de t représentent l'arithmocourbe du plan la plus
générale qui jouisse de la propriété spécifiée.

L'arithmopoint imposé étant pris pour pôle, l'équation
polaire d'une telle courbe est de la forme générale

'' /"(tang I)
6

/étant une fonction rationnelle arbitraire de tang- La stro-

phoïde, les coniques rapportées à un foyer en sont les
exemples les plus simples. Les arithmoconiques sont d'ailleurs

doublement solution de la question, en raison de l'existence

de deux foyers, lorsque ces deux foyers sont deux
arithmopoints.

20. — Application du problème des distances rationnelles
aux arithmotriangles hérotiiens. Donnons-nous arbitrairement,

dans le plan, une arithmodirigée (D) et un arithmo-
point A ; soient alors B et C deux arithmopoints quelconques
de (D), uniquement assujettis à la condition d'appartenir aux
solutions, en nombre infini, du problème des distances
rationnelles relatif à (D) et à A. La distance BG est rationnelle

; de même AB et AC sont mesurées par des nombres
rationnels, aux titres de solutions du problème des distances
rationnelles ; de sorte que le triangle ABC a ses trois côtés
rationnels; la hauteur issue de A est en outre rationnelle,
comme distance d'un arithmopoint à une arithmodirigée.
D'où il résulte que le triangle ABC est un arithmotriangle
héronien.

Cette méthode de génération des arithmotriangles héroniens
est susceptible d'être présentée sous une nouvelle forme, en
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partant de cette remarque que AB et AC sont des arithmo-
dirigées. Considérons d'une manière générale trois arithmodirigées

quelconques ; elles constituent un triangle dont les
sommets sont trois arithrnopoints ; les côtés et les hauteurs
de ce triangle sont, d'après les propriétés fondamentales des

arithmodirigées, mesurées par des nombres rationnels. D'où
il résulte que trois arithmodirigées quelconques du plan
définissent toujours un arithmotriangle héronien.

La représentation analytique générale suivante des arithmo-
triangles héroniens du plan résulte immédiatement de cette
proposition. Il suffit de prendre pour équations des côtés du

triangle les trois équations suivantes:

x cos a4 -j- y sin at — pt

x. cos a2 -f- y sin ot3 p%

x cos a8 -f- y sin a3 — p3 ;

dans ces trois équations, py, p3, sont trois nobresm
rationnels; les azimuts a2, a3 sont quelconques, mais tels

quetang^1, tang — ettang^ sont eux aussi des nombres

rationnels.

Le 20 septembre 1915.
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