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NOTIONS D’ARITHMOGEOMETRIE

PAR

Emile Turritre (Montpellier).

1. — Jairéuni, dans le présent travail, quelques remarques
bien simples dont I’ensemble constitue la premiére étude
systématique de la géométrie élémentaire des nombres ra-
tionnels. Dans ce premier article, j'ai cru devoir me borner
aux seules figures qui sont en étroite connexion avec le cercle
ou la sphere, réservant d’autres recherches pour un Mémoire
ultérieur qui sera consacré aux arithmoconiques (c’est-a-dire
a I'étude géométrique des équations indéterminées du genre
de celles de Brahmagupta et Fermat) et aux courbes d’ordre
supérieur.

Les arithmotriangles héroniens occupent dans ce travail
une place importante. J'al pensé, en effet, que ces triangles
qui possédent un grand nombre de lignes rationnelles et
dont la détermination a jusqu’ici donné lieu a quelques
recherches isolées méritaient d’étre étudiés d’une manieére
beaucoup plus approfondie.

Les éléments de 1'Arithmogéométrie.

2. — Qu'il s’agisse du plan ou de l’espace, jappellerai
point rationnel ou arithmopoint lout point dont les coor-
données cartésiennes rectangulaires sont des nombres ra-
tionnels. Sur une droite quelconque, il peut y avoir, selon
les cas, zéro point rationnel, un point rationnel ou une infi-
nité de points rationnels; c’est ce que prouvent les trois

exemples suivants de droites représentées par les équations
respectives :
xr=rx, x =52, x = 3y .

L’Enseignement mathém., 18° année; 1916. 6
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Des qu’il existe, sur une droite, un couple d’arithmopoints
distincts, 1l existe une infinité de points de cette nature sur
la droite : ce sont les points qui divisent rationnellement, en
un rapport arbitraire, le segment défini par les deux pre-
miers points rationnels. Il n'y a d’ailleurs, sur cette méme
droite, pas d’autre arithmopoint que ceux obtenus par le
procédé précédent. Je dirai, dans le cas d'une droite de cette
nature, que c'est une arithmodroite.

En géométrie plane, 'équation d’une arithmodroite géné-
rale est de la forme ar + by +c¢ =0, a, b, ¢ étant des
nombres algébriques arbitraires mais rationnels; cette méme
arithmodroite peut aussi étre représentée par un systéeme
de deux équations linéaires a coeflicients rationnels.

Parmi les arithmodroites du plan, celles pour lesquelles
Iexpression a? + b?* estle carré d'un nombre rationnel pré-
sentent une importance toute spéciale (c. f. le probléme des
distances rationnelles, §18). Je les désignerai donc par la dé-
nomination d'arithmodirigée. Ces arithmodirigées jouissent
de propriétés simples qu’il est utile de mentionner:

La distance de deux arithmopoints quelconques d’une
arithmodirigée est mesurée par un nombre rationnel. Réci-
proquement, si la distance de deux arithmopoints particu-
liers d’une arithmodroite est rationnelle, il en est de méme de
toul autre couple d’arithmopoints de cette arithmodroite, qu
est dés lors une arithmodirigée. |

La distance de tout arithmopoint du plan a une arithmo-
dirigée est rationnelle. Réciproquement, st la distance d’'un
arithmopoint particulier du plan a une arithmodroite est
rationnelle et non nulle, il en est de méme de tout arithmo-
point du plan et Uarithmodroite considérée est une arithmo-
dirigée.

Ciette propriété place les arithmodirigées parmi les courbes
de direction du plan qui jouissent, on le sait, de la propriété
caractéristique de décomposition en deux équations ration-
nelles de I'équation de chacune de leurs courbes paralléles.
D’aprés ce qui vient d’étre écrit, le lieu des points du plan
qui sont a une distance rationnelle donnée d’une arithmo-
droite se compose de deux droites paralleles dont les deux
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équations ne se séparent pas en général, sous le point de
vue des nombres rationnels. Cette distinction est caractéris-
tique des arithmodirigées.

Les nombres trigonométrigues de l'angle formé par deux
arithmodirigées sont tous rationnels ; la tangente trigonome-
trique de la moitié de cet angle est rationnelle. Il en résulte
que la représentation la plus générale d’une arithmodirigée
est

xcoso +ysing = W ,

o , . .. o . .
tg - étant un nombre rationnel 7, ainsi que la distance @ a

I'origine O des coordonnées rectangulaires (Ox, Oy); on
peut encore poser

X —u.coso -+ a,

y=v.sino 4+ b ,

o, . » ’
a, b, tang 5 élant des nombres rationnels donnés et u étant

uan parametre rationnel.

En ce qui concerne le plan, il y aura sur lui zéro point
rationnel, un point rationnel, une infinité de points ration-
nels alignés (sur une arithmodroite) ou enfin une infinité
d’arithmopoints non alignés. Des qu'il existe, en effet, un
couple d’arithmopoints dans un plan, il en existe une infi-
nité : ceux de l'arithmodroite qui joint les deux premiers.
S’il existe trois arithmopoints, sommets d'un véritable tri-
angle, il en existe une infinité : ce sont les centres des dis-
tances proportionnelles des trois premiers, respectivement
affectés de coeflicients algébriques rationnels et absolument
arbitraires. Je dirai que, dans ce dernier cas, le plan, qui
contient une infinité d’arithmodroites, est un arithmoplan.

D’une maniére générale, jappellerai arithmocourbe, en
géométrie plane ou en géométrie spatiale indifféremment,
toute courbe qui satisfera aux conditions simultanées sui-
vantes : :

a) la courbe est algébrique et unicursale;

b) les coeflicients des polynomes constitutifs des fractions
rationnelles qui expriment rationnellement et paramétrique-
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ment les coordonnées cartésiennes d’un point courant de
cette courbe sont des nombres rationnels.

Dans ces conditions, une arithmocourbe admet une infinité
d’arithmopoints: ce sont tous ceux qui correspondent aux
valeurs rationnelles des paramétres de représentation. Réci-
proquement, tout arithmopoint d’'une arithmocourbe corres-
pond a une valeur rationnelle du parameéetre.

Une surface algébrique sera de méme appelée une arith-
mosurface si elle est susceptible d’étre représentée par trois
fonctions rationnelles de deux parameétres, tous les coefli-
cients étant des nombres rationnels. A chaque couple de
valeurs rationnelles de deux parameétres de représentation,
correspond un arithmopoint de la surface. Mais il conviendra
essentiellement de s’assurer, dans le cas d’'une surface, que,
réciproquement, les formules adoptées représentent larith-
mopoint le plus général de la surface étudiée. Les exemples
(examinés au § 8) de la représentation géographique (repré-
sentation impropre) et de la représentation stéréographique
(représentation propre) de 'arithmosphére a rayon rationnel
montrent suffisamment l'intérét qu’il y aura a mettre en évi-
dence des représentations propres des arithmosurfaces.

3. — AriramoceErcLE. Un cercle quelconque peut n’avoir
aucun point rationnel, ou bien en posséder un seul, deux
ou une infinité. Des qu’il en posseéde trois, en effet, il en
posséde une infinité : c’est alors un cercle que nous nomme-
rons un arithmocercle.

L’équation d’un artihmocercle a nécessaitrement tous les
coeffictents de son €équation rationnels, puisque ces coefli-
cients satisfont a trois équations linéaires rationnelles. Le
centre d’un arithimocercle est donc toujours un arithmopoint
du plan: on pourra l'appeler Varithmocentre. 11 est impor-
tant d’observer, en vue des applications, que, réciproque-
ment, un cercle a équation rationnelle et qui posséde en
outre un arithmopoint est nécessairement un arithmocercle.
L’arithmopoint courant d'un tel arithmocercle s’obtient
comme intersection de l'arithmocercle avec une arithmo-
droite quelconque pivotant autour de I’arithmopoint connu
a priori.
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4, — ARITHMOCGERCLE A RAYON RATIONNEL. ARITHMOTRIANGLES
PYTHAGORIQUES. La représentation d’un arithmocercle a rayon
rationnel est immédiate; ’équation d’un tel arithmocercle

étant .
a? 4 9 = R?

il suffit d’introduire comme paramétre de représentation la
tangente trigonométrique de la moitié de I'azimut

0
tang—é- = i

et de poser
x — Rcosb , y = Rsinb ,

pour avoir la représentation générale désirée de l'arithmo-
point courant de cet arithmocercle :

R(1 — ¥ 2R¢

*EUye o YT ixe

A cette théorie des arithmocercles a rayon rationnel est
intimement liée celle des arithmotriangles pythagoriques.
Nous désignerons sous cette derniére dénomination ceux
des triangles rectangles dont les trois cotés sont mesurés
par des nombres rationnels; ils sont semblables, et dans des
rapports rationneis de similitude, aux triangles pythago-
riques proprement dits, c’'est-a-dire & ceux des triangles rec-
tangles a cotés entiers. | |

L’arithmotriangle pythagorique est susceptible d’étre re-
présenté par un arithmopoint quelconque d’un arithmo-
cercle a rayon rationnel. Les formules de correspondance
entre 'hypoténuse a, les cathetes b et ¢ d'un tel arithmo-
triangle pythagorique et les coordonnées de I'arithmopoint

sont
a = R , b — x ¢

I

C'est a cette méme considération des arithmocercles a
rayon rationnel que se rattache la représentation déja indi-
quée au § 2 des arithmodirigées.

5. — ARITHMOCERCLE QUELCONQUE. ll s’agit de décomposer
un nombre rationnel p en une somme de carrés de deux




Vo XN T
G R

s D ey

86 E. TURRIERE

nombres rationnels x et y. Le cas ot p est lui-méme un
carré parfait vient d’étre traité; tout facteur entier carré de
I'un des deux termes de la fraction p pouvant étre absorbé
dans x et 7, nous devons nous borner au seul cas ou les
deux termes de la fraction irréductible p sont a facteurs
simples.

Les identités

(x1 x, + yiyz)z -+ (xlyz — 7, x2)2 = {x: + g‘j) . (x: -+ 3’:) )

2y 2 71 2__ 1
‘2 '2 + _2 ‘2 — .2 P ’
X+ e e

permettent en outre de réduire 'étude de la décomposition
en deux carrés d’'un nombre rationnel p au cas particulier
ou o est entier, puisqu’elles expriment que le produit ou le
quotient de deux nombres p,, p, décomposables en deux car-
rés sont de la méme nature.

Etant donné le nombre rationnel 5, on devra donc consi-
dérer les facteurs premiers de son dénominateur et de son
numérateur, aprés suppression des facteurs qui inter-
viennent au carré. La condilion nécessaire et suffisante pour
que le cercle considéré soit un arithmocercle est alors la
suivante : aucun de ces fucteurs n’est de la forme 4k — 1.

Supposons donc que les seuls facteurs considérés sont le
nombre 2 et des nombres entiers de la forme 4%k + 1. Le
cercle est alors un arithmocercle; par titonnements et a
I’aide d’une table de décomposition des nombres 44 4 1 en
sommes de deux carrés, on délerminera un arithmopoint
particulier de cet arithmocercle. La connaissance d'un
aritthmopoint particulier entraine alors celle d’une infinité
d’autres arithmopoints. Soil, en effet, M,(z,, 7, un arithmo-
point de I'arithmocercle. Une arithmodroite quelconque issue
de cet arithmopoint rencontre a nouveau l'arithmocirconfé-
rence en un point M, dont les coordonnées sont nécessaire-
ment des nombres rationnels. Réciproquement tout arithmo-
point de 'arithmocercle, autre que M,, est susceptible d’étre
obtenu par ce procédé, car la droite M, M, est une arithmo-
droite. Pratiquement, les coordonnées de l'arithmopoint
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. ., , | )
connu a priori étant x,, v,, les coordonnées courantes d'un
arithmopoint de 'arithmocercle sont:

x = x,cosf 4 y,sinf ,

y = &, sin0 — y,cos b ;

§ estun azimut dont la tangente trigonométrique de la moitié
est un nombre rationnel arbitraire.

C'est ainsi que le cercle représenté par l'équation
2% + y? = 2 est nécessairement un arithmocercle, puisqu’il
passe par 'arithmopoint x, =1, y,=1. La représentation
rationnelle de cet arithmocercle est

14 20 — 2 — 1 2
£ = — T = = .
1 - a2 J T »
6. — ARITHMOTRIANGLES AUTOMEDIANS. De méme qu’a
I'arithmocercle d’équation x% + y? = 1 se raltachent les

arithmotriangles pythagoriques, il est possible d'associer
diverses classes de triangles particuliers a d’autres arithmo-
cercles. Clest ainsi, en premier lieu, qu’a l'arithmocercle
x% 4+ y% == 2 se rattachent les arithmoltriangles automédians.
Ce sont, par définition, les triangles a cotés rationnels liés
par la relation a? 4 ¢ = 2%

Les cotés a, b, ¢ d’un triangle se présentant dans 'ordre
a> b > ¢, les médianes sont nécessairement dans l'ordre
mg < mp < m.. Pour que ces médianes aient des longueurs
proportionnelles a celles des cotés, il faut et il suffit que
celles-ci soient liées par la relation

202 = a* 4+ ¢ ;
on a alors :
2m, = ic , 2m, = b , 2m, = Aa

avec )‘:\/5. En d’autres termes, m,, m,, m, ont alors
les longueurs qu'elles auraient respeclivement dans trois
triangles équilatéraux de cotés ¢, b et a. La condition
d’égale inclinaison de deux médianes sur les cotés corres-
pondants conduit aussi aux mémes triangles.

Ces triangles tels que 20% == a® + ¢? ont éié signalés par
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E. LemoINe (A. F. A. S., Toulouse, 1887) et par M. J. NEUBERG
(Mathesis, 1889, question n°® 661, pp. 261-264) et étudiés par
M. J. DErrez (Mathésis. 1903, pp. 196-200, 226-230, 245-248);
ils ont été nommés triangles automédians. Pour avoir la
représentation générale des cotés d’un arithmotriangle auto-
médian, il suffit de poser

a = b(cos § + sinf) ,
c b

(cos 6§ — sin6) ,

conformément a la théorie de l'arithmocercle 2% + y? == 2,
passant par l'arithmopoint {1, 1), et d’introduire le para-

) b . ; )
metre { — tga . On obtient ainsi

a:)\(1+2t—t2) )

b = (1 4 % ,
¢ =l — 2% — 1 ;

A est un parameétre rationnel de similitude; c'est du para-
meétre ¢ seul que dépend la forme du triangle. Reste a pré-
ciser les limites dans lesquelles doit étre compris ce dernier
parameétre ¢ pour que les trois expressions ci-dessus repré-
sentent réellement les cotés d’un triangle. Une discussion
simple prouve que l'on doit prendre

A >0, V3 —2<Ct<C2—V3 ;

si ¢ est négatif, 'ordre des cotés est a« < b < c; sit est
positif, 'ordre estinverse. Il est encore possible de présenter
la double condition précédente sous la forme suivante, équi-
valente mais plus expressive:

— 5 <i<5-

A coté des arithmotriangles automédians, il convient de
placer les arithmotriangles satisfaisant a la relation

112
2T a=Tp0

également signalée par M. J. NEuBerG. Ces arithmotriangles

4
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sont encore liés a I'étude de l'arithmocercle x? 4+ y*=2;
on posera :

L A
CErTra—e
A
b —= —;
1TF &
e l .
=T "
ou encore ,
. b L b )
cos § 4+ sinh ’ €= Cos —sinb

la double condition d’existence du triangle est ici:

VT —1

O<sin6<—2——- .

7. — TRIANGLES A MEDIANES ORTHOGONALES. L’'étude des
triangles & cotés rationnels dont deux médianes sont ortho-
gonales est intimement liée a la théorie de 'arithmocercle

xt + 2=

La relation moyennant laquelle, dans un triangle ABC de
coOtés a, b, c, les médianes issues des sommets A et B sont
orthogonales est, en effet,

Y

& K R I T L T T S T T L T g i e A e e B BT e T Y e e
T T Y N T A T o o LT,

s
o

G Do 2 T3

a?® 4 b* = 5¢2

¢ étant nécessairement le plus petit des trois cotés. Remar-
quons que 'arithmocercle x? 4 y? = 5 passant par I'arithmo-
point (1, 2) a pour représentation paramétrique

x = cos 6 4 2sin 0 .

2cos § — sin 0 .

I

y
Il en résulte pour 'arithmotriangle considéré les relations

a = c(cos § + 2sin ) ;

I

¢(2cos 6 — sin 6) ;
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la représentation la plus générale de ce triangle est donc:

a=»Xx(14 4t — ¢*) ,
b = 201 — ¢t — 1% ,
c = A1 4+ t¥) ,

A el ¢ étant deux paramétres rationnels quelconques; le pre-
mier est un paramétre de similitude ; ¢’est du second, ¢, que
dépend la forme du triangle. Une discussion simple prouve

c . .. 1
que ¢ doit étre compris entre les limites 0 et .

Pour ¢ < V10 — 3, l'ordre des colés est b > « > ¢; pour
— 1
VM—3<t<?,

I'ordre des cotés esl au contraire a > b > c.

8. — ArirumosrHERE. Il s’agit d’étudier. la décomposition
d’un nombre ralionnel en une somme de trois carrés de
nombres rationnels. Un premier cas particulier de cette
étude des équations du type 22 4 y* 4 27 = p est celui ou g
est un carré: c’est le probleme des parallélépipedes rec-
tangles a arétes et diagonales commensurables. L’équation
considérée est alors celle % + y? 4+ 2% = R*? d’une arithmo-
spheére a rayon rationnel. Pour avoir un arithmopoint d'une
telle arithmospheére a rayon rationnel, il suffit de considérer
un point de la sphere dont les tangentes trigonométriques
des demi-longitude et demi-latitude soient rationnelles; les
formules de représentation correspondantes sont:

x = Rcosgcos{ , y = Rcosg¢sing , z = Rsing ,
! . o
*cang—;—> et tang—;— étant deux nombres rationnels arbitraires;
posant tang ; = u, tang%— = ¢, il vient, en effet:
(1 — u?) (1 — v ‘ v(1 — u?) u
= E y e IR - - —_—
* R (1 4+ «?) (1 4 ¥ J (1 + w?) (1 4 v¥ : 2R1 + u?

Mais cette représentation paraméirique de la sphére est
impropre, en ce sens que si elle fait correspondre a tout
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couple de valeurs rationnelles de (v, ¢) un arithmopoint de
la sphére, celui-ci n’est pas toutefois I'arithmopoint le plus
général de cette arithmosphére. Des formules

B R + 1/;‘_“1:? . wy

u —= , y

% Tz 4 u'(;c — R)

’

il résulte que la représentation géographique laisse de coté
les arithmopoints de la sphére tels que leur distance a la
ligne des poles Oz n’est pas rationnelle. C'est ainsi que
I'arithmopoint (1, 2, 2) de 'arithmosphére x? + y* 4 2°* =
est représentée par les valeurs irrationnelles de « et de o.

Pour avoir une représentation propre, il suflit d’avoir
recours a la représentation stéréographique de la sphere
sur un plan. L'introduction de la transformation stéréogra-
phique dans 1'étude de cette méme question conduit a des
formules plus simples et présente, en outre de l'avantage
essentiel de permettre de représenter l'arithmopoint le plus
général de l'arithmosphere, celui de transformer les courbes
algébriques tracées sur elle en des courbes planes particu-
lierement simples le plus souvent. Prenant, en effet, le point
0, 0, R) pour point de vue et le plan z =0 pour plan de
projection, les formules

p=Re— | y—Ro_ L _gitw—1
Freri YT ey L i
— :l" PR -,)
T_R_Z7 q_R__z’

expriment les relations entre le point M(x, v, z) de la sphere
et son image u(§, 7).

Il convient de rappeler ici que E. Cararan (Bulletin de
UAcadémie royale de Belgique, [3], 1. 27, 1894), observe que
I'identité

(a® 4 b 4 ¢)? = (a? + b — %)% 4 (2ac)® + (2bc)?

prouve que: sur la sphere dont l'équation est
22+ i =1,

il existe une infinité de points dont les coordonnées sont
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rationnelles. 1l est manifeste que 'identité précédente n’'est
autre précisément que celle,

E ot 1) = (0 — 1) (202 (207

qul résulte des formules précédentes de la représentation-
stéréographique.

Le cas d'une arithmospheére générale x? + y* 4 22 = p se
traite de la méme maniére que le cas d’un arithmocercle
quelconque; on absorbe dans x?, y?%, z% les facteurs carrés
de 'un ou l'autre terme de p et on rameéne l'étude de la
question au cas ou p est entier. Par taitonnements, on déter-
mine, si elle existe, une solution particuliere dans ce der-
nier cas et on en déduit une double infinité d’arithmopoints
par l'intersection de la sphere et d’'une arithmodroite arbi-
traire issue de l'arithmopoint connu a priori.

9. — ARITHMOHYPERSPHERE : TOUTE HYPERSPHERE EST UNE
ARITHMOHYPERSPHERE. L'extension des considérations précé-
dentes au cas d'une hypersphére appartenant a un espace
a plus de trois dimensions s’effectue simplement. Il est utile
de l'indiquer, en vue de l'application de la considération
des arithmohyperspheres a une classe spéciale de quadrila-
téres inscriptibles intéressants (§ 14).

Soit, dans un espace a n dimensions, une hypersphere
représentée par I’équation
2

2, 4+ a + x4 ..+ a, =R

R étant un nombre rationnel donné. Les équations

; x; — Rsin 0 ,
x; — R cos0;.sinfy ,
x; — R cos 0;. cos ;. sin 0; ,
xt — Rcosf;.cosf,.cosl;.sinf, ,
x,_; = Rcosf.cosf.cosb;.cosf, ... cosf, ,.sin 0,1
x, = Rcosf;.cosby. cosf;.cosf, ... cos 0, g.cosb, .,

dans lesquelles on introduit des valeurs rationnelles de
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0 0, — : . ,
tang%‘, tanga", tang—'g—’, représentent un point ration-

nel de ’hypersphére.

Considérons maintenant le cas d’'une hypersphére dont
I'équation est encore rationnelle, qui peut donc étre réduite
a la forme

par une simple translation rationnelle d’axes, mais dont le
rayon |/ p est un nombre irrationnel. Il est essentiel d’ob-
server qu'alors que le cercle de I'espace a deux dimensions
et la sphére de 'espace ordinaire ne sont pas généralement
douées d’arithmopoints, méme lorsque la rationalité des
coeflicients de leurs équations respectives est assurée, il en
est différemment pour les hyperspheres, dés l'espace a
quatre dimensions. Il résulte, en effet, du théoreme de
Bachet (généralisé conformément aux considérations du
§ 14) qu'une hypersphére représentée par une équation ration-
nelle admet toujours un arithmopornt. Par suite, elle admet
une oo"~' d'arithmopoints; elle est alors une arithmohyper-
sphére. Soient (af ;x5 ... x5) les coordonnées rationnelles
du point rationnel M, connu a priori. Pour obtenir un aulre
point rationnel, il suffit d’associer a I'équation de I'hyper-
sphere les n — 1 équations

d’une hyperdroite passant par le point M;; les «, ... @, sont
n nombres rationnels arbitraires. Ceci revient a poser

. 0 0 0
x, =ah+x , X, = ah+2x,, ... , x,=a,k+ x ;

2 est un nombre rationnel défini par la formule

0 0 0
a,x + P + o T ap Xy

A= — 9
aj—}—ai{—...%—a:‘

Il est encore possible de présenter la solution de cette
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méme question sous une autre forme, en introduisant les
n fonctions @, ... ®, suivantes et leurs dérivées partielles:

! ®; — sin 0, ,

®; — cos 0. sin 0, ,

®); = cos 0. cos 0,.sin 0, ,

™, = cos ;. cos B;. cos 0. sin O, ,

®,_, = cosbB.cosb,.cosb;.cos0;...cos6,_,sinf,_,,
. ®, =-cosb.cosf,.cosl;.cosb...cosl,  , cos 6;_1 ]

les 6, ... 6,_1 sont n — 1 paramétres arbitraires. On posera
alors :

0 00, 000, 000G 0 06,
xy —=a, 0 3 — £ — X — X _—
1 1" ( 1 + 1 691 + 2 bez + 3 063 + + n—1 ben—l
o6 WG] 06 NC)
0 0 k 0 k 0 k 0 k
Xy — e X, —— X — X, —— x _
- k xn Ok + 1 661 + 2 662 + 3 003 + + n..__‘l 60’l~1
NG (G G )
0 0 n 0 n 0 n 0 n
x = x X, — X —— X, —— X —_—
| & nOn + 2, 00, 1 00, T 00 T T ob,

et on introduira naturellement dans ces derniéres formules
des paramétres rationnels arbitraires ¢,¢, ... ,—, respective-
ment égaux aux tangentes des arcs moitiés

eu—l
2

B b
y = tang—2Jl . 1y = tang—25 ¥ sxx 3y t,_, = tang

Ainsi donc, on peut représenter les coordonnées courantes
d’un point rationnel d’une arithmohypersphére par des for-
mules contenant les n indéterminées (a, ... a@,) sous forme
homogéne, ou les n — 1 indéterminées ¢, ... ¢,_4.

Mais tandis que, dans le premier mode de représentation,
on obtient I'arithmopoint le plus général de l'arithmosphere,
il n’en est nullement de méme dans le second cas ; la repré-
sentation au moyen des fonctions ©® est impropre, tout de
méme que la représentation géographique de la sphere ordi-
naire. Par une légére transformation de la premiére repré-

7 AT % TR

e N R
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sentation, il est possible, d’autre part, d’étendre aux hyper-
sphéres les propriétés de la représentation stéréographique
qui est, elle aussi, une representation propre.

Les arithmotriangles héroniens.

10. — Le probléme des arithmotriangles héroniens con-
siste a déterminer les triangles tels que, les cotés étant
rationnels, la.surface soit aussi un nombre rationnel. Il
résulte de cette définition que, dans tout arithmotriangle
héronien, les mesures des divers éléments linéaires (lon-
gueurs des cotés, longueurs des hauteurs, rayons des cercles
inscrits et ex-inscrits, rayon du cercle circonserit, segments
déterminés sur les cotés par les hauteurs) et enfin la surface
et les nombres trigonométriques des angles du triangle
sont des nombres rationnels.

La détermination des arithmotriangles héroniens généraux
peut étre effectuée de diverses manieres. Il est d’abord pos-
sible de faire dériver leur construction de celle des arithmo-
triangles rectangles pythagoriques. Etant donnés, en effet,
deux arithmotriangles rectangles pythagoriques, on peut,
par similitudes convenables, rendre égales deux cathéetes
appartenant respectivement aux deux triangles rectangles;
en juxtaposant ensuite les deux cathétes égales, de maniére
que les deux autres catheétes soient alignées, on constitue
un arithmotriangle héronien acutangle et un arithmotriangle
héronien obtusangle, suivant que les deux triangles juxta-
posés sont de part et d'autre ou non de la cathéte commune.

Uneseconde méthode de construction générale des arithmo-
triangles héroniens résulte de la rationalité du rayon du
cercle circonscrit et des nombres trigonométriques de ses
angles. Il suffit donc de se donner un premier nombre ration-
nel R qui sera le rayon du cercle circonscrit, et deux autres
nombres y et z, rationnels tous deux et assujettis aux inéga-
lités suivantes :

1 ——
— >z >0, 1 4+ 22—z . ‘
e V >y >z
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en posant alors :

1 — yz

tang A : 2 = 5
A

tang B:2 =y , tangC:2 =z ,

on obtient un arithmotriangle héronien dont les co6tés ont
pour expressions :

_ (y +2 0 —yz) P _ .
a_éR(1+72)(1+z2)’ [)_[_ER:[-——_F?, C.—/*R.’]_-{—-Z“,

les inégalités imposées aux nombres rationnels v et z sont
celles qui assurent 'ordre suivant des c6tés du triangle:

a>b>c;

cet avantage des formules précédentes, qui permettent d’ob-
tenir tous les arithmotriangles héroniens au moyen de trois
nombres rationnels R, y et z, quelconques et uniquement
assujettis a des conditions de grandeur, compense largement
I'inconvénient qui résulte de la dissymétrie de ces formules.

11. — ARITHMOTRIANGLES A COTES EN PROGRESSION ARITH-
METIQUE. La méthode qui vient d’étre indiquée pour déter-
miner tous les arithmotriangles héroniens permet de ré-
soudre simplement une question qu’il est tout naturel de se
poser. On sait, en effet, que tous les arithmotriangles pytha-
goriques a cOtés en progression arithmétique sont semblables
au triangle rectangle de cotés 3, 4 et 5 des harpedonaptes
égyptiens et qui fut initialement considéré par Pythagore.
C’est d’autre part a un triangle de cotés 13, 14, 15 que Héron
d’Alexandrie appliqua pour la premiére fois la formule, par
lui découverte, exprimant la surface d’un triangle en fonc-
tion des mesures des cotés. Ce méme triangle de cotés 13,
14, 15 figure aussi dans 'une des questions posées en 1536
par ZuaNe pi Cor a Tarracria, l'intérét de cette question
résidant précisément dans le fait que diverses lignes tracées
dans le triangle con51dere sont mesurées par des nombres
ralionnels.

Il est donc intéressant de déterminer la formule générale
donnant tous les arithmotriangles héroniens a co6tés en pro-
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gression arithmétique. La condition est, pourlordrea™> 6> c¢

des colés,
26 —ma 4 ¢ ;

par l'utilisation des formules précédentes, cette condition
devient :

2y 3 i (y + 2 (1 —33)
T4+ 714+ 0 (15 + 20
c’est-a-dire :
o 2=
Y=g

Les inégalités
VIt 22 —z2>r>z

.. . . £ 5 1
sont ici satisfaites, sous les seules conditions ‘7? >z > 0.
Il existe donc une infinité d’arithmotriangles héroniens a
cotés en progression arithmétique et dissemblables entre eux.
Ces triangles dépendent du parameétre rationnel arbitraire z,

uniquement assujetti a4 la double condition d’étre positif et

inférieur a -‘%3— .

12. — Une troisieme méthode de détermination des arithmo-
triangles héroniens, générale et respectant la symétrie entre
les éléments, consiste a rattacher la théorie de ces triangles
a celle des arithmocercles. J'observerai, en effet, que la for-
mule bien connue qui donne 'aire d’un triangle en fonction
des coordonnées des sommets, sous la forme d'un détermi-
nant, conduit a des triangles dont l'aire est rationnelle si les
coordonnées des sommets sont six nombres rationnels. 1l
reste donc a assurer la rationalité des longueurs des trois
cotés d’un tel triangle. En d’autres termes, puisqu’un cercle
est un arithmocercle dés qu'il posséde trois points rationnels,
il faut se donner tout d’abord un arithmocercle quelconque
du rayon rationnel, dans le plan. Ce cercle sera, par exemple,
défini par son centre O et par un point A quelconque du
plan, ces deux points O et A étant tous deux rationnels. 1l
s’agil maintenant de trouver, parmi l'infinité de points ration-
nels de la circonférence de cet arithmocercle, un groupe de

[’Enseignement mathém., 18 année; 1916 7
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trois points M,, M, et M, dont les mesures des distances
mutuelles soient des nombres rationnels.

Supposons que le rayon OA ait été choisi comme origine
des arcs sur cette circonférence; les points M,, M, et M;
seront alors repérés par des arcs 6, . 9, el §,. Ces trois points
étant rationnels, les tangentes des arcs moitiés seront des
nombres rationnels; mais cette triple condition n’assure
point la rationalité des mesures des distances mutuelles
des trois arithmopoints : il faut aussi que les sinus des moi-
tiés des trois différences de ces arcs pris deux & deux soient
des nombres rationnels, c’est-a-dire encore que tous les

6 0y O
209179
nels. La condition pour qu’il en soit ainsi est que les tan-

nombres trigonométriques des arcs soient ration-

B 06, 6

T T % soient rationnelles, et réciproque-

gentes des arcs

ment d’ailleurs.

Nous arrivons ainsi a la construction définitive de ces
arithmotriangles héroniens : On se donnera un arithmocercle
quelconque de rayon rationnel, sur lequel on marquera un
point rationnel A arbitraire. Cet arithmopoint A servant
d’origine des arcs, sur la circonférence, on marquera les
trois points My, M, et M, de cette circonférence repérés par
trois azimuts 0,, 0, et 8, satisfaisant a l'unique condition
que les tangentes trigonométrigues de leurs quarts soient des
nombres ratronnels arbitrairement chotsis.

Les formules symétriques, qui correspondent a ce mode
général de construction des triangles héroniens, s’obtiennent
aisément. Il suffit de se donner quatre nombres rationnels
quelconques R, A,, 1, et }A;; le premier, essentiellement
positif et différent de zéro, sera le rayon du cercle circonscrit;
les trois autres seront les nombres :

O
4

i) 6
A = tang ,—1 , Ay = tang —4—’ , hs = tang
4

La longueur du coté M, M,, par exemple, est

.0 — b
s ——-

M, M, — 2R

o I, s ST it o S

PR

CEeS 8
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c’est-a-dire :
MW — 4R e — M) (A ) |
(14 2) (14 2)

Les deux autres cotés ont des expressions quise déduisent
de celle-ci par permutations circulaires. Quant aux angles
de 'arithmotriangle héronien, ils seront déterminés par des
formules telles que les suivantes :

s — Ay
1 + )\fl.

N\ 1 M
M,:-2—[63———91|, tang{:‘

Ces considérations permettent d’'établir la proposition sui-
vante relative & la déformation continue des arithmotriangles
héroniens et a l'existence d’un arithmotriangle héronien
aussi voisin qu’on le veut d’un triangle imposé : Etant donnés
trois cercles arbitrairement et indépendamment choisis dans
le plan, de rayons ausst petits qu'on le veut, tl est toujours
possible de trouver trois arithmopoints respectivement inté-
rieurs aux trots cercles imposés et qui sotent les sommets d'un
arithmotriangle héronien. En d’autres termes : Etant donné
un triangle quelconque, il existe toujours un arithmotriangle
héronien dont les cotés soient aussi voisins qu'on le désire de
ceux du triangle imposé.

Pour établir cette proposition, je supposerai tout d’abord
que les centres a,, a,, «, des trois petits cercles sont trois
arithmopoints. Par eux passe une circonférence qui estnéces-
sairement une arithmocirconférence ; elle peut d’ailleurs
dégénérer en une arithmodroite. Si le rayon est rationnel,
il sera possible de trouver sur cette circonférence trois points

L, . 04 0s Os
repérés par les azimuts 6, 0, et 6, tels que tg +, tg+, lg7
soient des nombres rationnels el respectivement aussi rap-
prochés qu'on le désirera des trois centres des cercles im-
posés. Les trois points ainsi déterminés seront alors les
sommets d'un arithmotriangle héronien satisfaisant a la
question.

Si, au contraire, le rayon de I'arithmocercle passant par
ay, oy, a, n'est pas un nombre rationnel, soit ¢ I’écart mini-
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mum imposé entre les centres a,, «,, o, des trois cercles
imposés et les sommets de 'arithmotriangle héronien désiré.
Il suffit de substituer au cercle passant par «, «, «; un cercle
concentrique a rayon rationnel différent du rayon du précé-

. 1 “ ;
dent de moins de 7¢; soient alors B, 3,, 3; les points de la

nouvelle circonférence qui sont les plus rapprochés de a,
asy o3. Sur cet arithmocercle de rayon rationnel, on pourra
toujours trouver trois arithmopoints repérés par des azimuts
dont les tangentes des quarts soient rationnelles et tels que
I'on ait:

My < 5, M; s <<

| o

| ™

[\'JI w

Mg <

ces trois points M, M, M; sont alors respectivement situés a
des distances de o, a, o; inférieures a ¢; de sorte que l'arith-
motriangle héronien M, M, M; répond a la question.

Reste enfin le cas ou les trois centres «,, «,, «, des trois
cercles imposés ne sont pas des arithmopoints. Il suffira de
leur substituer trois arithmopoints o, o«,. &/, respective-
ment intérieurs aux cercles imposés. De ces points o, o,
comme centres, on décrira trois cercles respectivement inté-
rieurs aux trois premiers et a rayons rationnels. Le probléme,
étant possible pour I'ensemble de ces derniers trois cercles,
le sera a fortiori pour les cercles primitivement donnés.

Arithmotriangles héroniens particuliers.

13. — Il est possible de rattacher, de deux manieres dis-
tinctes, les arithmotriangles héroniens particuliers, tels que
les quatre facteurs p, p—a, p— b et p — ¢ qui figurent
dans ’expression classique

SE=p.(p—a).(p—1>b).(p—c),

du carré de la surface d’un triangle de cotés a, b et ¢ soient
les carrés de quatre nombres rationnels, a la théorie des
points rationnels de I'arithmosphere.
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Premiére représentation de ces triangles hérontens. Posons,
en mettant en évidence les racines supposées rationnelles
des segments déterminés sur les cotés par les points de con-
tact avec le cercle inscrit :

p =R?*, p—a=2zx", p—b=>7%, p—c=2z";

R, x, y, z sont quatre nombres rationnels positifs, par hypo-
these, évidemment reliés par la relation unique :

x? 4 5% 4 22 = R? |

Tout arithmotriangle héronien de ['espéce envisagée est
donc associable a un point rationnel de la partie, siluée dans
le triédre des directions positives des axes coordonnés, d'une
arithmosphére de centre O et de rayon rationnel.

Par une projection stéréographique, il est donc possible
d’établir une correspondance entre tout point rationnel du
plan et un arithmotriangle héronien de 'espece considérée.

Les formules de représentation de ces arithmotriangles
héroniens sont, en fonction des coordonnées £ ety du point
image du plan wén :

pel& 0 AP =88 o[ 4 B+ 12 [0 4 E — 1)
' (6% + n* + 1)°

B0 — b [ D[ 4 — 1]
TTE ‘ (8 +0* 4 1) ’

’

£2 4 4*
B+

¢ —— 4R?,

De ces formules résultent les suivantes :
2 — k2
(&% + % + 1)
(£2 4 0% — 1) — b&q?
(8 + 0% 4 1)? ’
B (E2 4 n? — 1) — 452
\ - (B2 4+ 7% 4 1) ’

a — b — 4R?

b — ¢ — RS2,

elles permettent de discuter l'ordre de grandeur des cotés
du triangle héronien d’aprés la position du point image dans
le plan wZy. Les régions correspondantes aux divers cas pos-
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sibles sont séparées les unes des autres par des courbes tres
simples : deux droites » +&=—=0 et n — £ =0, et quatre
circonférences :

g+t 2 —1=0, B4 —=21—1=0,
B4 2426 —-1=0, 242 —-2%—-1=0.
14. — Extension a certains arithmoquadrilatéres inscrip-

tibles. Aux arithmotriangles héroniens qui viennent d’étre
déterminés se rattachent des quadrilatéres inscriptibles a
surface rationnelle qui méritent d’étre mentionnés ici.

Observons que la surface d’un quadrilatére plan, inscrip-
tible dans un cercle, est exprimée par la formule

S=Vip—allp—20p—ci(p—4d) .

en fonction des cotés a, b, ¢, d. Il y a lieu de considérer,
au titre de généralisation des arithmotriangles précédents,
ceux des quadrilateres inscriptibles tels que les quatre fac-
teurs p —a, p—0b, p—c, p— d soient simultanément
carrés parfaits. Posant

p—a=ua*, p—b=>7%, p—c=z3*, p—d=1,

on aura:
x4yt 24P =2p .

Dans ces conditions, donnons-nous un périmeétre arbi-
traire 2p et observons que le théoréme de Bachet est sus-
ceptible d’étre étendu aux nombres rationnels. Le théoréme
de Bachet proprement dit consiste dans le fait que tout
nombre entier N est de la forme en nombres entiers :

N=ua% 4+ 224 ¢ ;

il en résulte que l'inverse d’un entier est de la méme forme
en nombres rationnels, en vertu de l'expression suivante

1
deN.

1 1 2 2 2
'N'—_%2+).2+;2+t2_<1.2+].2+Zz+iz>+ <‘_.2+),.2+32+'12>
2

z 2 ¢
_I_ <lz _|__ J,‘z + ;2 + t2> + <%2 _i_).z + z‘z + l2> '
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on sait enfin que le produit de deux expressions algébriques
sommes de quatre carrés est lui aussi somme de quatre
carrés. Tout nombre rationnel est donc décomposable en
une somme de quatre carrés de nombres rationnels, cette
décomposition résultant de celles des divers facteurs qui
figurent aux deux termes du nombre rationnel considéré.

Nous supposons donc le périmétre 2p ainsi décomposé en
une somme de quatre carrés de nombres rationnels ; de cette
décomposition particuliére il est aisé de déduire une décom-
position générale, car nous nous trouvons en présence d'une
arithmohypersphére de 1'espace a4 quatre dimensions dontun
arithmopoint particulier est connu et a laquelle il suffit d’ap-
pliquer les formules du § 9.

Il existe donc une infinité de quadrilatéres inscriptibles de
Uespéce considérée, admettant un périmétre arbitrairement
imposé et dont la détermination s'effectue a laide du théo-
réme de Bachet et de la considération d’une arithmohyper-
sphére (avec trois parametres arbitraires, en plus du péri-
metre).

15. — Deuxieme méthode de détermination de ces triangles.
Leur construction géométrigue. Donnons-nous un triangle
ABC, dans le plan de comparaison; ce triangle est quel-
conque, ses cotés a, b, ¢ étant supposés toutefois mesurés
par des nombres rationnels. Il existe un systeme de trois
sphéres, juxtaposées sur un plan horizontal qui leur est tan-
gent en A, B et C. Soient «, 8. y leurs centres respectifs ;
leurs rayons sont définis par des formules :

be ca ab

Ry =g, 5= a5 Y= 55

) N .
c’est-a-dire encore

2abce
a:

R — 2abce

ha? ’ BT 4 T 4t

R

Le produit 2abc est ou non le carré d’'un nombre rationnel.
En tous cas, une similitude permet de transformer le triangle
ABGC en un triangle tel que 2abc soit carré d’'un nombre
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rationnel : si l'on pose, en effet, a, = da b, =210 ¢, = c,
on a
2a1by¢y = 2abc . 03
il suffit de prendre
k?
2abe ’

-

k étant un nombre rationnel arbitraire, pour obtenir un
triangle semblable a ABC et tel que le produit 2«, b, ¢, soit
carré. Je supposerai dorénavant que cette opération prélimi-
naire a été effectuée. De ce fait, les rayons des trois sphéres
sont trois carrés de nombres rationnels. Le triangle o8y des
trois centres des sphéres considérées est donc tel que les six
segments, deux a deux égaux, déterminés sur ses cotés par
les points de contact avec le cercle inscrit sont les carrés de
nombres rationnels. Pour qu’un tel triangle oy soit de l'es-
pece que j'éludie actuellement, il faut et il suflit, en outre,
(que son demi-périmetre soit lui aussi carré d’un nombre
rationnel; 'expression

et, par suiie, la somme des carrés des trois hauteurs du tri-
angle ABC doivent étre les carrés de deux nombres ration-
nels. D’ou la construction suivante :

On considérera un point quelconque rationnel de la sphére

x? 432 2=

tel que ses trots coordonnées puissent étre considérées comme
les trois hauteurs d’'un triangle ; parmi les triangles sem-
blables a celui-ci, on en choisira un ABC a cotés rationnels et
dont le double produit de ces célés soit le carré d’'un nombre
rationnel. Le triangle des trois centres des sphéres tangentes
deux a deux et toutes trois tangentes au plan du triangle
ABC en ses sommets respectifs sera un arithmotriangle héro-
nien de l'espece actuellement envisagée.

La construction géométrique des trois sphéres est des
plus simples ; il suffit d’effectuer une inversion dont le pdle
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soit un sommet, A par exemple ; les sommets B et C de-
viennent deux points B’ et C’. On construit alors immédiate-
ment deux sphéres tangentes entre elles, et loutes deux
tangentes respectivement en B’ et C’ au plan de comparai-
son. Par la méme inversion, le systéme constitué par ces
deux nouvelles sphéres et par leur plan tangent commun
horizontal, autre que le plan de comparaison, se transforme
en les trois spheres désirées.

Il reste a discuter la possibilité de la construction du
triangle ABC défini par ses trois hauteurs, construction qui
se raméne immédiatement a celle d’'un triangle connaissant
les trois cotés. Je supposerai que l'ordre imposé aux cotés
a, b, c soit: a < b < c; que x, y, z soient respectivement
les inverses de a, b, ¢ et enfin que les relations entre la
sphére et sa représentation stéréographique solent expri-
mées par les formules :

% W B4t
TEF¥T+1 T Erer1 T ey 1]

on doit donc discuter les inégalités :

x>y >z >0, c<a-+b ou

X
<

qui donnent :

E>0, n >0, E>1 , > 472—1>0,
260 <(E+ ) (B2 +n*—1)

finalement, I'image (£, n) du point de la sphére doit étre inté-
rieure 4 un certain triangle mixtiligne a8y, ayant pour som-
: ; 1
mets le point a(( =1, » = 0), le point ﬁ(i:n == \/5) et
le point y(1, 1); ses cotés sont un segment By de la bissec-

trice £ =, un arc de cercle 8 et enfin un arc oy de la
cubique circulaire représentée par I’équation

E+2)E+0*—1) —2q=0,

16. — Les cotés a, b, ¢ d'un triangle de 'espéce qui vient
d’étre considérée dans les paragraphes précédents, c'est-a-
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dire tels que p, p — a, p — b, p — ¢ soient des carrés par-
faits étant reliés & un point (x, y, z) de la spheére d’équation

x2+:y'2+22:R2
par les formules

a —= R% — 2% , b —= R%? — y? | ¢c = R? — 7%,

o

la condition
20 = a + ¢

moyennant laquelle ces cdtés seraient en progression arith-
métique devient :
2yt = a? + 2% ;

elle peut étre écrite sous la forme équivalente :
3y? = R? .

De 'impossibilité de cette derniére équation, il résulte donc
qu’il n’existe aucun triangle de Uespéce considérée dont les
cOlés sotent en progression arithmétique.

Voici encore une curieuse proposition négative concer-
nant ces mémes triangles. La condition pour que le triangle
de cotés a, b, c soit rectangle,

| a? 4+ b = ¢*
devient ici
Rz == xy ;

la quartique gauche intersection du paraboloide hyperbolique
représenté par cette équation et de la sphere 2?4?42 = R?
a pour image, dans une projection stéréographique, une
quartique plane d’équation :

(B 4 7yt — 1 = 4 .

La surface d’'un triangle de la méme nature est:

4En (B2 4+ 2 — 1)
(52 4+ 92 + 1)

S:‘/p(p ——a)(p—b_)(p-—c) = Rxyz = R*.

cette surface sera mesurée par un carré parfait si le nombre

Enl(8® + %) — 1]
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est un carré. Il résulte de ces deux remarques que, si un
triangle de l'espéce.considérée était rectangle, sa surface
serait mesurée par un carré parfait, ce qui serait contraire
a un théoréme de Fermat sur les triangles pythagoriques.
Par suite :

Aucun triangle de U'espéce considérée ne saurait étre un
triangle rectangle.

Le probléme des distances rationnelles.

17. — D’une facon générale, étant donnés, dans le plan ou
dans ’espace, une arithmocourbe (C) et un arithmopoint A,
jappellerai probléme des distances rationnelles relatif a
cette arithmocourbe et a l'arithmopoint donné le probleme
suivant: déterminer parmi les arithmopoints de l'arithmo-
courbe (C) ceux qui sont situés a une distance rationnelle de
I'arithmopoint.

Tout d’abord, il y a lieu de se rendre compte de la réduc-
tion du probléme des distances rationnelles a 1'étude
arithmogéométrique d’une autre courbe plane. Soient, en
effet, les expressions rationnelles en fonction d’un para-
metre ¢,

=),  r=y@ ., =3z,

des coordonnées de l'arithmopoint courant M de V'arithmo-
courbe (C); soientd’autre part a, b, ¢ les coordonnées ration-
nelles de l'arithmopoint imposé A. Les axes coordonnés
étant essentiellement rectangulaires, on posera:

AMZ = (2 — a)® + (y — b)2 + (z — ¢)2 = [f()]% g (1)

f(¢) et g(t) étant des fonctions rationnelles de ¢; la seconde,
g(¢), ne contient aucun facteur carré. De cette expression, il
résulte que le probléme des distances rationnelles équivaut,
dans le cas le plus général, a la recherche des arithmopoints
de la courbe représentée par 'équation Y2 — g(X).

18. — Le probléme des distances rationnelles pour wune
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arithmodroite. L’arithmodroite considérée sera supposée
représentée par les équations

xr = At + A", y = Bt 4+ B’ ;

de I'expression de AM?,

AM2 = (At 4+ A’ — a)? 4+ (Bt + B” — b)?
il résulte que la question est réductible a I'étude arithmo-
géométrique de 'hyperbole représentée par I'équation :

Y? = (A2 4 B3 X2+ 2[A(A’— a) + B(B'— b)]X + (A’— a)? + (B"— b)? .

Une premiére conséquence de cetle réductibilité a I'étude
arithmogéométrique d'une conique est que si, dans le cas
d’'une arithmodroite, le probléme des distances rationnelles
pour un artthmopoint donné admet une solution particulicre,
il en admet une infinité.

Lorsque 'arithmodroite imposée est une de celles que j'ai
nommeées des arithmodirigées, la distance de tout point
rationnel du plan a une telle droite est toujours rationnelle
et cette propriété est caractéristique des arithmodirigées. I
résulte de cette remarque que, dans le cas d’une arithmo-
dirigée, le probléme des distances rationnelles admet tou-
jours une solution particuliere : la projection de I'arithmo-
point A donné sur 'arithmodirigée, projection qui est néces-
sairement un arithmopoint. D’aprés ce qui précede, le pro-
bléeme des distances rationnelles relatif a une arithmodirigée
et a un arithmopoint quelconque est donc toujours possible
et admet une infinité de solutions.

19. — Le probléme des distances rationnelles pour une
arithmodirigée et un arithmopoint pris sur elle est évidem-
ment résolu par tous les arithmopoints de 'arithmodirigée.
Cette propriété s'étend a d’autres arithmocourbes.

Soit, en effet, un arithmopoint imposé de coordonnées
(%o, Yo) ; le probléeme des distances rationnelles pour cet
arithmopoint et une arithmocourbe plane sera résolu par tous
les arithmopoints de cette arithmocourbe, si I'expression
(x — x)* + (y — v,)® est le carré d’'une expression ration-
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nelle du parameétre rationnel ¢ qui repere I’arithmopoint cou-
rant de l'arithmocourbe. On devra donc avoir:

R
LA

x=ux,+ (1 — ). ft) ,

Yo + 2t f(E)

<
i

ces formules dans lesquelles /(¢) est une fonction rationnelle
quelconque de ¢ représentent I'arithmocourbe du planla plus
générale qui jouisse de la propriété spécifiée.
| [ arithmopoint imposé étant pris pour pole, I'équation
. polaire d'une telle courbe est de la forme générale

r — f(tang %)

, . X : ‘ b
[ étant une fonction rationnelle arbitraire de tang; . Lastro-

phoide, les coniques rapportées a un foyer en sont les
exemples les plus simples. Les arithmoconiques sont d’ail-
leurs doublement solution de la question, en raison de l'exis-
tence de deux foyers, lorsque ces deux foyers sont deux
arithmopoints.

20. — Application du probléme des distances rationnelles
aux arithmotriangles héroniens. Donnons-nous arbitraire-
ment, dans le plan, une arithmodirigée (D) et un arithmo-
point A ; soient alors B et C deux arithmopoints quelconques
de (D), uniquement assujettis a la condition d’appartenir aux
solutions, en nombre infini, du probléeme des distances
rationnelles relatif a (D) et a A. La distance BC est ration-
nelle; de méme AB et AC sont mesurées par des nombres
rationnels, aux titres de solutions du probleme des distances
rationnelles ; de sorte que le triangle ABC a ses trois cotés
ralionnels ; la hauteur issue de A est en outre rationnelle,
comme distance d’un arithmopoint & une arithmodirigée.
D'ou il résulte que le triangle ABC est un arithmotriangle
héronien.

Cette méthode de génération desarithmotriangleshéroniens
est susceptible d’étre présentée sous une nouvelle forme, en
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partant de cette remarque que AB et AC sont des arithmo-
dirigées. Considérons d’une maniére générale trois arithmo-
dirigées quelconques ; elles constituent un triangle dont les
sommets sont trois arithmopoints; les cotés etles hauteurs
de ce triangle sont, d’aprés les propriétés fondamentales des
arithmodirigées, mesurées par des nombres rationnels. Dot
il résulte que trois arithmodirigées quelconques du plan défi-
nissent toujours un arithmotriangle héronien.

Lareprésentation analytique générale suivante des arithmo-
triangles héroniens du plan résulte immédiatement de cette
proposition. Il suffit de prendre pour équations des co6tés du
triangle les trois équations suivantes:

X €OS oy 4 ysinay; = p, ,
x cos oy 4 ) sinaoy = p, ,

x cos ag 4 ysin oz = p; ;

dans ces trois équalions, p,, ps, Ps, sont trois nobresm
rationnels; les azimuts «,, a,, «; sont quelconques, mais tels

[+ 2] Og [+ .
que tang 3, tang 3 et tang ; sont eux aussi des nombres

rationnels.

Le 20 septembre 1915.
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