Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 18 (1916)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: DES EQUATIONS PRIMITIVES TRINOMES DU SECOND DEGRÉ

Autor: Hansen, H. E.

Kapitel: V. — L'équation $x^2 + y^2 = a^2$. **DOI:** https://doi.org/10.5169/seals-16871

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Exemple.

IV. — L'équation
$$a^2 + x^2 = y^2$$
.

(« Equation pythagorique »).

Les nombres pythagoriques se laissent déterminer de la plus simple manière à l'aide des équations (I) et (II), si l'on pose, seulement, pour p et q des nombres carrés correspondants, et en employant, dans le premier terme, successivement tous les nombres carrés.

Exemple. 4.2^2 . 3^2 . $5^2 = 60^2$ donne les couples de facteurs :

On trouve toutes les valeurs cherchées, en employant seulement l'équation (II), où successivement on met dans le premier terme tous les nombres impairs de toute la suite des nombres. Si a est un nombre composé, il faut le décomposer en ses facteurs premiers, et de ceux-ci on doit former, comme nous l'avons montré dans ce qui précède, tous les couples des facteurs, p et q, premiers entre eux, qui se peuvent faire.

$$V. - L'équation x^2 + y^2 = a^2.$$

Si cette équation doit être primitive, elle ne peut être satisfaite que par des valeurs impaires de a, et seulement

par celles qui peuvent être écrites comme une somme, divisée par 2, de deux nombres carrés impairs et premiers entre eux, ainsi $a = \frac{p^2 + q^2}{2}$.

On peut désirer savoir quels nombres, a, on pourra décomposer de plusieurs manières, d'après la formule donnée.

Si l'on met p = 2n + 1 et q = 2n + 1, on aura

$$a = \frac{p^2 + q^2}{2} = 2[n(n+1) + n_1(n_1 + 1)] + 1 ,$$

et on peut former le tableau suivant des valeurs de a, jusqu'à 200:

Les valeurs qui paraissent plusieurs fois dans le tableau sont celles qui, pour la même valeur de a, donnent plusieurs valeurs pour x et y. Ainsi le nombre 72, paraissant deux fois, donne

$$a = 2.72 + 1 = 145 = \frac{17^2 + 1^2}{2} = \frac{13^2 + 11^2}{2}$$
,

et par conséquent on aura les équations:

$$(1-17^2 + \left(\frac{17^2 - 1}{2}\right)^2 = \left(\frac{17^2 + 1^2}{2}\right)^2$$

et

$$(11-13)^2 + \left(\frac{13^2 - 11^2}{2}\right)^2 = \left(\frac{13^2 + 11^2}{2}\right)^2$$
.

Toutefois, on n'oubliera pas que 2n + 1 et $2n_4 + 1$ doivent toujours être premiers entre eux.

Copenhague, mai 1915.