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52 //. E. HANSEN

D'une manière pareille on peut l'aire usage de l'équation
(II), quand on a déterminé la première moitié des nombres
inférieurs à 2a et premiers avec celui-ci.

Ainsi on trouvera pour a — 15 :

Exemple.

la 30 — 1 -f 29 donne 1.29 + 14* 15*

7 + 23 7.23 + S9- =z 152

11 + 19 11.19+ 42 — 15-

13 + 17 13.17 + 22 — 152

Le nombre des relations est y [a) : 2.
5,c cas. — Le nombre donné étant pair, l'équation (I) ne

donne aucune équation primitive, et, par conséquent, nous
n'aurons aucune solution.

Pour avoir des solutions d'après (II), il faut encore
connaître la première moitié des nombres inférieurs à 2a et

premiers avec celui-ci. Soit a — 12, 2a 24 — 23. 3, on a

<p (24) 22(2 — 1) (3 — 1) 8.

Exemple.

2a 2 4 — 1 + 23 donne 1.23 + 112 122

5 + 19 5.29 + 72 — 122

7 + 17 7 /17 + 52 !2a

H + 13 11.13 + l2 =: 12*

Le nombre des solutions devient qp(2a) : 2.

III. — L'équation x + a2 y2.

Les équations (I) et (II) nous donneront aussi, pour un et

donné, des solutions de cette équation. On aura à traiter,
comme plus haut, les trois cas différents désignés.

1er cas. — En se servant de l'équation (1), il faut écrire le
nombre premier donné, a, comme une différence entre
deux nombres impairs et premiers entre eux. Mais cela

pourra se faire d'innombrables manières. Les nombres de
1 à a — 1 sont premiers avec a, et, par conséquent, on peut
les poser pour q, comme nombres à soustraire, dans l'équation

a — p — q, quand pour p on met a + q.
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Exemple.
a — 7 8 — 1

9 — 2

10 — 3

11 — 4

12 — 5

13 — 6

donne 4.1. 8 + 72 92

4.2. 9 + 72 11*

4.3.10 + 72 13®

4.4.11 + V — 152

4.5.12 + 72 172

4.6.13 -h V- 192

On peut continuer à L'infini en ajoutant des multiples de 7.

Ainsi nous aurons :

15—8
16—9
17 — 10

etc.

doune 4- 8-15 + 72 232

4- 9-16 + 72 252

4-10-17 + 72 ~ 272

etc.

Usant de l'équation (II), il nous faut décomposer a en
P — g ou 2# en p — q. Pour a 7, 2« 14, on doit donc

poser pour q les y(14), ou 6, nombres qui sont inférieurs
à 14 et premiers avec ce nombre, savoir 1, 3, 5, 9, 11, 13.

Exemple.
2a nr 14 — 15 — 1 donne 1.15 -f- 72 — 82

17—3 3,17 + 72 zu 102

19—5 5.19 + 72 122

23—9 9.23 -f 72 — 162

25 — 11 11.25 + 72 182

27 — 13 13.27 + 72 — 202

29 — 15 15.29 + 72 — 222

31 — 17 17.31 + 72 — 242

33 — 19 19.33 -f- 72 262

etc. etc.

2e cas. — Quand on a pour a un nombre composé impair,
on procède comme plus haut; il faut, toutefois, commencer
par la détermination des nombres qui se trouvent inférieurs
à a et premiers avec celui-ci.

3e cas. — Ayant pour a un nombre pair, l'équation (I) ne
donnera aucune solution primitive.

Par contre, l'équation (II) nous donnera d'innombrables
solutions. Pour a 18, nous avons 2a 36, et les y(36), ou
12, nombres inférieurs à 36 et premiers avec lui, sont 1, 5,
7, II, 13, 17, 19, 23, 25, 29, 31, 35, d'où suit :
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Exemple.
2a 36 37 — 1 donne 1.37 + 182 192

41—5
43—7
47 — 11

5.41 + 182 232

7.43 + 182 252

11.47 + 18* 292

73 — 37

77 — 41

etc.

37.73 + 182 552

41.77 + 18* 592

etc.

IV. — L'équation a2 + x2 y2.
(« Equation pythagorique »).

Les nombres pythagoriques se laissent déterminer de la

plus simple manière à Laide des équations (I) et (II), si l'on
pose, seulement, pour/* et q des nombres carrés correspondants,

et en employant, dans le premier terme, successivement

tous les nombres carrés.
Exemple. 4. 22. 32. 52 602 donne les couples de facteurs :

On trouve toutes les valeurs cherchées, en employant
seulement l'équation (II), où successivement on met dans le
premier terme tous les nombres impairs de toute la suite
des nombres. Si a est un nombre composé, il faut le décomposer

en ses facteurs premiers, et de ceux-ci on doit former,
comme nous l'avons montré dans ce qui précède, tous les

couples des facteurs, p et /, premiers entre eux, qui se

peuvent faire.

1* 22 32 52

22.32.52 32.52 22.52 22.32

dont on aura
602 -f 8992 — 9C12

602 + 2212 2292

602 + 91* 1092

602 -f 112 612

V. — Véquation x2 + y2 a2.

Si cette équation doit être primitive, elle ne peut être
satisfaite que par des valeurs impaires de a, et seulement
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