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DES EQUATIONS PRIMITIVES TRINOMES
DU SECOND DEGRE

PAR

H. E. Hansen (Copenhague).

[. — Léquation a + x? = y2.

p et g désignant des nombres entiers et premiers entre
eux, pour p pair, q impair (ou vice versa), considérons
I'identité

bpg +(p—aqf=1p+ 97 J)

et pour p et g, tous les deux impairs, la suivante
— 2 2
po+ (1) = (B59) il

Ces identités nous fourniront des moyens pour résoudre
I’équation donnée.

Si I'on veut employer (I), il faut que @ puisse:s’écrire 4pgq,
ou p doit étre pair. Ainsi @ aura au moins 2% comme facteur.

Exemple 1. @ = 4.2% > un nombre premier impair.

Les valeurs pour « étant 1, 2, 3 ..., il s’ensuit que dans
la formule (I} p sera 2* et ¢ le nombre premier donné. Ainsi
nous n‘aurons qu’une seule solution:

x=+ (¢g—2% et y=gq+4 2%.

Exemple 2. a = 4.2% >< un nombre impair compose.
Dans la formule (I) p et ¢ seront les deux facteurs, pre-
miers entre eux, de tous les couples de facteurs qui peuvent
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se former de 2* et des facteurs premiers. du nombre com-

posé donné. Ainsi les facteurs 27, 5P et I' forment les
couples :
A I L
9% 1B [ /;-f3 2%y 9% P

¢’est-a-dire 2°7' couples en tout.
Sl I'on a donné les quatre facteurs, premiers entre eux,
*, k., let m,ils fourniront les couples

a

1, 2* Ik, l, m, 2%k, 2%, 2%m
2% klim K 2%im 2%km 2%kl Im km kl

c'est-a-dire 2*7* couples. |
, —1 . n—1
Pour n facteurs, on aura 2" couples et par suite 27 solu-
ttons de I’équation proposée.

Si I'on veut employer la formule (II), nous procéderons
de la méme maniére,

Exemple 1. @ = un nombre premier impair.

Pour pg on met le nombre donné, @, et on n’aura que le
seul couple de facteurs, @ et 1, a poser dans la formule, res-

pectivement pourp et ¢. Ainsi on n’aura que la seule solu-

tion :

a—1 a -+ 1
X — 5 el ¥ = ) .

Exemple 2. @ = un nombre impair, composé de n facteurs
premiers. ‘

Comme plus haut, les n facteurs forment 2" couples de
facteurs premiers entre eux, et ainsi on aura 2" solutions.

Application a des exemples nUMEriques :
L’équation (I) peut s’écrire

pra=Vip—q’+ipg ou p—qg=VIip+qF—hpg
et 'équation (II)

P+q — — :
__2__:\/<p : q) +pg on P_Q_q:\/@%_/) oy

[’Enseignement mathém., 18¢ année; 1916
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Exemple 1. p + ¢ =\V'22+4.2.3.5 .
Les couples de facteurs mentionnés plus haut deviennent:

1, 2, 3, 3,
2.3.5 3.5 2.5 2.3

Si I'équation est primitive et en nombres entiers, il faut
avoir z =29, 13, 7 ou 1, et les racines correspondantes
p + ¢ seront 31, 17, 13 et 11.

Exemple 2. L5 4 =\/22 —3.5.7 .

Les couples de facteurs sont

1, 3, 5, 7,
3.5.7 1.5.7 1.3.7 1.3.5
Il faut donc qu’on ait z := 53, 19, 13 ou 11, et les racines
p_;_q deviendront 52, 16, 8 et 4.
Exemple 3. Soit

x = |/ 1508% 4 88305 ;

pour savoir, sans calcul ordinaire, si la racine est ration-
nelle, il faut examiner si les deux termes sous le signe radical
ont un facteur commun. On trouvera le facteur 29; et en
outre 88305 étant divisible par 292, il s’ensuit

x = 29¢/52% 105 .

105 — 1
2

105 + 1

——, et

Comme 52 est égal a , la racine sera

ainsl on a
x — 29.53 .

2

II. — L’équation x + y? = a®.

A Paide des équations (I) et (II) on sera a méme de déter-
miner x et y.

Il y aura trois cas différents, selon qu'on a « égal a 1° un
nombre premier impair, 2° un nombre impair composé ou
3° un nombre pair composé.
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