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DES ÉQUATIONS PRIMITIVES TRINOMES
DU SECOND DEGRÉ

PAR

H. E. Hansen (Copenhague).

I. — L'équation a + x2 y2.

p et q désignant des nombres entiers et premiers entre
eux, pour p pair, q impair (ou vice versa), considérons
l'identité

kpq + (p — qf (p + q)2 l1)

et pour p et q, tous les deux impairs, la suivante

Ces identités nous fourniront des moyens pour résoudre
l'équation donnée.

Si Ton veut employer (I), il faut que a puisse s'écrire 4pq,
où p doit être pair. Ainsi a aura au moins 23 comme facteur.

Exemple 1. a 4. 2a X un nombre premier impair.
Les valeurs pour a étant 1, 2, 3 il s'ensuit que dans

la formule (I) p sera 2a et q le nombre premier donné. Ainsi
nous n'aurons qu'une seule solution :

x ± (q — 2a) et J f + 2a

Exemple 2. a 4. 2a x un nombre impair composé.
Dans la formule (I) p et q seront les deux facteurs,

premiers entre eux, de tous les couples de facteurs qui peuvent
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se former de 2a et des facteurs premiers du nombre composé

donné. Ainsi les facteurs 2a, et forment les

couples :

1 2a ßkhT2aA 2a*P

c'est-à-dire 23-1 couples en lout.
Si l'on a donné les quatre facteurs, premiers entre eux,

2a, h, l et m, ils fourniront les couples

1, 2a jfc, /, 771, 2a k 2a/ 2a77i

2a£/777 klni 2*lm 2* km 2a kl Im km kl

c'est-à-dire 24_1 couples.
Pour 7? facteurs, on aura 2n~1 couples et par suite 2n—1 solutions

de l'équation proposée.

Si l'on veut employer la formule (II), nous procéderons
de la même manière.

Exemple 1. a — un nombre premier impair.
Pour pq on met le nombre donné, a, et on n'aura que le

seul couple de facteurs, a et 1, à poser dans la formule,
respectivement pour p et q. Ainsi on n'aura que la seule solution

:

O, 1 Cl —{— 1

Exemple 2. a — un nombre impair, composé cle n facteurs
premiers.

Comme plus haut, les n facteurs forment 2"—1 couples de
facteurs premiers entre eux, et ainsi on aura 2n~~1 solutions.

Application ci des exemples numériques :

L'équation (I) peut s'écrire

p + q Vïp — W+ V<7 ou P — <!— + — ty<7 •

et l'équation (II)

Ĉ'Enseignement mathém., 18e année; 1916
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Exemple 1. /? + g \/28 + 4 2 .3 5

Les couples de facteurs mentionnés plus haut deviennent:

1 2 3 5

2.3.5 3.5 2.5 2.3

Si l'équation est primitive et en nombres entiers, il faut
avoir z 29, 13, 7 ou 1, et les racines correspondantes
p + q seront 31, 17, 13 et IL

Exemple 2. V'z2 — 3.5.7
Les couples de facteurs sont

1 3 5 7

3.5.7 1.5.7 1.3.7 1.3.5

Il faut donc qu'on ait z — 53, 19, 13 ou 11, et les racines
^ ^ deviendront 52, 16, 8 et 4.

Exemple 3. Soit
x /Ï508* + 88305 ;

pour savoir, sans calcul ordinaire, si la racine est rationnelle,

il faut examiner si les deux termes sous le signe radical
ont un facteur commun. On trouvera le facteur 29; et en
outre 88305 étant divisible par 292, il s'ensuit

x 291/52* + 105

^05 \ # IQ5 i |Comme 52 est égal à —-— la racine sera —~— et

ainsi on a

x — 29.53

II. — Uéquation x + y2 a2.

A l'aide des équations (I) et (II) on sera à même de
déterminer x et y.

Il y aura trois cas différents, selon qu'on a a égal à 1° un
nombre premier impair, 2° un nombre impair composé ou
3° un nombre pair composé.
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