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se trouve d’ailleurs une arithmoquadrique gauche repré-
sentée paramétriquement par les equations :

x = 9i* , y=1-4 9, z = — 3t(1 + 33
et qui est tracée sur un paraboloide hyperbolique d’équation
y(z+ x) + 22— z2=0 .

Ll suffit de considérer les cordes de cette arithmoquadrique
définies par deux arithmopoints de parametres respectifs ¢,
et ¢, pour avoir une représentation rationnelle en fonction
de deux paramétres ¢, et £, de cette surface.

Les arithmopoints des cubigques.

39. — ARITHMOCUBIQUE GAUCHE. La théorie arithmogéo-
métrique des cubiques gauches est absolument identique a
eelle des coniques dans le.plan. Une cubique gauche repré-
sentée par des équations a coeflicients rationnels n’est pas
généralement une arithmocourbe. Mais des qu'elle possede
un arithmopoint particulier, elle est une arithmocubique
gauche. L'arithmopoint courant est alors l'intersection de
I'arithmocubique avec un arithmoplan (dépendant d’un para-
metre rationnel arbitraire) pivotant autour de la tangente a
cette courbe en l'arithmopoint connu a priori.

Il peut arriver d’ailleurs, a l'occasion de 'étude de cas
particuliers, qu’il soit inutile d’avoir recours a la considéra-
tion de larithmoplan général passant par cette tangente
particuliere. C’est, par exemple, ce qui se produit pour le
systeme suivant de deux équations a trois inconnues :

ar + a’ = y? ,

bx 4 b = 2% ;
a, a', b, b' sont quatre coeflicients rationnels absolument
quelconques. L’élimination de x entre ces deux équations

donne une équation

by? — az? = ba’ — ab’

du type de celle considérée par Brahmagupta et Fermat. Il
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peut se faire que cette derniére n’admelte pas de solution :
c'est ce qui se produit, par exemple, pour le systeme :

20 + 3 = »?
3 + 5 =22,

considéré par FermaT comme n’admettant pas de solution
en nombres entiers; l'équation obhtenue par !'élimination

de .r est alors

222 — 3y2 =1 ;

si cette derniére équation avait des solutions rationnelles,
I'équation
272 — 3y = ¢*

a trois inconnues (y, z, {) aurait des solutions entiéres; ¢ et z
seralent nécessairement premiers avec 3; en posant donc

z =372 + ¢ t =31 + ¢, (e = = 1)
on aurait la relation impossible sulvante :
1= 3(Y2 4 3T — 622 — 4e,z + 2¢,T) .

Mais lorsque le systeme considéré admet une solution
particuliere, il est certain qu’il en admet une infinité, car
I'équation by? — az® = al’ — ba' est alors attachée a une
arithmoconique.

Soit (x,, y,, 3,) la solulion imposée a priori. L'arithmo-
conique
2

by

. 2 2
— az® = by? — az
¢ Yo T 45,

et l'arithmodroite z — z, = t(y — y,) pivotant autour du
point (y,, z,), dans le plan Oyz, admettent pour intersection
Parithmopoint courant de I'arithmoconique, représenté par
les coordonnées suivantes :

_ (at® 4 b)y, — 2alz, L (at® 4 b))z, + 2bty,

2

at?> — b at? — b

D’ou se déduit l’expression de x en fonction de ¢:

t(bys + azy) — (al® 4 b)y, =,
(@t — b)? '

x = x, 4+ 4t.
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[l résulte des considérations qui précedent que le systeme
considéré est généralement impossible. Lorsqu’il admet une
solution, il en admet une infinité dépendant d’'un parametre;
toute solution rationnelle du systeme appartient a cet en-
semble de solutions. La courbe représentative est alors une
arithmocubique gauche.

40. — CusiQuk prANE. L’étude arithmogéométrique d'une
cubique plane unicursale n’offre aucune difficulté. L'équa-
tion de cetle courbe étant rationnelle, les coordonnées du
point singulier dont l'existence a pour effet d'annuler le
genre de la courbe sont nécessairement rationnelles, si la
courbe n’est pas décomposable en une conique et une droite.
Cette cubique plane unicursale et non décomposable est
donc nécessairement une arithmocubique, susceptible d’étre
représentée par des équations paramétriques rationnelles.

Je supposerai donc que les cubiques qui seront étudiées
dorénavant sont essentiellement des courbes unicursales.
Dans aucun cas une telle courbe ne saurait élre désignée
sous le nom d’arithmocabique; mais elle peut néanmoins
posséder une infinité d'arithmopoints. Si, en effet, une
cubique plane, représentée en coordonnées cartésiennes
par une équation rationnelle, posséde un arithmopoint par-
ticulier, il est généralement possible de déduire de la con-
naissance de celui-ci un nouvel arithmopoint; il suflit, a cet
effet, d'observer que la tangente a la cubique en l'arithmo-
point conunu @ priort rencontre a nouveau la courbe en un
second arithmopoint. De ce second point peut se déduire,
par application du méme procédé, un troisiéme arithmo-
point. De sorte que, dans le cas général, I'existence d'un
arithmopoint particulier sur une cubique plane d’équation
rationnelle entraine celle d'une suite d’arithmopoints en
nombre infini.

Il n’y a exception que dans les deux cas suivants:

1° Lorsque l'arithmopoint connu de la cubique est un point
d’inflexion, il est impossible de déduire de cet arithmo-
point inflexionnel un autre arithmopoint par la méthode qui
précede. Clest, par exemple, le cas de la cubique représentée
par I'équation }
x4y =1
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qui admet trois arithmopoints particuliers alignés el qui ne
sont autres que les trois points d’inflexion réels de la courbe :
les deux points sur les axes (x == 0, y = 1) et (x =1, y =0)
et le point a l'infini dans la direction x + vy — 0. La courbe
n'admet d'ailleurs aucun autre arithmopoint: ¢’est en cette
négation que consiste précisément le dernier théoréme de
Fermat, dans le cas des troisie¢mes puissances.

2° Lorsque larithmopoint connu conduit, apres l'applica-
tion plusieurs fois répélée de la méthode tangentielle, a un
arithmopoint d'inflexion. Dans ce cas le nombre d’arithmo-
points de la cubique est limité. C'est le cas de la cubique
représentée par 'équation &% 4 % — 2; elle admet évidem-
ment 'arithmopoint x — 1, y = 1 dontla tangenle est paral-
lele a I'asymptote; larithmopoint ainsi obtenu a partir de
(1. 1) n’est donc autre que le point d'inflexion situé a I'infini.

[l yalieu maintenant d’exposer les calculs dans un certain
nombre de cas remarquables, en faisant appel aux notions
les plus élémentaires de géométrie analytique et en laissant
notamment de coté toute considération de fonctions ellip-
tiques. ‘

41. — Courses x* + y® = a. Clest a l'étude arithmo-
géométrique de ces courbes de Lamé particulieres que se
rameéne 'étude des solutions entiéres de I'équation x® + y°
— az® dont 'impossibilité pour « =1 et a =2 a été aflirmée
par FErRMAT et pour a = 3, 4, 5, 6, 8, 16 par LEcexpre. Tou-
tefois, pour @« =6, I'équation est possible en vertu de I'égalité

1_73—|—3—73::6.§~13

découverte par PeEpix. Cette méme équation x® + y? = az?
a été aussi considérée par Ed. Lucas.

La courbe d'équation x® 4+ y® = a admettant pour points
d’inflexion réels les points (x =0, y =V'a), (x =V a,
y = 0) et le point a I'infini, il n’y aura pas lieu de se préoc-
cuper de ces points d'inflexion; les deux premiers ne sont,
en effet, des arithmopoints que lorsque « est un cube par-
fait. D’apres le théoréme de Fermat, la cubique n’admet
alors aucun autre arithmopoint. Il résulte donc des considé-
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rations qui précédent que si 'équation x® 4 y® = a admet
une solution particuliére, elle admet une infinité de solutions.
Soit (z,, y,) la solution connue. La tangente & la courbe
x2* + y* =)+ ¥} en l'arithmopoint (r,, y,) a pour équations
paramétriques
x = x, + wy,

g o 2,
Y= — uy

le parametre v du point ou cette tangente rencontre a nou-
veau la cubique est ainsi la solution différente de zéro de
Péquation

(g + wp)® + (5, — ux))® = ] + )}

¢'est-A-dire :
3%, .

3 3
xO ‘70

uw =

les coordonnées du point tangentiel du point (x,, y,) sont
ainsi :

®
a-}-yf; a—}—xi
xlzxo.ﬁ ﬁ‘lzy'o.ﬁ.
Xy — X% Yo %

_ . 2 ___ .3 :
42. — CuBiQues y?—=— x®+4 «. La tangente au point (x,, v,
- peut étre représentée par les équations paramétriques

x=x, + 2y, u Yy =2, + 3xju
le parametre u du point tangentiel de («,, y,) est

6.3 - 7.2
3x; é)o ‘
0" ;

8)‘5;

U — 3x

les coordonnées de ce point tangentiel sont donc :

x5 — 8a y = ys + 18(1_7‘(2) — 27a?
V ———— A
4 + a) 8y

xl_—:xo
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Dans le cas ou « est le nombre — 4, FERMAT a énoncé,
sans démonstration, que 1'équalion correspondante

yr=a%— 4

admet deux solutions et deux seulement, (x, =2, y, = 2)
et (0, =5, y, = 11), en nombres entiers. On observera que
la solution (%, y,) n’est autre que celle qui se déduit de (x,, v,)
par application des formules ci-dessus données. Cette équa-
tion a une infinité de solutions rationnelles.

Il en est de méme de l'équation y? —= 2® — 2 (Fermat,
Legendre) qui admet la solution (x = 3, y = 5) et, par suite,
une infinité de solutions rationnelles.

L’équation

y2 =% 4 17

étudiée par E. Cesaro posséde les systéemes suivants de
solutions :

x=—2, —1, 2, 4, 8, 43, 52
.23, 282 375

>
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o
©

qui se déduisent les unes des autres par la méthode du
point tangentlel ou par allgnemenls.

(A suivre.)
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