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ARITHMOGEOMETRIE : 411

les conditions, au nombre de deux, d’existence d’un ortho-

centre, sont :
@+ a2 =00+ ="+ 7.
Conformément a la théorie de l'arithmocercle, il suffira de
. A 1
se donner quatre nombres rationnels a, o, tang 5, tang 3,
et de poser:

b= acosh 4+ asink , ¢ = a cosy + asiny ,

f—=—asin)k 4+ acosh, Y= — a siny + a cosp ,

. I\ TR
les quatre nombres rationnels «a, «, tang 5, tang 5 étant

uniquement assujettis aux conditions qui assurent ’existence
effective du quadrilatére.

Application des équations de Brahmagupta-Fermat
a I'extraction approchée des racines carrées.

32. — EXTRACTION APPROCHEE PAR EXCES. Je partirai de
I’équation considérée par Brahmagupta
nx? + 1 =y*?,
n étant le nombre rationnel, positif, non carré dont il s’agit
de calculer la racine carrée; ¢ étant un nombre rationnel

arbitraire, la solution générale de cette équation est donnée
par les formules de Brahmagupta rappelées au § 23 :

2t o onA4t
FE g =

n— t?’

Dans ces conditions, s1 ¢ est un nombre rationnel suffisam-
ment voisin de /71, x et y sont des nombres trés grands;
tout se passe alors comme si l'équation nx? + 1 = y? se

réduisait a nx? = y?; de sorle que % est une valeur appro-

chée de V/'n (par exces). Cette valeur approchée de /7 est

_on4 2
T2
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I'erreur commise est :

e, =v, —{/n ;
on a donc

y = ale, + V7)
et, par suite, i

1 =2 + 2¢,/n) ,

de sorte que l'expression
1

21/1_1—90; ’

ou \/'n est remplacé par une valeur approchée par défaut,
représente une limite supérieure de cette erreur ¢,.
33. — EXTRACTION APPROCHEE PAR DEFAUT. L’équation

nx?® — 1 :yz

n'étant résoluble que lorsque n est une somme de deux
carrés, on ne peut songer a l'utiliser pour déterminer une
valeur approchée par défaut de \V/'n. Pour obtenir celle-ci,
il y aura lieu d’avoir recours a une équation résoluble quel
que soit n; par exemple, a I'équation

1

2 — 42
nx? — — =
n o

représentative d'une arithmohyperbole passant par I'arithmo-

. 1 , . . .
point x = —, y =0. La méthode générale de résolution
des équations de Bragmagupta-Fermat, a partir d’'une solu-
tion particuliére connue « priori, conduit actuellement aux
formules suivantes de résolution:

n -+ t 2t

~nn— &)’ R

Comme dans le paragraphe précédent, ¢ sera une valeur

rationnelle approchée de \/'n ; le rapport —3; = v,, c est-a-dire

2nt
Yy B s
2 n -+ 12’

sera une valeur approchée (par défaut) de la racine carrée




-
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de n. Pour expression de l'erreur &, on pourrait prendre :

1
82 —— 3 .
2n® x®
34. — En résumé, la théorie des équations de Brahma-

gupta-Fermat conduit & un procédé d’extraction des racines
carrées fondé sur les inégalités

2nt

n -+ t*
n + t? )

<V <E

Les termes extrémes ont pour produit n et leur différence
est:
n -+ 2 2nt (n— 17)?

2t n 4127 2t(n 4 13

Cette méthode n’est d’ailleurs pas distincte de celle em-
ployée par les géometres grecs, par ARCHIMEDE notamment :
Soit, pour fixer les idées, a extraire la racine carrée de
n = 1000. Ce nombre étant compris entre 31" = 961 et
32" = 1024, il y aura lieu de prendre ¢ = 32, dans une pre-
miére application des formules précédentes; on obtient ainsi

8000

— 253
§§_3w%<ywm<7;_m55,

c’est-a-dire deux décimales exactes dés cetle premiére appli-
cation.

. . . 253
Une seconde application avec ¢ = { donne
4-048-000 128-009

to5000 < V1000 < —g5e—
ou encore .
31,622:776:3 < /1000 < 31,622:776°6 ,

c’est-a-dire six décimales exactes.
Une troisieme application donne quinze décimales :

31,622:776:601-683:793-2 < /1000 < 31,622:776:601-683:7934 .
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