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ARITHMOGÉOMÉTRIE ' 411

les conditions, au nombre de deux, d'existence d'un
orthocentre, sont :

a2 + a2 b2 -f- ß2 c2 -j- y2

Conformément à la théorie de Farithmocercle, il suffira de

se donner quatre nombres rationnels a, a, tang-^-, tangy,
et de poser :

b — a cos X + a sin X c — a cos u. -j- a sin |j.

ß — a sin X -}- a cos X y — — a sin a -j- a cos a

les quatre nombres rationnels a% a, tang-|, tang-^ étant

uniquement assujettis aux conditions qui assurent l'existence
effective du quadrilatère.

Application des équations de Brahmagupta-Fermat
à l'extraction approchée des racines carrées.

32. — Extraction approchée par excès. Je partirai de

l'équation considérée par Brahmagupta

nx2 -J- 1 j2

n étant le nombre rationnel, positif, non carré dont il s'agit
de calculer la racine carrée; t étant un nombre rationnel
arbitraire, la solution générale de cette équation est donnée
par les formules de Brahmagupta rappelées au § 23 :

21 n + t2
x ^zt2 • y ;r—T2 •

Dans ces conditions, si t est un nombre rationnel suffisamment

voisin de \/n x et y sont des nombres très grands;
tout se passe alors comme si l'équation nx2 1 y2 se

réduisait à nx2 y2; de sorte que ~ est une valeur approchée

de \/n (par excès). Cette valeur approchée de \/n est

n + t2
Vl ~ ~~2t~ ''
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Terreur commise est :

£i vi — V"- ;

ou a donc

y x (e, + \/n)
et, par suite,

1 — x2(s* + 2Sjl/»

de sorte que l'expression
l

2|/n x2

où V/w est remplacé par une valeur approchée par défaut,
représente une limite supérieure de cette erreur si.

33. — Extraction approchée par défaut. L'équation

nx2 — 1 j2

n'étant résoluble que lorsque n est une somme de deux
carrés, on ne peut songer à l'utiliser pour déterminer une
valeur approchée par défaut de \/n Pour obtenir celle-ci,
il y aura lieu d'avoir recours à une équation résoluble quel
que soit n ; par exemple, à l'équation

2
1

nx/ — — y1
n J

représentative d'une arithmohyperbole passant par l'arithmo-

point x ^ y 0. La méthode générale de résolution

des équations de Bragmagupta-Fermat, à partir d'une solution

particulière connue a priori, conduit actuellement aux
formules suivantes de résolution :

n + t2 21
X

n(n — t2)
^ n — t2

Gomme dans le paragraphe précédent, t sera une valeur

rationnelle approchée de \/n ; le rapport ~ y2, c'est-à-dire

2nt
V2 — n + t2 '

sera une valeur approchée (par défaut) de la racine carrée
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de n. Pour expression de l'erreur e2, on pourrait prendre:

2 n2 x2

34. — En résumé, la théorie des équations de Brahma-

gupta-Fermat conduit à un procédé d'extraction des racines
carrées fondé sur les inégalités

Znt ^ ^ 11 + i2
< yn <n + v 2t

Les termes extrêmes ont pour produit n et leur différence
est :

n -j- i2 2nt (n — t2)2

21 ?i —{— t~ 21 [ n -j- t "

Cette méthode n'est d'ailleurs pas distincte de celle
employée par les géomètres grecs, par Archimède notamment :

Soit, pour fixer les idées, à extraire la racine carrée de

n 1000. Ce nombre étant compris entre 31 =961 et
32" 1024, il y aura lieu de prendre t 32, dans une
première application des formules précédentes; on obtient ainsi

31,620 < l 'Tïïôô < ^ 31,625
Zoo o

c'est-à-dire deux décimales exactes dès cette première
application.

253
Une seconde application avec £ — donne

4'048'000
< ,/îïïôô <128'009

128-009 ^ v ^ 408 '

ou encore :

31,622-776-3 < (/TÖÖÖ < 31,622-776-6

c'est-à-dire six décimales exactes.
Une troisième application donne quinze décimales :

31,622-776-601 683-793-2 < j/l000 < 31,622-776-601-683-793-4
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