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NOTIONS D'ARITHMOGEOMETRIE
(2e article) 1

PAR

Emile Turrièke (Montpellier).

Les équations de Brahmagupta-Fermat.

21. — Les arithmoconiques. — Une conique, dont l'équa-
quation est à coefficients rationnels, n'est pas nécessairement

douée d'arithmopoints ; mais du seul fait qu'une conique,
dont l'équation cartésienne a tous ses coefficients rationnels,
possède un arithmopoint, il résulte que cette courbe possède
une infinité de points de cette nature. L'arithmopoint courant

de cette courbe, qui est dès lors une arithmoconique,
s'obtient par son intersection avec une arithmodroite
arbitraire, pivotant autour de l'arithmopoint primitivement connu.
Tout l'effort à faire dans l'étude d'une équation indéterminée
du second degré, à deux inconnues, doit précisément porter
sur la mise en évidence d'un arithmopoint particulier de la

conique représentative (les axes pouvant être quelconques
d'ailleurs).

La méthode géométrique qui se rattache aux considérations

précédentes permet d'expliquer un certain nombre
d'artifices qui ont été employés dans l'étude de diverses
équations indéterminées. Ce sera l'objet d'une grande partie
du présent travail. Mais, avant d'aborder cette étude, je
désire mentionner un exemple bien simple d'identité
algébrique, découverte par Euler comme application de la for-

1 Voir L'Enseignement mathématique du 15 mars 1916, 18e année, p. 81 à 110.
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mule de Moivre, et qui se rattache à la correspondance entre
arithmopoints d'une arithmoconique établie par les cercles
oscillateurs de cette courbe.

Il est, en effet, évident que le cercle oscillateur d'une
arithmoconique en un arithmopoint m est un arithmocercle
et que cet arithmocercle rencontre à nouveau l'arithmo-
conique en un second arithmopoint. Pour une arithmoconique

représentée, par exemple, par l'équation
ax2 by2 z= c

les coordonnées (X, Y) du point M sont données en fonctions

de celles (.-r, y) de m, par les formules suivantes :

^
ax3 — 3 by2x 3ax2y — by3

c
'

c

La relation
ax2 by2 c

entraîne immédiatement l'identité à laquelle je faisais allusion

ci-dessus,
ak2 -}- bl2 {ax2 -j- by2)2

dans laquelle Euler pose :

jj k ~ x(ax2 — 3by2}

l l y (3ax2 — by2)

22. — Les equations de Brahmagupta-Fermat. Parmi les

équations indéterminées du second degré à deux inconnues,
les plus remarquables sous bien des rapports sont assurément

celles qui rentrent dans la forme générale suivante :

y2 Ax2 -j- 2B^r -j- G

A, B, C étant trois coefficients algébriques absolument
quelconques mais rationnels; en d'autres termes, ces équations
sont celles qui se rattachent, du point de vue arithmogéomé-
trique, à l'étude d'une conique admettant pour axe de symétrie

l'axe des abscisses. Par un simple changement de l'axe
des coordonnées, il est d'ailleurs toujours possible de réduire
l'étude de cette équation, sans en restreindre la généralité,
à celle de l'équation pour laquelle B est nul, c'est-à-dire
encore à celle d'une conique rapportée à ses axes de symétrie.
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Ua cas particulier de cette équation réduite a primitivement

été traité par Brahmagupta qui a montré que la solution

générale d'une équation

r2 — nx2 + 1

est donnée par les formules suivantes en fonction d'un
paramètre rationnel t quelconque:

_ 2t _
t% + n

a
t2 — n " t2 — n

Brahmagupta démontre d'autre part que l'équation

j2 — nx2 — 1

n'est résoluble en nombres rationnels que lorsque n est
exprimable par une somme de deux carrés.

C'est principalement à Fermât et à Lagrange que sont
dues les principales recherches relatives aux équations de

cette nature. Je rappellerai, à ce propos, que la résolution
de l'équation f — nx2 + 1

fut proposée en défi par Fermât à plusieurs géomètres
anglais; Wallis obtint la solution par tâtonnements
successifs. La solution de Brahmagupta fut retrouvée, en cette
circonstance, par lord Brouncker.

Revenant à la question qui m'intéresse, je ferai observer
qu'une équation de Brahmagupta-Fermat est nécessairement
résoluble dès qu'une solution particulière est connue : soit
(,r0, y0) ; il suffit alors de déterminer l'intersection de
Farithmoconique qu'elle représente avec une arithmodroite
arbitraire issue de l'arithmopoint connu, c'est-à-dire de
résoudre le système formé par l'équation considérée et par
l'équation

y — Jo — *(* — *o) '

dans laquelle t est un paramètre rationnel quelconque. Pour
l'équation

y2 //.*2 + 1

admettant évidemment la solution (,r0 0, y0 1), on
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retrouve de cette façon les formules de Brahniagupta (aux
si gaies près).

23. — L'équation du problème des arithmodistànces relatif
a une ARiTHMODROiTE. Reprenons le problème du § 18:

nous avons vu que le problème, en géométrie plane, des
distances rationnelles relatif à une arithmodroite représentée
par les équations

et à un arithmopoint {a, b) se ramène a une équation,

Y2 (A2 + B*)X2 + 2[A[A' —a) + B(B'-- b)]X + (A' — a)2 + (B' — bf

rentrant, comme cas particulier, dans l'équation générale
du § 22.

L'équation précédente est caractérisée par les trois
conditions simultanément remplies qui suivent: le coefficient
de X2 et le coefficient indépendant de X sont respectivement
deux sommes de deux carrés; le discriminant du trinôme
en X est carré parfait :

(A2 + B2) [(A' - «)2 + (B' - b)2) - [A(A' - a) + B(B' - bf
[A(B' — b) — B (A' — a)]2

Soit, réciproquement, une équation de Brahmagupla-
Fermat satisfaisant à la triple condition précédente :

Y2 — (a2 + p2) X2 + V(a2 + ß2) (a/2 +~ß'2) — Û?2 X + a/2 + p'2

et, par conséquent, réductible à la forme suivante :

Il y aura identité entre cette équation et celle qui est écrite
plus haut s'il est possible de déterminer deux azimuts 9 et 9'
à demi-tangentes rationnelles tels que

x At -j- A' y zzz Bi -f- B'

(T)2
y* («» + p»)X; + -2ll.

B zz: — a sin 0 -f- ß cos 6

B' — b — — a' sin 6' -j- ß' cos 0'
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la dernière de ces relations s'écrit encore :

401

(aa' + ßß') sin (0 — 0') + (aß' - ßa') cos (0 — 0r) =: Û? ;

cette équation a deux racines rationnelles en tang -—^^
en résulte qu'il est possible de considérer l'équation de

Brahmagupta-Fermat précédente comme étant résolvante
d'un problème de distances rationnelles relatif à une arithmo-
droite ; on se donnera arbitrairement #, ô et 0'; 0, A, B,

A', B' seront dès lors déterminés.
En d'autres termes, toute équation de Brahmagupta-Fermat

y2 0ix2 + 26hx + C

dans laquelle (ft et G sont des sommes de deux carrés et dont
le discriminant est carré parfait, est susceptible d'être
envisagée comme pouvant être associée, au titre de résolvante,
ci un problème d'arithmoclistances relatif à une arithmo-
clroite du plan.

Un cas particulier remarquable de résolution d'une équation

du type précédent est celui où le coefficient de x2 est un
carré parfait, c'est-à-dire celui où les points à l'infini de l hy-
perbole représentative sont des arithmopoints. Ce cas
correspond au problème des arithmodistances relatif à une
arithmodirigée; la résolution de l'équation considérée
s'effectue par l'intersection de l'arithmohyperbole avec une
arithmodroite parallèle à l'une des asymptotes. Adoptons la

représentation suivante de l'arithmopoint courant

x — W cos © — X sin cp

y z=z U5 sin <p —|— X cos cp

de l'arithmodirigée d'équation

x cos cp -f- y sin © US

1 étant la distance de l'arithmopoint au pied de la
perpendiculaire menée de 0 sur l'arithmodirigée; le problème des
arithmodistances relatif à cette arithmodirigée et à l'origine
des coordonnées est résolu par l'équation

d2 — m2 + X2
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associable à une arithmohyperbole équilatère. La solution
générale est donc :

l étant un paramètre rationnel arbitraire.
24. — Même problème pour i/espace a trois dimensions.

Soit une arithmodroite de l'espace ordinaire, représentée
par des équations rationnelles :

x —; Et -{- A y zzz B£ -j— B/ z nu G£ G7

et soit à résoudre, pour elle, le problème des arithmodis-
tances, le point rationnel imposé étant, par exemple et sans
restriction de la généralité de la question, l'origine des
coordonnées. Le problème est réductible à l'étude de solutions

rationnelles de l'équation de Brahmagupta-Fermat :

Y2 (A2 + B2 -f C2) X2 + 2(AA7 + BB' + GC7)X + A72 + B'2 + C72

Les conclusions, quant à la résolubilité d'une telle équation
résultant de la connaissance a priori d'une solution
particulière, et à la possibilité de résoudre complètement le
problème relatif à une arithmodirigée (c'est-à-dire une arithmodroite

telle que A2+B2+C2 soit carré parfait) sont
identiques à celles du problème de la géométrie plane.

Il y a simplement lieu d'énoncer la propriété suivante de

l'équation considérée : Le coefficient de X2, le terme
indépendant cle X et le discriminant du trinôme en X sont
nécessairement trois sommes de trois carrés.

25. — Les problèmes des droites et plans arith modi

ri gés dans l'espace ordinaire. Etant donné un arithmo-
plan, on peut se proposer de déterminer celles des arithmo-
droites qu'il contient qui sont des arithmodirigées. Le plan
étant défini par deux directions quelconques (A, B, C) et
(A/, B', C), toute direction d'arithmodroite contenue dans le
plan sera définie par des coefficients directeurs At -f- A',
B/ + B', Gt + C, dans lesquels t est un nombre rationnel
arbitraire. La direction envisagée sera celle d'une arithmodirigée

si la somme des carrés des trois coefficients direc-
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tenrs est le carré d'un nombre rationnel; t sera ainsi solution

d'une équation de Brahmagupta-Fermat qui n'est autre

que celle du problème du § 24.

Supposons d'autre part qu'étant donnée une arithmo-
droite de l'espace, on se propose de déterminer ceux des

plans appartenant au faisceau qu'elle définit qui soient des

plans arithinodirigés, en désignant ainsi des plans jouissant
de propriétés analogues à celles des droites arithmodirigées
et qui sont définis par la condition suivante : un plan d'équation

uX -f- vy -j- II — 0

où les coefficients u, c, h sont rationnels, est un plan
arithmodirigé si '\/u2 + v2 -f- m2 est un nombre rationnel.
Soient.

A* + By + Cs + D 0 k'x -j- B'j -f C'z + D' 0

les équations des deux plans particuliers du faisceau,
définissant la droite imposée. Un arithmoplan quelconque de ce
faisceau est représenté par une équation dont les coefficients
u, c, m, h sont des expressions de la forme u AtA',
e B^-f-B/, w CtQ% h — -j- C', t étant un
paramètre rationnel quelconque. Ce plan sera un plan arithmo-
dirigé si l'expression (At -j- A')2 + (B£ + B')2 + (Ct + D')2 est
un carré parfait; de sorte que les paramètres t qui repèrent
les plans arithmodirigés appartenant au faisceau donné sont
les solutions d'une équation de Brahmagupta-Fermat
identique à celle du § 24.

En résumé, Le problème des droites arithmodirigées situées
dans un arithmoplan donné et le problème des plans arithmodirigés

passant par une arithmodroite donnée sont équivalents

au problème des arithmodistances relatifà une arithmodroite

de Vespace,
26. — Mêmes problèmes dans un hyperespace. Le

problème des arithmodistances relatif à l'origine des
coordonnées et à une arithmohyperdroite de l'espace à n dimensions,

représentée par les équations

•x'i — d" ' x2 — -^2^ A2 xn — Ant -j- A
n
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dépend d'une équation de Brahmagupta-Fermat

^=±K-<°- + ±^+±<-
i i i

Cette même équation peut encore être considérée comme
résolvant les problèmes des droites arithmodirigées ou des

plans arithmodirigés analogues à ceux du § 25 mais relatifs
à l'hyperespace à n dimensions. Les considérations développées

plus haut quant à la résolubilité d'une telle équation
dans le cas d'une solution connue a priori et, plus
particulièrement, dans celui d'une arithmodirigée, s'étendent sans
modification aux hyperdroites. Mais il y a lieu de noter que,
dès l'hyperespace à quatre dimensions, un fait remarquable
se produit à l'occasion des propriétés caractéristiques de

l'équation de Brahmagupta-Fermat du présent paragraphe:
c'est qu'en vertu du théorème de Bachet (généralisé pour les
nombres rationnels) le coefficient de /2 et le terme indépendant

de t ne sont plus soumis qu'à l'unique condition d'être
positifs. Quant au discriminant, positif lui aussi, il reste lié
aux deux coefficients dont il vient d'être question. Dans le

cas de l'hyperespace à quatre dimensions il y a même lieu
d'observer que ce discriminant est nécessairement une
somme de trois carrés, en vertu de l'identité d'Eu 1er

(a2 + b2 + c2 + d2) (a/2 + I/2 H- c'2 + d'2) — (aa' + bb' + ce' + dd'f
(ab'— bed— cd' -{- de')2 (acf -{- bd'— ca' — dl/r -{- (adf— bc' -f- cl/— da')2

Triangles à bissectrices rationnelles.

21. — La détermination des triangles à côtés rationnels
admettant une bissectrice intérieure ou extérieure rationnelle

est réductible à l'étude d'une équation de Brahmagupta-
Fermat.

Supposons, en effet, qu'il s'agisse de la bissectrice
intérieure d de l'angle d'un triangle ABC de côtés a, b, c. Lao D 77
relation qui lie a, b, c, d

m a2 bc
be d-+ (T+T)»
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peut être écrite sous la forme

b + cY^fb + c AM
y

a bc

elle est donc de la forme d'une équation résoluble de Brah-

magupta-Fermat :

r2 nx2 + 1

avec
b + c b c

x — d n —
a bc

Il résulte de cette remarque que : pour avoir un triangle à

côtés rationnels admettant une bissectrice intérieure rationnelle,

il suffit de se donner les mesures rationnelles b et c des

côtés comprenant cette bissectrice et un troisième paramètre
arbitraire t et de poser :

bc — t2,
bc -j- t

la bissectrice a pour longueur :

d —
2bct

(b + c)

bc -J- t2

Il suffira, sans restreindre la généralité de la solution, de

se borner aux valeurs de t comprises entre 0 et \/bc, mais
il y aura lieu de préciser, suivant les valeurs de b et c, les
limites des intervalles dans lesquels doit être choisi le
paramètre t.

Le problème des bissectrices extérieures rationnelles est
réductible à une équation analogue.

28. — Triangles a bissectrices intérieures rationnelles.
Etant donné un triangle quelconque ABC à côtés rationnels
a, b, c, le produit des bissectrices intérieures est égal à

8 abcp
[b + c) (c + a) (a H- b)

Si donc, dans un triangle à côtés rationnels, les trois bissectrices

intérieures sont simultanément rationnelles, le triangle
est nécessairement un arithmotriangle héronien.

Réciproquement, la rationalité de deux des trois bissec-

L'Enseignement mathém., 18e année; 1916. 27
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trices intérieures d'un arithmotriangle héronien entraîne
celle de la troisième.

On observera, en outre, que, dans un arithmotriangle
héronien, la rationalité de la bissectrice intérieure de

A
l'angle A, par exemple, est équivalente à celle de tang^-.
Les arithmotriangles et bissectrices intérieures rationnelles

A B
sont donc caractérisés par la rationalité de tan g — tang^,

G
tang T.0 4

En posantABClang y — x lang — y tang — z=z s

ces nombres x, y, z sont liés par la relation

xyz -f- 1 xy + yz zx -f- x -f- y -j- z

L'étude de ces arithmotriangles linéaires à bissectrices
intérieures rationnelles est ainsi rattachée à l'étude d'une arith-
mosurface cubique, ou, mieux, à celle d'une arithmoqua-
drique

ÇÏ] + + « + 1 0

transformée de la précédente arithmosurface cubique au

moyen de la transformation birationnelle définie par les
formules :

i — Ç i — -n 1 — r
* ~ r+1 y ~ _ r+i '

Sous un point de vue à la fois plus géométrique et plus
élémentaire, il est possible de définir autrement ces mêmes

triangles. Soit, en effet, un arithmotriangle général 6L6hC de

hauteurs (SIA, 6hB et <3C. Les bissectrices intérieures du

triangle ABC sont identiques à ces hauteurs ; d'autre part,
le rayon du cercle circonscrit R au triangle ABC est la moitié
de celui dl de CLÛhC ; quant aux angles, ils sont liés par trois
relations telles que A. it — 2&L ; les côtés de ABC sont
ainsi rationnels et égaux à disin2(ft, dv sin 2d3, dv sin 2(3.

Tout arithmotriangle héronien à bissectrices rationnelles peut
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clone être considéré comme étant le triangle pédal d'un arith-
m o triangle héron ien.

Je ferai remarquer enfin que, le rapport de la bissectrice
intérieure à la bissectrice extérieure d'un même angle A

g £
d'un triangle ABC étant égal à la valeur absolue de tang—^'
à toute bissectrice intérieure rationnelle d'un arithmotriangle
héronien correspond une bissectrice extérieure rationnelle
elle aussi. Le triangle à bissectrices intérieures simultanément

rationnelles a donc ses bissectrices extérieures rationnelles.

29. — Arithmotriangles pythagoriques a bissectrices
RATIONNELLES. Le PROBLEME DE DlOPHANTE. Il résulte des
considérations qui précèdent que, dans un arithmotriangle
pythagorique, les bissectrices intérieure et extérieure issues
du sommet de l'angle droit ne sauraient être rationnelles :

le nombre tans:^ est, en effet, irrationnel.0 8

Un arithmotriangle pythagorique a, en général, toutes ses
bissectrices tant intérieures qu'extérieures irrationnelles.
Le seul cas de bissectrices rationnelles à considérer ici est
celui où les bissectrices intérieure et extérieure d'un même
angle aigu sont rationnelles. L'angle droit étant l'angle A,
pour que les deux bissectrices de l'angle B soient ration-

B
nelles, il faut et il suffît que le nombre tangsoit rationnel.

Ce nombre rationnel doit d'ailleurs être compris dans
l'intervalle 0, \/2 — 1.

Il y a lieu de rappeler ici que Diophante a montré que,
d'un arithmotriangle pythagorique, il est possible de déduire
un nouveau triangle de même nature ayant une bissectrice
intérieure et une bissectrice extérieure rationnelles.
Considérons, en effet, un arithmotriangle pythagorique ABD
d'hypoténuse BD a et de cathètes AB <J, AD ß. La
méthode de Diophante consiste à prolonger AD, dans le
sens de A vers D, d'une longueur inconnue DC(= ßx — ß)
telle que AC ßx ; cette inconnue x est alors déterminée
par la condition que BD soit précisément la bissectrice inté-
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rieure issue de B dans le triangle rectangle ABC; on trouve
ainsi :

ßC — 8 x ^
^

0O2 - [î-

Ainsi donc, de barithmotriangle ABD il est possible de
déduire un arithmotriangle pythagorique ABC de côtés

BC CA AB 6
8 — Ö- — p-

dont la bissectrice intérieure BD est rationnelle et égale à a.
La bissectrice extérieure BE correspondante est alors

rationnelle elle aussi et égale à

Dans le cas (a 5, ß 3, d — 4) de barithmotriangle
pythagorique le plus simple, Diophante trouve ainsi :

BC ^ CA ^ AB 4 BD 5 BE ^7 j 3

Par similitude, on peut rendre entiers les côtés de ce dernier

triangle et les prendre égaux à 100, 96 et 28. Cet arith-
1 B

mo triangle correspond d'autre part à la valeur - de tan g --

Déformation du quadrilatère orthodiagonal.
Quadrilatère de Brahmagupta.

30. — La relation
«2 + c2 b2 + d2

caractérise, on le sait, les quadrilatères plans ou gauches
dont les diagonales sont orthogonales; a, ô, e, cl sont ici
les mesures des longueurs des côtés consécutifs du
quadrilatère. Il résulte du fait que la relation précédente ne fait
intervenir que les seules mesures des côtés que, si l'ortho-
gonalité est assurée pour un quadrilatère déformable, constitué

par quatre tiges rigides et articulées aux quatre
sommets, elle se maintient pour toutes les formes du quadrilatère,

dans sa déformation dans le plan ou dans l'espace.
La détermination de celles des familles de quadrilatères

orthodiagonaux dont les côtés sont rationnellement mesurés
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dépend donc de la théorie de l'arithmocerele. Il suffira de

se donner arbitrairement deux côtés a et c opposés et de

poser
b — a cos X -j- c sin X d — — a sin X -j- c cos X

tang ^ étant un nombre rationnel quelconque lui aussi.

Parmi les quadrilatères plans obtenus dans la déformation
d'un quadrilatère orthodiagonal articulé, ceux qui sont in-
scriptibles dans une circonférence et dont les diagonales
sont rationnelles méritent de retenir un instant notre attention

: ce sont, en effet, les quadrilatères de Brahmagupta,
généralisant le quadrilatère de côtés AB 25, BC 52,

CD 60, DA 39 et de diagonales AC — 63, BD 56

considéré par Brahmagupta, et qui semblent avoir permis à

Fibonacci (Léonard de Pise) d'établir par une méthode
géométrique Pidentité qui porte son nom1.

On remarquera que, dans tout triangle à côtés rationnels,
même si le triangle n'est pas héronien, les segments déterminés

sur les côtés par les pieds des hauteurs sont mesurés
rationnellement; de sorte que tout quadrilatère de Brahmagupta

est constitué par la juxtaposition de quatre arithmo-
triangles pythagoriques : pour le quadrilatère considéré par
Brahmagupta lui-même, par exemple, les diagonales se

partagent mutuellement en des segments entiers : OA — 15,
OB 20, OC 48, OD 36. Pour tout quadrilatère de

cette espèce, d'autre part, le rayon du cercle circonscrit
est nécessairement rationnel.

Il en résulte une construction arithmogéométrique générale

des quadrilatères de Brahmagupta généralisant celle
des a rith m o triangles héroniens (§ 12) : On se donnera un
arithmocercle quelconque de rayon rationnel et, sur sa
circonférence, on marquera quatre arithmopoints particuliers
repérés par des azimuts respectifs 9i, 02, 03, 04 tels que

tang^, tan g tang^, tang ^ soient quatre nombres

rationnels. Trois d'entre eux Sont quelconques ; quant au qua-
1 Au sujet des quadrilatères de Brahmagupta. cf. A. Aubry, Le premier chapitre de la

théorie élémentaire des nombres. (L'Enseignement mathématique, t. XVII, pp. 161-195;
particulièrement pp. 174-175.)
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trième, il est complètement défini au moyen des trois
premiers par la condition d'orthogonalité des diagonales.

Il est d'autre part possible d étendre aux mêmes quadrilatères

de Brahmagupta la construction des arithmotriangles
héroniens au moyen de droites arithmodirigées. On se donnera

trois des directions des côtés, la quatrième direction
étant alors entièrement déterminée ; il suffira alors de tracer
quatre arithmodirigées parallèles à ces quatre directions.

La théorie des quadrilatères de Brahmagupta présente
donc les plus grandes analogies avec celle des
arithmotriangles héroniens. De tout arithmotriangle héron ien, il est
d'ailleurs possible de déduire trois quadrilatères de Brahmagupta

: à cet effet, il suffit d'adjoindre aux trois sommets de

Larithmotriangle héron ien l'intersection de farithmocercle
circonscrit avec l'une quelconque des trois arithmohauteurs.

Le quadrilatère de Brahmagupta le plus général est
susceptible d'être ainsi engendré à partir d'un arithmotriangle
héronien général. Il y a lieu d'observer d'ailleurs que tout
quadrilatère plan dont les côtés et les diagonales sont six
longueurs rationnelles et dont la surface est aussi mesurée

par un nombre rationnel, peut être considéré comme somme
ou différence d '

a r i t h m otr i a n g 1 e s héroniens. Soit, en effet,
ABGD un tel quadrilatère; il est, pour fixer les idées, somme
de deux triangles ABC et BCD. Si les aires de ceux-ci étaient
irrationnelles (et nécessairement toutes deux de la forme
\/oc, on étant un nombre rationnel), un nombre rationnel
serait la somme de deux irrationnelles \/ol et \//3; c'est une
condition impossible et, par conséquent, les deux triangles
ABC et BCD sont héroniens de toute nécessité.

31. — Tétraèdres orthocentriques. Parmi l'infinité de

tétraèdres obtenus par la déformation d'un quadrilatère
orthodiagonal articulé, il y a lieu de considérer d'une manière
toute spéciale les tétraèdres orthocentriques.

Le tétraèdre orthocentrique général peut être envisagé
comme contenant trois quadrilatères gauches orthodiagonaux.

Soit SABGD un tétraèdre de cette espèce. Je poserai

BC — a

SA a

CA — h

SB ß

AB c

SC y
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les conditions, au nombre de deux, d'existence d'un
orthocentre, sont :

a2 + a2 b2 -f- ß2 c2 -j- y2

Conformément à la théorie de Farithmocercle, il suffira de

se donner quatre nombres rationnels a, a, tang-^-, tangy,
et de poser :

b — a cos X + a sin X c — a cos u. -j- a sin |j.

ß — a sin X -}- a cos X y — — a sin a -j- a cos a

les quatre nombres rationnels a% a, tang-|, tang-^ étant

uniquement assujettis aux conditions qui assurent l'existence
effective du quadrilatère.

Application des équations de Brahmagupta-Fermat
à l'extraction approchée des racines carrées.

32. — Extraction approchée par excès. Je partirai de

l'équation considérée par Brahmagupta

nx2 -J- 1 j2

n étant le nombre rationnel, positif, non carré dont il s'agit
de calculer la racine carrée; t étant un nombre rationnel
arbitraire, la solution générale de cette équation est donnée
par les formules de Brahmagupta rappelées au § 23 :

21 n + t2
x ^zt2 • y ;r—T2 •

Dans ces conditions, si t est un nombre rationnel suffisamment

voisin de \/n x et y sont des nombres très grands;
tout se passe alors comme si l'équation nx2 1 y2 se

réduisait à nx2 y2; de sorte que ~ est une valeur approchée

de \/n (par excès). Cette valeur approchée de \/n est

n + t2
Vl ~ ~~2t~ ''
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Terreur commise est :

£i vi — V"- ;

ou a donc

y x (e, + \/n)
et, par suite,

1 — x2(s* + 2Sjl/»

de sorte que l'expression
l

2|/n x2

où V/w est remplacé par une valeur approchée par défaut,
représente une limite supérieure de cette erreur si.

33. — Extraction approchée par défaut. L'équation

nx2 — 1 j2

n'étant résoluble que lorsque n est une somme de deux
carrés, on ne peut songer à l'utiliser pour déterminer une
valeur approchée par défaut de \/n Pour obtenir celle-ci,
il y aura lieu d'avoir recours à une équation résoluble quel
que soit n ; par exemple, à l'équation

2
1

nx/ — — y1
n J

représentative d'une arithmohyperbole passant par l'arithmo-

point x ^ y 0. La méthode générale de résolution

des équations de Bragmagupta-Fermat, à partir d'une solution

particulière connue a priori, conduit actuellement aux
formules suivantes de résolution :

n + t2 21
X

n(n — t2)
^ n — t2

Gomme dans le paragraphe précédent, t sera une valeur

rationnelle approchée de \/n ; le rapport ~ y2, c'est-à-dire

2nt
V2 — n + t2 '

sera une valeur approchée (par défaut) de la racine carrée
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de n. Pour expression de l'erreur e2, on pourrait prendre:

2 n2 x2

34. — En résumé, la théorie des équations de Brahma-

gupta-Fermat conduit à un procédé d'extraction des racines
carrées fondé sur les inégalités

Znt ^ ^ 11 + i2
< yn <n + v 2t

Les termes extrêmes ont pour produit n et leur différence
est :

n -j- i2 2nt (n — t2)2

21 ?i —{— t~ 21 [ n -j- t "

Cette méthode n'est d'ailleurs pas distincte de celle
employée par les géomètres grecs, par Archimède notamment :

Soit, pour fixer les idées, à extraire la racine carrée de

n 1000. Ce nombre étant compris entre 31 =961 et
32" 1024, il y aura lieu de prendre t 32, dans une
première application des formules précédentes; on obtient ainsi

31,620 < l 'Tïïôô < ^ 31,625
Zoo o

c'est-à-dire deux décimales exactes dès cette première
application.

253
Une seconde application avec £ — donne

4'048'000
< ,/îïïôô <128'009

128-009 ^ v ^ 408 '

ou encore :

31,622-776-3 < (/TÖÖÖ < 31,622-776-6

c'est-à-dire six décimales exactes.
Une troisième application donne quinze décimales :

31,622-776-601 683-793-2 < j/l000 < 31,622-776-601-683-793-4
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Décompositions des nombres rationnels.

35. — Décompositions quadratiques. Parmi les problèmes
les plus intéressants de la théorie des nombres rationnels,
il y a certainement lieu de placer celui qui consiste, étant
donné un nombre rationnel n, à le mettre sous la forme

f (âîj <X
2 • • • X'k

g(x1 xk)

f et g étant deux polynômes à coefficients rationnels et à k
variables :x\, ,r2 xk_x, xk. Le cas particulier

+ + 4

a été précédemment envisagé à l'occasion de l'étude des

arithmosphères ou des arithmohypersphères.
Le problème général que je viens d'énoncer n'est évidemment

autre qu'une application de la théorie arithmogéomé-
trique d'une certaine surface (ou hypersurface) algébrique
dont le degré est le degré le plus élevé des polynômes f ou g.

Après le cas sans difficulté et sans intérêt du problème
associé à un arithmoplan ou à un arithmohyperplan, le cas
le plus simple est celui du problème associé à une arithmo-
conique, une arithmoquadrique ou une arithmohyperqua-
drique.

Ce dernier problème n'est pas toujours possible : c'est ce

que prouvent les exemples n x\ + x\ et n x\ + x\ + x2z,

puisqu'un cercle ou une sphère ne sont pas nécessairement
doués d'arithmopoints. Mais dès qu'une solution est connue
par un procédé quelconque, il est possible d'en déduire
uneoo^-1, dans ce même cas de polynômes quadratiques.
Une quadrique (ou hyperqucidrique) est, en effet, une arith-
moquadvique ou une cirithmohyperquadrique du seul fait
quelle possède un arithmopoint (ou arithmohyperpoint)
particulier.

L'arithmopoint général de cette arithmoquadrique (ou



A RIT IIMO GÉOMÉTRIE '*15

arithmohyperquadrique) n'est autre que son intersection
avec une arithmodroite (ou hyperarithmodroite) quelconque
pivotant autour de l'arithmopoint (ou arithmohyperpoint)
imposé. Soient ,r°, ;x?, &°ki les coordonnées
rationnelles de celui-ci. 11 suffira de résoudre le système
d'équations

f(xx Xk) — ng(x1 xk) o

^ — X[
__

^2 — X2
__ __

X}C ~~

«i ~ «2
"" ak

dans lesquelles ai ak sont k indéterminées; la solution
(.rq xj) est rationnelle et dépend de k — i rapports
mutuels des (o1 ak).

• En résumé, la représentation d'un nombre rationnel
imposé n au moyen d'une fraction rationnelle quadratique
donnée à k variablesy n'est pas toujours possible; mais l'existence

d'une solution particulière entraîne celle d'une cok—1

de solutions.
36. — Décomposition du troisième degré. Le problème

de la représentation d'un nombre rationnel au moyen de la
ffraction rationnelle - dont un des deux termes au moins
Ö

est du troisième degré, l'autre pouvant être d'un degré
inférieur, mérite sous beaucoup de rapports d'être étudié.

11 y a lieu de traiter tout d'abord le cas de trois variables,
qui se trouve être plus simple que celui de deux variables
seulement. Je supposerai donc qu'il s'agit de mettre le
nombre rationnel n sous la forme de la fraction rationnelle
cubique donnée

dépendant de trois variables x, y, s, La surface associée
est alors une surface cubique de l'espace ordinaire,
représentée par l'équation

f¥ > y > 4 — n.g(x, j, s) — o

Le problème n'est pas toujours possible : c'est ce que
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prouvent les exemples donnés plus loin d'impossibilité de

décomposition d'un nombre rationnel donné en une somme
de trois cubes de nombres rationnels. Mais ici encore il y a

lieu d'affirmer que, sauf dans des cas singuliers, l'existence
d'une solution particulière entraîne celle d'une double infinité

de solutions.
D une manière précise, Vexistence (run arithmopoint sur

la surface cubique ci-dessus envisagée entraîne celle d'une
go2 cle tels points sur cette surface qui est dès lors une arith-
mosurface cubique. Il n'y a exception que lorsque l'arithmo-
point imposé est un point singulier de la surface ou encore
un point de contact d'un plan langent de direction asymp-
to tique.

Considérons, en effet, un arithmopoint d'une surface
cubique (S) représentée par une équation du troisième degré
en (x, y, z) dont tous les coefficients sont des nombres
rationnels. Le plan tangent en Ml à cette surface cubique
est un arithmoplan ; la section de la surface par ce plan est

généralement une cubique représentée dans son plan par
une équation rationnelle et douée d'un point singulier de
coordonnées rationnelles; cette cubique plane est donc une
arithmocubique plane.

L'existence de l'arithmopoint Mt entraîne donc celle d'une
go1 d'arithmopoints sur la surface. Considérons l'un de ceux-
ci : soit M2. A ce second arithmopoint est associée une
seconde arithmocubique plane, trace de la surface sur
l'arithmoplan tangent en

Il y a d ès lors, deux arithmocourbes (C,) et (C2) non com-
planes sur la surface (S); soient mi l'arithmopoint courant de

(Cfj et 7?z2 l'arithmopoint courant de (C2) ; soient ti et /2 les

paramètres rationnels qui repèrent respectivement ces arith-
mopoints sur les deux arithmoeubiques (C^ et (C2). Les
droites mx sont des arithmodroites appartenant à une

congruence rectiligne ; chacune d'elles perce à nouveau la
surface en un troisième point m3 qui est nécessairement un
arithmopoint et dont les coordonnées sont des fonctions
rationnelles des deux paramètres rationnels tAt^. La surface
cubique (S) est ainsi représentée rationnellement en fonction
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de deux paramètres rationnels /i et /2 : elle est donc une

a r i thmo s u r fa c e cubique.
37. — Représentation d un nombre rationnel au moyen

d'une forme cubique a trois variables. Il s'agit de déterminer

une forme /(.r, ?/, 2 susceptible de représenter
tout nombre rationnel algébrique, les coefficients de cette
forme étant de cette nature et les variables .r, y, z ne pouvant

prendre des valeurs irrationnelles. Cette forme sera

assujettie aux conditions d'être symétrique par rapport aux
variables ,r, y, z et d'être invariante par multiplication
ou par division.

La forme x2 + y2 est inacceptable, malgré sa symétrie et

son invariance par multiplication ou par division; elle ne
saurait, en effet, représenter les nombres 3, 7 d'une manière
générale, 4N — 1 (N étant un entier), l'égalité

x2 -f- y2 — (4N — 1) c2

étant impossible en nombres entiers. Il en est de même de
la forme quadratique ternaire x2 + y2 + z2 pour la double
raison qu'elle n'est pas invariante par multiplication et qu'elle
ne saurait représenter les nombres entiers 8N — 1 (7 par
exemple).

Du point de vue du degré de la forme représentative, la

plus simple des formes susceptibles de représenter tout
nombre rationnel positif est donc la forme quadratique
quaternaire x2 + y2 + z2 + t2. Cette représentation n'est autre
que celle qui résulte du théorème de Bachet, généralisé
conformément aux considérations des §§ 14 et 26 dans le
domaine des nombres rationnels.

Si, d'autre part, on se propose de rechercher celle des
formes représentatives de tout nombre rationnel qui dépend
du nombre le plus simple de variables, on trouve que cette
forme n'est autre que la forme cubique ternaire

jpS _j_ ^ _J_ .8 __ 3xyz

Il y a lieu de rappeler tout d'abord à son sujet la propriété
d'invariance suivante établie par J. Petersen (Tidsskrifi,
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1872, p. 57). La forme précédente est invariante par
multiplication. II suffit, en effet, d'observer que l'identité

xyz a b c XYZ
y z x + b c a Y Z X

z x y c a b Z X Y

dans laquelle X, Y, Z désignent respectivement les expressions

X — ax -J- by -f- cz Y — bx -f- cy -j- az Z — ex -j- ay -f- bz

peut être mise sous la forme équivalente

('Sxyz — x3 — y3 — z3) (3abc — a3 — h3 — c3) 3XYZ — X3 — Y3 — Z3

puisque l'expression développée du déterminant

x y z

y z x

z x y

n'est précisément autre que la forme 3xyz — x3 — y3 — z3'.

L'invariance de la même forme relativement à la division
s'établit aisément. On observera, à cet effet, que le nombre
D(X, Y, Z) et le nombre d(a, 6, c) étant supposés connus,
leur quotient q ^ sera défini par les trois variables (u;, y, z) ;

celles-ci sont solutions de trois équations linéaires
précédemment écrites ; l'expression de x est ainsi

X b c

(3abc — a3 — b3 — c3)x ~ Y c a

y et z s'obtiennent par permutations de lettres.
La proposition fondamentale d'après laquelle tout nombre

rationnel est susceptible d'être représenté d'une infinité de
manières par la forme

x3 -f- y3 -j- z3 3xyz

résulte simplement des propriétés arithmogéométriques de
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l'arithmosurface cubique de révolution représentée par l'équation

x3 -j- j3 -f- z3 — 3xyz zzz n

Cette surface contient une infinité d'arithmocercles parallèles;

elle peut être représentée par les équations suivantes

I n
j p. — v

1 X
X2 —{— IJL2 -j- V2 Xp. [JLV VA 3

J n v — X

j
^ X2 -j- p.2 -j- v2 — Xp. — p.v — vX 3

s +
\ X2 —p.2 -f- v2 — Xp. — p.v — vX 3

contenant en apparence trois paramètres arbitraires; mais,
en réalité, ces formules ne dépendent que de deux
paramètres, qui sont les différences mutuelles des précédentes.
En donnant à ces paramètres 1, y., v des valeurs rationnelles
arbitraires, ces formules fournissent les coordonnées d'un
arithmopoint de la surface considérée.

Réciproquement, tout arithmopoint de cette surface
cubique peut être obtenu de la manière précédente; n, x, y
et 2 étant imposés, les différences mutuelles de A, v sont
parfaitement déterminées par les formules suivantes

v — \ — 2r — ,3 — x
X — p. — 2z -- x — y ;

il en résulte qu'il suffit de prendre :

Ainsi donc, la surface représentée par l'équation

x3 -f- j3 -J- z3 — 3xyz — n

dans laquelle n est un nombre rationnel absolument
quelconque, est une arithmosurface cubique de révolution, dont
une représentation paramétrique propre est celle qui vient
d'être indiquée ci-dessus. C'est en ce sens qu'il convient
d'énoncer la propriété de tout nombre rationnel n d'être
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d'une oo2 de manières susceptible d'être représenté par la
forme cubique ternaire

x3 + y3 -f- z3 — 3xyz — n

Parmi ces diverses représentations, en nombre doublement

infini, d'un même nombre rationnel n, il y a lieu de

signaler tout spécialement la suivante, en raison de sa grande
simplicité

i
1 1

x ~ n 2 — n + - z — n — -

Dans le cas où l'on devra décomposer un nombre entier,
multiple de trois pins un, il y aura lieu de poser

n — t n -4-2
' =-v^ - *

de sorte que tout multiple cle trois plus un est decomposable
en nombres entiers 1.

La forme précédemment envisagée rentre dans la forme
plus générale

n Ax3 -f By3 + Cz3 — 3Dxyz

à quatre coefficients algébriques, rationnels mais
quelconques qui fut envisagée par Ed. Lucas. Dans le cas le plus
général, la décomposition n'est pas toujours possible quel
que soit le nombre n. Mais dès qu'un nombre n est décom-
posable d'une manière, la décomposition est possible d'une
oo2 de manières, en vertu du théorème général sur les
décompositions cubiques (exception faite pour le cas d'un
point singulier). Parmi les diverses formes qui rentrent dans
cette catégorie, il y a spécialement lieu d'étudier celle qui
correspond aux valeurs suivantes des coefficients :

A B — C 1 D 0.

1 On peut, à ce sujet, affirmer que les multiples de 3 qui ne sont pas multiples de 9 ne
sont pas susceptibles d'être décomposés en nombres entiers. C'est ainsi que le nombre 3

ne peut être décomposé qu'au moyen de nombres rationnels.
Voir Carmichahl, Bull, of the American mathematical Society, XXII, décembre 1915,

p. 111-117.
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38. — Décomposition d'un nombre rationnel en une
somme de trois cubes. La forme dont il s'agit est

il — x3 -f- j3 -f- ~3 •

La décomposition n'est pas toujours possible : c'est ainsi
qu'en vertu du théorème de Fermât le nombre n 0 ne

pourra être mis sous la forme d'une somme de trois cubes
de nombres rationnels différents de zéro. La surface cubique
est alors un cône cubique d'équation

X?' 4- j3 _)_ 0

qui n'admet qu'un seul arithmopoint [x 0, y 0, 3 0).
Par des considérations diverses, j'ai pu de même établir

l'impossibilité en nombres algébriques entiers simples de

l'équation
x3 -I- Y3 + Z3 tiT8

lorsque n est un entier multiple de 9 plus 4 ou plus 5. En
d'autres termes, les nombres 4, 5 et, plus généralement,
tout multiple entier de 9 augmenté soit de 4 soit de 5, ne
semblent point susceptibles d'être rationnellement décom-
posable en une somme de trois cubes.

Gela étant, supposons que [a, b, c) soit une des décompositions

du nombre donné n. La cubique plane, intersection
de la. surface d'équation

x3 _J_ y3 _|_ -3 _. a3 _[_ £3 _|_ 6.3

et du plan tangent en l'arithmopoint (a, b, c), peut être
représentée par les équations

x a -\- X -—^
a"

a, /S, y sont trois paramètres rationnels, algébriques et arbi-

L'Enseignement mathém., 18e année; 1916 28
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traires ; 1 représente l'expression

(ß~T)2 (I ~ «)2 (« ~ ß)2

X — — 3
a% f)3 c3

(ß ~ T)3 (T ~ «)3 (« - ß)3

a6 bQ ^ c6

en réalité il n'y a qu'un seul paramètre indépendant: Fun
des rapports anharmoniques des nombres (0, a, /3, y).

Ces formules représentent une oo1 d'arithmopoints. Il est
théoriquement possible d'en déduire Fexpression générale
des solutions de l'équation

x3 _|_ y3 _|_ z3 __ a3 _[_ Jj3 _J_ c3

mais ces formules générales sont très compliquées.
Bien entendu, ces formules deviennent illusoires lorsque

l'un au moins des nombres a, b, c est nul. Mais, alors, il est
aisé d'obtenir par la méthode arithmogéométrique de
nouveaux arithmopoints situés en dehors des plans ou des axes
coordonnés.

Je terminerai en mentionnant d'une manière toute
spéciale l'équation remarquable

x3 -f- y3 -(- z3 zzz 1 ;

en plus des solutions banales qui correspondent aux arithmopoints

situés sur les côtés de l'arithmotriangle

x 1 y z — 0

y — 1 z -}- x 0

z 1 x -f- y — 0

il y a lieu de signaler les solutions qui résultent des égalités
bien connues

33 43 + 53 63

13 + 63 + 83 93

Sur cette arithmosurface d'équation

x3 + y3 -{- z3 1
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se trouve d'ailleurs une arithmoquadrique gauche
représentée paramétriquement par les équations :

x 9^4 y — 1 -j- 913 z ~ —- 3if (1 -j- 3^3)

et qui est tracée sur un paraboloïde hyperbolique d'équation

y[z + x) + 2x — 2 0

Il suffit de considérer les cordes de cette arithmoquadrique
définies par deux arithmopoints de paramètres respectifs ti
et pour avoir une représentation rationnelle en fonction
de deux paramètres tx et t% de cette surface.

Les arithmopoints des cubiques.

39. — Arithmocubique gauche. La théorie arithmogéo-
métrique des cubiques gauches est absolument identique à

celle des coniques dans le-plan. Une cubique gauche représentée

par des équations à coefficients rationnels n'est pas
généralement une arithmocourbe. Mais dès qu'elle possède
un arithmopoint particulier, elle est une arithmocubique
gauche. L arithmopoint courant est alors l'intersection de

l'arithmocubiqu.e avec un arithmoplan (dépendant d'un
paramètre rationnel arbitraire) pivotant autour de la tangente à

cette courbe en l'arithmopoint connu a priori.
Il peut arriver d'ailleurs, à l'occasion de l'étude de cas

particuliers, qu'il soit inutile d'avoir recours à la considération

de l'arithmoplan général passant par cette tangente
particulière. C'est, par exemple, ce qui se produit pour le
système suivant de deux équations à trois inconnues :

ax -j- àf — j2
bx b' — z2 ;

«, a b, b' sont quatre coefficients rationnels absolument
quelconques. L'élimination de x entre ces deux équations
donne une équation

bf — az2 ~ ba' — ab'

du type de celle considérée par Brahmagupta et Fermât. Il
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peut se faire que cette dernière n'admette pas de solution :

c'est ce qui se produit, par exemple, pour le système :

2x -j- 3 j2
3x -{- 5 z-2

considéré par Fermât comme n'admettant [)as de solution
en nombres entiers; l'équation obtenue par l'élimination
de x est alors

2 s2 — 3 y2 1 ;

si cette dernière équation avait des solutions rationnelles,
l'équation

2-.2 — 3j2 t2

à trois inconnues (?/, z, t) aurait des solutions entières; t et z
seraient nécessairement premiers avec 3; en posant donc

s 3Z + 6l t 3T + e2 (e; 6; 1)

on aurait la relation impossible suivante :

1 3(Y2 + 3T2 — 6z2 — 4-f- 2s2T)

Mais lorsque le système considéré admet une solution
particulière, il est certain qu'il en admet une infinité, car
l'équation by2 — az2 ah' — bct est alors attachée à une
arithmoconique.

Soit (x0, ?/0, z0) la solution imposée a priori. L'arithmo-
conique

by2 — a-2 — br2 — a;2j -0 0

et l'arithmodroite z — z0 t{y— y0) pivotant autour du

point (yQ, z0), dans le plan 0yz, admettent pour intersection
l'arithmopoint courant de l'arithmoconique, représenté par
les coordonnées suivantes :

__
(rt/2 -f b)rQ — 2atz0 — (ai2 4- b) zQ -f 2btyQ

^ at2 — b ' ~ at2 — b

D'où se déduit l'expression de x en fonction de t :

t(h'l + azl) — (œt2 + è)r0-o
X — xa 41 —5
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ïl résulte cles considérations qui précèdent que le système
considéré est généralement impossible. Lorsqu'il admet une

solution, il en admet une infinité dépendant d un paramètre;
toute solution rationnelle du système appartient à cet
ensemble de solutions. La courbe représentative est alors une

arithmocubique gauche.
40. — Cubique plane. L'étude arithmogéométrique d'une

cubique plane unieursale n'offre aucune difficulté. L'équation

de cette courbe étant rationnelle, les coordonnées du

point singulier dont l'existence a pour effet d'annuler le

genre de la courbe sont nécessairement rationnelles, si la

courbe n'est pas décomposai)le en une conique et une droite.
Cette cubique plane unieursale et non décomposable est
donc nécessairement une arithmocubique, susceptible d'être
représentée par des équations paramétriques rationnelles.

Je supposerai donc que les cubiques qui seront étudiées
dorénavant sont essentiellement des courbes unicursales.
Dans aucun cas une telle courbe ne saurait être désignée
sous le nom d'arithmocubique ; mais elle peut néanmoins
posséder une infinité d'arithmopoints. Si, en effet, une
cubique plane, représentée en coordonnées cartésiennes

par une équation rationnelle, possède un arithmopoint
particulier, il est généralement possible de déduire de la

connaissance de celui-ci un nouvel arithmopoint; il suffît, à cet
effet, d'observer que la tangente à la cubique en l'arithmo-
point connu a priori rencontre à nouveau la courbe en un
second arithmopoint. De ce second point peut se déduire,
par application du même procédé, un troisième arithmopoint.

De sorte que, dans le cas général, l'existence d'un
arithmopoint particulier sur une cubique plane d'équation
rationnelle entraîne celle d'une suite d'arithmopoints en
nombre infini.

Il n'y a exception que dans les deux cas suivants :

1° Lorsque l'arithmopoint connu de la cubique est un point
d'inflexion, il est impossible de déduire de cet arithmopoint

inflexionnel un autre arithmopoint par la méthode qui
précède. C'est, par exemple, le cas de la cubique représentée
par l'équation

+ f 1
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qui admet trois arithmopoints particuliers alignés et qui ne
sont autres que les trois points d'inflexion réels de la courbe :

les deux points sur les axes (x — 0, y 1) et (x 1, y 0)

et le point à l'infini dans la direction x -|- y 0. La courbe
n'admet d'ailleurs aucun autre arithmopoint : c'est en cette
négation que consiste précisément le dernier théorème de

Fermât, dans le cas des troisièmes puissances.
2° Lorsque l'arithmopoint connu conduit, après l'application

plusieurs fois répétée de la méthode tangentielle, à un
arithmopoint d'inflexion. Dans ce cas le nombre d'arithmo-
points de la cubique est limité. C'est le cas de la cubique
représentée par l'équation .r3 y3 — 2 ; elle admet évidemment

l'arithmopoint x 1, y 1 dont la tangente est parallèle

à l'asymptote ; l'arithmopoint ainsi obtenu à partir de

(1, 1) n'est donc autre que le point d'inflexion situé à l'infini.
11 y a lieu maintenant d'exposer les calculs dans un certain

nombre de cas remarquables, en faisant appel aux notions
les plus élémentaires de géométrie analytique et en laissant
notamment de côté toute considération de fonctions
elliptiques.

41. — Courbes x3 y3 ci. C'est à l'étude arithmo-
géométrique de ces courbes de Lamé particulières que se

ramène l'étude des solutions entières de l'équation x3 + y3
az3 dont l'impossibilité pour a 1 et a — 2 a été affirmée

par Fermât et pour a 3, 4, 5, 6, 8, 16 par Legendre.
Toutefois, pour a 6, l'équation est possible en vertu de l'égalité

Ï73 -f- 373 — 6 2Ï3

découverte par Pépin. Cette même équation x3 + y3 — az3

a été aussi considérée par Ed. Lucas.
La courbe d'équation x8 + y3 a admettant pour points

d'inflexion réels le.s points (x 0, y a), (x a

y 0) et le point à l'infini, il n'y aura pas lieu de se préoccuper

de ces points d'inflexion; les deux premiers ne sont,
en effet, des arithmopoints que lorsque a est un cube parfait.

D'après le théorème de Fermât, la cubique n'admet
alors aucun autre arithmopoint. Il résulte donc des considé-
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rations qui précèdent que si l'équation x3 + y3 et admet

une solution particulière, elle admet une infinité de solutions.
Soit (.r0, yQ) la solution connue. La tangente à la courbe

x3 + y3 — x* -f- y\ en l'arithmopoint (x0, yQ) a pour équations
paramétriques

.x + uy*

y To — uxl ;

le paramètre u du point où cette tangente rencontre à nouveau

la cubique est ainsi la solution différente de zéro de

l'équation
K + l0o)8 + (Jo — llxl)3 *5 + To

c'est-à-dire :

u
3'r0 To

'"^-Tf
les coordonnées du point taugentie l du point (x0, y0) sont
ainsi :

cl -J— r* ci x°1 J 0 1 0
x.. — Xq i — y « —————

r8 — r3 a-8 r3^0 *- 0 \ *0

42. — Cubiques y2 x3 + a. La tangente au point (xQ, y0)

peut être représentée par les équations paramétriques

X + 2To 11 T To + 3*; U

le paramètre u du point tangentiel de (xQ, y0) est

u — 3xn

les coordonnées de ce point tangentiel sont donc :

x — 8a
o

X. — Xr.
4 + yi

j* + lSay* - 27a2

v.
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Dans le cas où a est le nombre — 4, Fermât a énoncé,
sans démonstration, que l'équation correspondante

j2 — x* — 4

admet deux solutions et deux seulement, (s0 2, y0 2)

et (xi 5, >y1 11), en nombres entiers. On observera que
la solution n'est autre que celle qui se déduit de (.r0, y0)

par application des formules ci-dessus données. Cette équation

a une infinité de solutions rationnelles.
Il en est de même de l'équation y2 ,xz — 2 (Fermât,

Legendre) qui admet la solution (x 3, y — 5) et, par suite,
une infinité de solutions rationnelles.

L'équation

f — x3 + 17

étudiée par E. Cesaro possède les systèmes suivants de
solutions :

l X — 2 — 1 2 4 8 43 52

(y — 3 4 5 9 23 282 / 375

qui se déduisent les unes des autres par la méthode du

point tangentiel ou par alignements.

(A suivre.)
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