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A PROPOS D'UNE RECREATION ARITHMETIQUE

PAR

M. M. d’Ocacye (Paris).

Le probléeme que j’ai en vue est le suivant: Former et

-~ dénombrer toutes les maniéres possibles de payer une somme
"~ den fr. avec n piéces de monnaie d’argent.

J’al donné nacuére! une solution de ce probléme pris dans
8 p

. sa plus grande généralité, attendu que j’y admettais 'emploi
- des piéces de 20 ct.; mais, vu la rareté de celles-ci, on peut
 se borner a n’envisager que les piéces de 5 fr., 2 fr., 1 fr. et
50 ct.

Le probléme ainsi restreint peut étre traité de la facon

~beaucoup plus simple que voici :

Six, y, z ettsont les nombres respectifs de ces diverses

 sortes de pieces intervenant dans le paiement, les équations
. auxquelles il s’agit de satisfaire en nombres entiers sont:

x4+yr+z+t=n,

5x—[—2y+z+—;—:n,

. d’ou par soustraction on déduit immédiatement

8x + 2y —1t ,

. et, par suite,

z=n—33x + y) .

On doit donc avoir
3(3x 4+ y) = n

y.é—g———~3x

1 Bull. de la Soc. Math. de France, 1900, p. 157
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égalité qui exige elle-méme que

n
x = = .
9

Divisons des lors n par 9, et soit ¢ le quotient entier
obtenu; puis, divisons encore le reste de cette premiére
division par 3, et soit ¢, le nouveau quotient entier obtenu,
r' le reste. On pourra dés lors écrire

n=29qg + 3¢’ + r,
et I'on voit que la formation de toutes les solutions possibles
tient dans 'énoncé suivant :
A chacune des valeurs entieres de x telles que x < q, savoir

0,1, 2,..., q—1, q, on fait correspondre toutes les valeurs
entieres de y telles que y =< 3q + q' — 3x, autrement dit :

a x=20, y=20,1,2, ..,3¢g+¢q ,
a x==1, y=0,1,2, ..,3«¢—1 4+ ¢ ,
a x=4q, y=20,1,2, ..,4q

Enfin, a chaque couple de valeurs de x et y ainsi formeé,
on joint les valeurs de z et t données par

z=n— 3(3x 4+ y) , t = 8x + 2y .

Le dénombrement des solutions revient donc a celul des
couples de valeurs de x et y ci-dessus définis. Or, les nombres
de ces couples figurant dans chacune des ¢ + 1 lignes du
tableau ci-dessus sont respectivement

3¢ +q¢ 4+ 1,
3lg =1 +4q¢ +1,
qg + 1.
Leur somme est donnée par

N=3[g+ (g —1) + o + 1 + (g + 1) (g + 1)
3 1
=290 g+

(g + 1) (3¢ + 29"+ 2) -
5 :
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Tel est le nombre des solutions cherchées.
Par exemple, pour n = 100, on a ¢ =11, ¢'=0, et, par

suite, N=2 >2< 3 210. 11 y a donc 210 maniéres de payer
une somme de 100 fr. avec 100 piéces de monnaies d'argent
¥ prises parmi celles de 5 fr., 2 fr., 1 fr. et 50 ct.
Prenons un autre exemple pour montrer le tableau com-
I plet de toutes les solutions; soit n = 20; alors ¢ =2, ¢'=20
® et N=12. Les solutions formées d’aprés le procédé sus-
. indiqué sont les suivantes:
=z Y 2 L
0 0 20 0
0 1 17 2
0 2 14 4
0 3 11 6
0 4 8 8
0 5 5 10
0 6 2. 12
1 0 1 8
1 1 8 10
%; 1 2 ) 12
& 1 3 2 14
] 2 0 2 16

On pourrait, parmi ces solutions, distinguer celles ou
interviennent les quatre espeéeces de pieces de monnaie d’ar-
gent et qui, pour cette raison, pourraient étre dites des
solutions complétes. Ce sont ici les trois seules précédant la
derniére.

Le premier exemple de solution complete s’offre pour
n—=—13; il se composede x =1, y =1, z =1, ¢ = 10.

Le dénombrement des solutions complétes constituerait
un nouveau probléme que je dédie aux amateurs d’arith-
mologie.
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