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Ce ne sera en général pas le cas ; mais Poincaré a

démontré que les mouvements des systèmes mécaniques sont
quasi périodiques, de sorte qu'on aura, pour de semblables
systèmes, en désignant par 9 et T des valeurs moyennes :
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Enfin remarquons que pour cette probabilité subjective,
il faut nécessairement que la région envisagée de l'hyperes-
pace soit traversée par la trajectoire.

39. — On comprendra maintenant aisément le sens d'une
question comme celle-ci : quelle est la probabilité subjective
pour qu'il y ait pleine lune aujourd'hui, 15 juillet 1916 Le
mouvement est quasi périodique. C'est, répondra-t-on, un

l
peu moins de ^. Le hasard est dans le choix de l'époque. Si

nous imaginons un grand nombre d'observateurs indépendants

les uns des autres, ils fixeront, chacun selon ses
circonstances propres, une date qui, en général, différera d'un
observateur à l'autre. En moyenne, il v aura pleine lune à

peu près une fois sur vingt-sept dates choisies.
40. — On interpréterait de la même façon des questions

comme celles-ci : quelle est la probabilité pour qu'il pleuve
demain Ou encore : quelle est la probabilité pour qu'il y
ait éclipse de lune le mois prochain? citées par Bertrand
comme des non-sens.

VI. — Conclusions générales.

4L — Dans le présent essai, nous avons introduit la loi
comme notion fondamentale primitive et le hasard comme
notion dérivée, prenant naissance lorsque la loi se complique
de plus en plus; à la limite, on obtient la loi infiniment
compliquée, précisée par la loi des écarts.

42. — Une loi infiniment compliquée est formée par une
suite d'événements que nous considérons comme plus ou
moins indépendants les uns des autres. Nous avons acquis
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un résultat important en reconnaissant que deux événements
ne pouvaient être déclarés rigoureusement indépendants que
s'il fallait une infinité d'opérations pour passer de l'un à

l'autre. C'est ainsi que nous avons été conduits à la notion
de brassage parfait et de loi infiniment compliquée parfaite.
De notre point de vue, le hasard, la complication, l'indépendance,

se présentent donc comme des cas limites, irréalisables,

mais dont on peut s'approcher autant qu'on veut.
43. — Enfin, nous avons vu qu'il était essentiel de distinguer

le hasarcl objectif du hasard subjectif. Pour le premier,
la loi des écarts s'applique aux événements mêmes, qui
doivent, à cet effet, former une suite infiniment compliquée.
Pour le second, la loi des écarts s'applique à ceux, supposés
en grand nombre, qui observent les événements ; ces
derniers peuvent se succéder suivant une loi quelconque, simple

ou compliquée.
44. — Par ces considérations, on met bien en relief la très

grande importance de la notion d'indépendance dans la
genèse de l'idée de hasard. Ici, nous l'avons acquise par la

complication; c'est une notion « subjective » ; nous pouvons
imaginer des cerveaux de plus en plus puissants, capables
d'embrasser facilement des lois de plus en plus compliquées.
Le fortuit diminue donc en raison inverse de la puissance
du cerveau. Il est du reste certain que le domaine du hasard
a beaucoup décru depuis l'antiquité, grâce surtout à la
perfection de notre appareil analytique.

Peut-on concevoir l'indépendance engendrée d'une autre
façon Nous ne pouvons que mentionner ici, à ce propos,
la théorie de la relativité d'Einstein, suivant laquelle il est
possible, et cela d'une infinité de manières, de trouver des
événements qui ne pourront jamais être en relation de cause
à effet. Dans cette théorie, il y aurait des indépendances
absolues1.

1 On sait que cette conséquence de la théorie d'Einstein provient du fait que l'on exclut
toute transmission de signaux avec une vitesse infinie. Cette théorie est donc incompatible
avec la conception d'une intelligence infinie (Poincaré) qui serait capable de classer à la fois
l'Univers entier dans son temps, comme nous classons, dans notre temps, le peu que nous
voyons. Il faudrait, en effet, que cette intelligence reçut des impressions simultanées de tous
les coins de l'Univers, quelque éloignés qu'ils soient.
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