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THEORIE DES PROBABILITES 295

caractére commun: elles ne seront pas certaines, elles ne
seront que « probables ». Par contre, la succession de ces
événements forme des suites présentant certains carac-
téeres de symétrie, disons mieux, de « pseudo-symétrie ».
Leur étude constitue la Théorie des Probabilités.

Nous nous proposons dans ce qui suit d’exposer rapide-
ment ces caractéres fondamentaux.

5. — Les deux sortes de hasard ci-dessus spécifiées sufli-
sent a caractériser complétement I'emploi du hasard dans les
sciences.

Lesthéories statistiques ordinaires, les théories cinétiques
de Maxwell-Boltzmann appartiennent au hasard objectif.

Par contre, la Mécanique statistique de Gibbs repose uni-
quement sur le hasard subjectif; ce dernier a recu en outre
des applications importantes dans la théorie des équations
différentielles, le probleme des n corps (Poincaré), etc., et
la théorie des nombres (Borel).

1I. — LE HASARD OBJECTIF. — LES NOTIONS DE COMPLICATION,
DE BRASSAGE PARFAIT ET D INDEPENDANCE.
LLES NOTIONS DE RELATIVITE ET D APPROXIMATION
APPLIQUEES AU HASARD OBJECTIF.

6. — Imaginons, alignées les unes a coté des autres, &
cases numérotées de 1 a % et, sur chaque case, une carte
d’un jeu de % cartes également numérotées de 1 a k.

Nous allons supposer que ces cartes sont permutées sur
les cases par une machine, suivant une certaine loi.

Nous ferons le relevé périodique aux temps ¢, {, + T,
ty + 27, ..., t; + (n — 1) 7, des distributions réalisées a ces
instants, et nous les noterons pour obtenir un diagramme
de la marche du phénomeéne.

Les cartes sur les cases peuvent former 4! distributions
différentes :

D,, D,, D, D,, ..., D,, ..., D, .

l

Selon la loi, un plus ou moins grand nombre de ces distri-
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butions seront réalisées successivement aux époques consi-
dérées.

Cela posé, supposons d'abord que la loi est simple, c’est-
a-dire exprimable par une relation analytique simple ou par
un petit nombre de mots. Il sera possible dans ce cas de
trouver une carte portant le numéro j, et 2 cases de rangs
ays ay, -0 a,. telles que ladite carte ne se trouve pas du
tout, en moyenne, & peu prés A fois sur & sur 'une des cases
choisies. Mais 4 mesure que la loi deviendra de plus en plus
compliquée, il sera de plus en plus difficile de trouver la
carte et la ou les cases qui réalisent ces conditions. Le rap-

, h
port observé tendra vers T s

Or, si compliquée que nous imaginions une machine, elle
ne pourra pas étre infiniment compliquée, autrement dit, 1l
arrivera un moment #, + (N — 1) ot la distribution initiale
se reproduira et ou toutes les distributions suivantes se suc-
céderont toujours dans un méme ordre: le phénomene sera
périodique

Sur les N distributions que comporte la période, la distri-
bution D, apparaitra un certain nombre de fois N,; en appelant
n,le nombre de fois que cette distribution apparaitra pendant
les n observations, on aura évidemment :

n, N,

— — — — coustante = r, 1
. N nstante r; (1)
d'ou :

A,=n, —nr, =0, (2)

Si tous les rapports s, étaient nuls a 'exception d’un seul
nous dirions que la machine est au repos. C'est le cas le plus
simple.

[l est essentiel de remarquer que le nombre N de distri-
butions dont se compose la période, peut étre aussi grand
que l'on veut, et cela quel que soit &, pourva que & > 2 ; nous
pouvons, autrement dit, imaginer des périodes aussi longues
que ngus voulons. Pour un N et un A donnés, leur nombre
sera k.
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7. — Dans le cas limite ou N est infini, la période com-
prendra une infinit¢ d’éléments ; nous dirons que la loi est
infiniment compliquée.

8. — Ainsi, nous sommes en état de créer des lois infini-
ment compliquées. La question intéressante qui se pose
maintenant est la suivante : comment peut-on 1maginer un
systéme évoluant suivant une telle loi ?

Une idée se présente immédiatement al’esprit: rassembler
les cartes en paquet, les battre par un certain nombre de
coups m, puis les replacer sur les cases dans 'ordre obtenu,
Popération étant recommencée n fois de suite.

Nous avons en effet la conviction que le systeme opéra-
teur-cartes considéré n’est pas périodique. Les mouvements
qui président 4 la formation des distributions sont si com-
pliqués que nous devons complétement renoncer a en dé-
couvrir les lois. Mais, si notre pouvoir discriminatif trop
faible ne nous permet pas d’apercevoir ces lois, il permet
toutefois de distinguer quelque chose d’approchant. En effet,
les mouvements de 'opérateur ne sont pas complétement
décoordonnés, et c’est ce que nous exprimons en disant que
I'opérateur-a certaines habitudes. Comment ces habitudes se
manifestent-t-elles ? Par le fait que certaines distributions se
présenteront plus fréquemment que d’autres. Ainsi, nous
aurons des degrés de fréquence différents dans 'apparition
des diverses distributions, et, semble-t-il, nous revenons aux
périodes. Mais, est ceci est I'essentiel, ce ne seront plus de
vraies périodes, ce seront des pseudo-périodes, plus ou
moins bien marquées; les fréquences sont relatives, comme
nous le verrons dans un instant.

Auparavant, nous devons écarter une difficulté. Nous sa-
vons que le systeme opérateur-cartes a un instant donné n’est
jamais identique & ce qu’il était un instant auparavant; autre-
ment dit, ce systeme se transforme constamment, et, remar-
quons-le, c’est peut-étre pour cette raison qu’il n’est pas
périodique. Il en résultera que, si n est trés grand, nous
risquons de voir les habitudes du joueur se modifier sensi-
blement. Pour établir la théorie, nous nous trouverons ainsi
tout naturellement conduit a schématiser le systéme en ima-
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ginant un opérateur fictif capable de garder indéfiniment
des habitudes invariables. Dans ce cas, il sera possible de
définir les pseudo-fréquences par des nombres , invariables
pour chaque distribution D,. Nous ne pourrons plus, bien
entendu, définir les nombres N et N,, mais nous pourrons
considérer des nombres: -

n , n’ n" , ..

! 14

n; , T By | s

tels que les rapports

ni Ill- nl.

’ o3 ) ce

n n n

14

tendent vers une limite bien déterminée lorsque n, n', n”, ...
augmentent indéfiniment; c’est ce que nous résumerons par

I’expression :
ni
Lim — = @, . (1)

(2
n=—=q0o n

Nous dirons que w, est la probabilité objective pour qu’une
des distributions soit la distribution D,; c’est la fréquence
relative d’apparition de cette distribution.

Comme on le voit, la relation (1) est I'analogue de la rela-
tion (1); mais la relation (1) n'est valable rigoureusement
qu’a la limite. Cela concorde avec le fait que la période,
dans ce cas, est infiniel.

De méme, la relation (2) ne sera plus valable. Les diffé-
rences :

AL. = n; — nw,
! 4
. ’
Az = n, — n'm,
14 /4
A =n, — n”aii

que nous appellerons écarts absolus, augmentent au dela de

~ 1 M. L. BAcHELIER a montré aussi d’une autre facon qu’une suite d’événements fortuits a
une période infinie (L’Enseign. math., 1915, p. 5). :
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toute limite. Par contre, en vertu de (1), les écarts relatifs

bruts :

tendront vers 0. En introduisant I’écart étalon e, par 'expres-

\/zwim — @)
n

et V'écart relatif ) par la relation

sion :

X
A= -
e

I’Analyse combinatoire permet de montrer que les fréquences

relatives, ou probabilités objectives des écarts relatils 2,

obéissent a la loi suivante, lorsque n est trés grand :

e
(A ::fe—)‘?dl.
—A

Cest la loi fondamentale des écarts. En remontant, elle
permet de calculer les fréquences relatives des écarts x et A.

9. — En résumé, une lot infiniment compliquée ne peut
étre contenue dans une expression analytique nous permet-
tant d’en déterminer une partie quelconque. Par contre, ses
propriétés d’ensemble sont complétement caractérisées par
les quantités que nous avons appelées écarts et qui satisfont
a un critére analytique stmple.

10. — La question fondamentale quise pose a nous mainte-
nant estcelle de savoir comment varient les quantités », avec
le nombre de battements m et les habitudes de 'opérateur.
Nous poserons le probleme de la facon suivante :

« Si, avant de battre le jeu, les cartes sont dans un certain
ordre que nous prendrons comme initial, que peut-on dire
de l'ordre final des cartes aprés m battements ? »

Ce probleme a été étudié par Poincaré. Nous ne suivrons
pas ce savant dans les développements mathématiques diffi-
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ciles qu'il donne dans son Calcul des Probabilités. Nous nous
contenterons d’indiquer brievement la position de la ques-
tion en nous basant sur I’exposé élémentaire de la préface de
cet ouvrage. '

Considérons un opérateur qui bat un jeu de cartes. A cha-
que battement, I'ordre des cartes est interverti, et il peut
I'étre de plusieurs maniéres. Supposons trois cartes seule-
ment pour simplifier 'exposition. Les cartes qui, avant le
premier battement, occupaient respectivement les rangs 123,
pourront, apres le premier battement, occuper les rangs

123 , 231 , 312 321 , 132 , 213 .

Chacune de ces permutations est possible, mais elles ont
des fréquences relatives d’apparition qui dépendront et ca-
ractériseront les habitudes de l'opérateur, supposées inva-
riables. Nous les désignerons respectivement par :

P> J 2 Ps > J 2 Ps Pe 3

la somme de ces six quantités est égale a 1.

Au second battement et aux suivants, cela recommencera
et dans les mémes conditions; p,, par exemple, représente
toujours la fréquence relative de la permutation qui fait
passer les cartes des rangs 1, 2, 3 aux rangs 321.

Cela posé, on peut démontrer que si le nombre m de batte-
ments est trés grand, les cartes qui, avant le premier batte-

‘ment, occupaient lesrangs 1, 2, 3, pourront, apres le dernier

battement, occuper & peu prés indifféremment les rangs

123 , 231, 312, 321, 132, 213 ;

autrement dit, les fréquences relatives de ces six ordres
sont sensiblement les mémes et égales approximativement a

1 . : .
¢; nous dirons que l'ordre final des cartes est a peu pres

indépendant de 'ordre initial. Cela sera vrai quels que soient
les nombres p,, ..., ps, c'est-a-dire les habitudes du joueur.
Le grand nombre de battements, c’est-a-dire la complexité
des causes, a produit 'indépendance.
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Il y aurait une exception touteflois si I'un des nombres p
était égal a 1 et les autres nuls. Les conditions seraient trop
simples.

Enfin, si tous les nombres p étaient égaux entre eux, n’im-
porte lequel.des six ordres possibles apparaitrait au premier
battement: 'indépendance serait réalisée au premier coup.

11. — Voyons maintenant les conséquences que nous
pourrons tirer de 'analyse sommaire qui précéde.

Pratiquement, on peut distinguer deux cas principaux :

1° L’opérateur a de fortes habitudes, I'un des p est voisin
de 1, les autres voisins de 0. Dans ce cas, m devra étre trés
grand, c’est-a-dire 'opérateur devra battre le jeu un tres
grand nombre de fois pour que l'ordre final soit a peu pres
indépendant de l'ordre initial.

2° L’opérateur n’a presque pas d’habitudes, les différents
p sont tous a peu pres égaux entre eux. Dans ce cas m pourra
étre relativement petit. .

12. — Introduisons maintenant les limites des deux cas
précédents. Pour cela, nous imaginerons des opérateurs
fictifs : |

1° ou bien qui n’ont aucune habitude;

2° ou bien qui ont certaines habitudes, mais peuvent effec-
tuer un nombre infini de battements en un temps fini, trés
court, 7.

Pour abréger, nous pourrons appeler démons?! ces opéra-
teurs fictifs. |

Nous conviendrons de dire que l'ordre final des cartes
d’'un jeu ainsi battu a été obtenu par le brassage parfait, et
nous aurons immédiatement cette proposition :

L’ordre final des cartes, obtenu par le brassage parfait, ne
dépend pas de Uordre initial.

De plus, nous dirons que la succession des cartes dans
l'ordre final forme une loi infiniment compliquée parfaite.

13. — Le passage a la limite que nous venons d’effectuer

1 Ces démons s’opposent a ceux de Maxwell, qui sont des démons d’ordre, chargés du
triage des molécules. On voit que s’il faut un démon, c’est-a-dire une impossibilité, pour
mettre de l’ordre dans un systéme moléculaire, il en taut un également pour créer le dé-
sordre parfait.
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permet de bien préciser les notions d’indépendance et de
complication infinie parfaites.

Il faut remarquer, en effet, que pour la compréhension et
T'emploi d’un concept, il est toujours avantageux d’abstraire
de 'expérience une notion pure, par un passage a la limite
convenable qui en donne la genése, comme on le fait, par
exemple, pour acquérir les notions de ligne droite, de corps
solide, de mouvement rectiligne et uniforme, etc., autour
desquelles viennent se grouper les lignes a peu pres droites,
les corps a peu pres solides, etc., que nous voyons autour
de nous®. 1l est évident que le concept d’indépendance par-
Jaite ne peut étre qu’un concept limite, qui exige un « pas-
sage » pour devenir complétement intelligible. Ici, nous
avons vu quon peut l'acquérir de deux facons distinctes.
soit en imaginant des étres capables de n’avoir aucune habi-
tude, dont les mouvements, autrement dit, sont parfaitement
décoordonnés, soiten imaginant des étres comme nous, dans
le mouvement desquels on peut apercevoir une certaine coor-
dination ; mais alors, dans ce cas, I'indépendance ne pourra
étre parfaite que si le nombre de battements devient infini.
Il y a la une discontinuité remarquable qui jette un jour
précieux sur toute la question: lorsqu’on passe du premier
cas au second, c’est-a-dire de celui ot les p sont tous égaux
a celui ou les p different les uns des autres, le nombre de
battements passe brusquement de la valeur 1 a une valeur
infinie. Or, adopter le premier cas revient purement et sim-
plement a postuler d'emblée I'indépendance parfaite. Le se-
cond cas nous montre que sitét que l'on introduit une coor-
dination, s¢ faible soit-elle, il faut une infinité de coups pour
faire disparaitre toute trace de Uordre initial.

Cela ne peut trop nous surprendre : si I'on veut que 'ordre
final ne conserve « rien » de l'ordre initial, il nous paraitra
naturel de faire appel a I'idée d’ «infini », seule I'idée d’infini
étant compatible avec l'idée de «rien» pour notre esprit
habitué a la détermination.

! La genése et le role des passages a la limite ont été analysés avec une grande pénétra-
tion par M. J.-H, Boex-Borel (J.-H. Rosny ainé) dans l'ouvrage intitulé Le Pluralisme, Paris,
F. Alcan, 1909,
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14. — En ramenant la notion de hasard a la notion de loi,
c’est-a-dire de succession, on réduit & néant l'idée mysté-
rieuse qu'on s’en fait ordinairement, en le prenmant & tort
dans un sens absolu. |

Il convient de remarquer d’abord que cette facon de pro-
céder est la plus naturelle a notre esprit. Lorsqu’un astro-
nome veut connaitre la trajectoire d’'une planete, il commence
par en déterminer un grand nombre de points; puis, les
joignant par un trait continu, il peut constater que la trajec-
toire est une ellipse. Jamais il ne lui viendrait a l'esprit
d’essayer de trouver la trajectoire en partant d'un point uni-
que; ici, du reste, 'impossibilité saute aux yeux?'. De méme,
la question si souvent posée dans les traités de probabilités:
Cet événement a-t-il lieu au hasard ou non ? n’a pas de
sens tant que 'on ne situe pas cet événement dans une chaine
d’événements.

15. — En outre, notre facon de procéder permet de bien
préciser les différentes formes que revétent nos relations
avec les choses.

Il importe de remarquer, en effet, qu'une méme relation
est souvent susceptible de bien des formes différentes, que
quelques-unes de ces formes peuvent étre simples tandis que
d’autres sont tres ou méme infiniment compliquées. Autre-
ment dit, la comme ailleurs, les notions sont relatives, et 'on
est parfaitement en droit de parler de la relativité du hasard,
de la complication et de 'indépendance, a la condition, tou-
tefois, d’y ajouter simultanémentla notion d’approximation?.

Des exemples remarquables et trés simples sont donnés
par les rapports mathématiques et leurs divers modes de
représentation. Considérons, par exemple, le rapport = de

1 On ne se rend pas assez compte, en général, de la difficulté que nous avons & prévoir
les phénomenes d’apparence les plus simples. Un exemple typique est celui de la planéte
Neptune. Citons textuellement M. de la Baume Pluvinel : « Les éléments de l'orbite de
Neptune sont encore mal connues, car on n'observe réguliérement cette planéte que depuis
77 ans, et la durée de sa révolution est de 16% ans; elle n’a donc encore été observée que
pendant une demi-révolution, ce qui n’est pas suffisant pour que l'on pnisse prévoir, avee
précision, les positions futures de la planéte. » .

2 Ceci est conforme a la régle générale : on ne peut introduire la notion de relativité
dans les sciences physiques qu’en négligeant une foule de phénoménes. Suivant Pheureuse
expression de H. PoINCARE (Dernicres Pensées), « I'Univers n’est tiré qu’a un seul exem-
plaire » ; puisqu’aucune de ses parties n’est identique 2 une autre, on ne peut parler de rela-
tivité qu'avec une certaine approximation.
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la circonférence au diameétre. Ce rapport, dans le systéme
décimal, peut étre relié aux dix chiffres 0, 1, 2, ..., 9 de plu-
sieurs facons différentes.

Ecrivons I'une d’elles :

1 1 1 1 1
“_—4<I—§+g—7+_9-_ﬁ+“‘)' (1)

En ’examinant, nous disons tout de suite que la « loi est
évidente ». Si je donne le n®™° terme, je puis écrire immé-
diatement le (n 4 1)*.

Ecrivons-en une autre :

= — 3,14159265358979323846 ... (2)

Cette expression m’apparait infiniment compliquée. J'aurai
beau écrire 10, 100, 1000, ... décimales, aucune loil ne sera
mise en évidence: les chiffres semblent se succéder au ha-
sard; ils paraissent absolument indépendants les uns des
autres. Si je n’al que cette expression a ma disposition, je
seral dans l'impossibilité de prévoir, étant données les 10,
100, 1000, ... premiéres décimales, ce que doivent étre les
115, 1015, 1001°%™, ...

Pourquoi les chiffres, ici, semblent-ils se succéder fortui-
tement ?

Un postulat intéressant du a M. P. Ceresole® permet de
répondre a la question. Nous I'énoncerons britvement de la
facon suivante : )

Il est impossible de calculer la n*** décimale de = sans
avoir auparavant calculé les n — 1 premieéres.

Ce postulat étant admis, il en résulte immédiatement que
le nombre de symboles nécessaires a la détermination d’une
décimale quelconque augmente indéfiniment avec le rang
de celle-ci. On tend donc vers une complication infinie. En
fait, le nombre de symboles augmente si rapidement que la
complication est extréme des le début.

Mais voici maintenant qui est essentiel : la complication
est infinie, mais non parfaite; elle ne peut I'étre puisque le

1 P. CERESOLE, L’irréductibilité de I'intuition des probabilités et l’existence de proposi-
tions mathématiques indémontrables, Arch. de Psych., t. xv, p. 255, 1915.
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nombre d’opérations nécessaires pour passer d’'une décimale
a la suivante est fini. Toutefois, en choisissant des décimales
aussi éloignées qu'on veut les unes des autres, on pourra
dire, en vertu du postulat de M. Ceresole, que ces décimales
sont indépendantes avec une approximation qui augmentera
au dela de toute limite avec 1’éloignement. La suite infini-
ment compliquée de = est «asymptotique » a une suite par-
faite.

Nous avons ici un exemple simple de l'application de la
notion de hasard avec une certaine approximation. Sous ce
point de vue, la série des décimales de = devient « équiva-
lente » a la série des chiffres que 'on obtiendrait en faisant
une infinité de tirages dans une urne appropriée. Tout ce
que I'on peut dire c’est que les opérations qui président a la
formation de = sont beaucoup moins compliquées que les
opérations qui président aux tirages successifs dans une
urne. Il n’y a donc qu’une différence d’approximation et non
une différence de qualité. C’est la quelque chose qui cho-
quera bien des gens; on croira volontiers au dieu hasard
dans le cas de l'urne et non dans le cas de n. Nous nous
heurtons ici & un postulat épistémologique qui joue un tres
grand role dans la science moderne en contenant en puis-
sance les théories dites de relativité. Nous essayerons de
I’énoncer tant bien que mal de la facon suivante:

Considérons deux choses comparables A et B, dont 1'une,
A, semble a priori jouir d’'une « situation privilégiée » par
rapport a B. Si, par aucun moyen, nous ne pouvons mettre
en évidence le « privilege », nous devons en conclure que
A et B sont toutes deux parfaitement « équivalentes ».

On comprend maintenant aisément ce qu’il faut entendre
par la relativité de nos relations. Selon qu’il est représenté
par (1) ou par (2), le rapport = nous apparait simple ou infini-
ment compliqué.

Plus généralement, on peut parler de la relativiié de 1'in-
dépendance et de la complication en ce sens que, selon le
point de vue, des événements nous semblent se succéder au
hasard, ou bien comme susceptibles d’étre prévus par des
lois relativement simples.
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16. — Dans toutes les applications, la notion d’approxima-
tton jouera un role important, et il y aura Jieu d’envisager
une indépendance ou une complication plus ou moins appro-
chées. Comme toute théorie, le hasard ne sera réalisé qu’ap-
proximativement. [l sera toujours possible, d’une loi connue,
suffisamment compliquée, de déduire des nombres qui con-
cordent a peu pres avec ceux du hasard parfait, admis lui-
méme comme n’'étant qu’a peu preés réalisé. Les différents
étals d’'un phénomeéne sembleront d’autant plus indépendants
les uns des autres qu'il sera plus difficile de trouver des rela-
tions simples entre ces états.

Celte idée d’approximation dans le hasard peut étre utile-
ment éclaircie par un paralléle entre le brassage et certains
phénomeénes physiques qui n’arrivent a leur terme qu’apres
un temps infini. Tel est, par exemple, l'arrét d’'une piece
mécanique dans un fluide visqueux. On introduit alors un
temps de relaxation. Clest le temps nécessaire a la piéce
pour que sa vitesse tombe & une certaine fraction de sa
vitesse initiale. Semblablement, on peut introduire dans
I’étude du brassage d’un jeu de cartes, un certain nombre
de relaxation. C'est la valeur que doit avoir le nombre m
pour que l'ordre final soitindépendant de I'ordre initial a une
certaine approximation preés. Pour une approximation donnée,
m devra étre d’autant plus grand que les p differeront plus
les uns des autres.

17. — L’introduction du temps de relaxation, en général
du temps, dans le hasard est trés importante pour I'étude des
phénomenes. M. Perrin, par exemple, a été tout naturelle-
ment conduit a repérer, a des intervalles réguliers, les posi-
tions d’un grain d’émulsion, et a constater ainsi que le grain
se déplacait, avec une trés grande approximation, suivant les
lois du hasard. Les pointés étaient faits, par exemple, toutes
les quinze secondes. S’ils avaient pu étre faits a4 des inter-

valles de temps inférieurs au de seconde, on aurait

1
100 000
mis en évidence la loi de mouvement, et l'on ne pourrait
plus, méme approximativement, parler de hasard.

Si, en général, on n’introduit pas explicitement le temps
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dans les probabilités, c’est que celles-ci s’appliquent surtout
a des jeux de hasard ou la succession des événements (par-
ties) a lieu beaucoup moins rapidement que la succession
des battements dans le battage d’un jeu de cartes. Exami-
nons, par exemple, le jeu de pile ou face. Entre chaque partie
il s'écoule un temps tel que le systéme joueur-piéce a com-
pletement «oublié» les états précédents. La relaxation est
quasi compléte. Peut-étlre qu’en jouant suffisamment vite on
ne parviendrait pas i éliminer un certain automatisme. Il
semble méme qu’on ne pourrait parvenir a ramasser et jeter
trés rapidement une piéce de monnaie qu’en faisant des mou-
vements bien coordonnés, comme il arrive dans le battage
des cartes par un joueur.

18. — L’étude que nous venons de faire pourrait s'appli-
quer a tout autre systéme opérateur-objet, tels que : boules
dans une urne, petits chevaux, roulette, etc. Dans tous, ily
a un objet : jeu de cartes, ensemble de boules, machine, etc.,
qui doit présenter certains caractéres de symétrie géométri-
que, et sur lequel s’exercent un ou plusieurs de nos mouve-
ments répétés, qui, a cause de notre constitution en trans-
formation continuelle, se présentent avec une suite indéfinie
de différences. Nous sommes ainsi excellemment constitués
pour «faire» du hasard : notre intelligence, d'une part, nous
permet de répéter un nombre énorme de fois des mouve-
ments tres semblables; d’autre part, des différences involon-
taires dans ces mouvements produisent les petites irrégula-
rités nécessaires. Nous sommes, de la sorte, en mesure de
créer un hasard qui s’approche indéfiniment du hasard par-
fait. De temps a autre, les appareils doivent étre vérifiés,
remplacés a la longue, afin qu’il n'y ait jamais de disymétrie
facheuse, ce qui serait immanquable avec I’ « usure», c’est-
a=dire la transformation inévitable de I'appareil employé.

Il y a la des circonstances qu’il ne faut pas perdre de vue
lorsqu’on veut appliquer les lois du hasard a un systéme
purement physique qui, comme nos machines, finit toujours
par se transformer, de sorte qu’a la fin de l'expérience le
systeme ne correspond plus a la définition initiale que nous
avions adoptée pour faire les considérations de probabilité.
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Aussi est-1] vain de croire que le principe de I'augmentation
de I'Entropie est complétement épuisé lorsqu’on y a intro-
duit les lois du hasard.

1I1. — PREMIER MODE D EMPLOI DU HASARD POUR
L’ETUDE DES PHENOMENES : EMPLOI DU HASARD OBJECTIF.

19. — Au paragraphe précédent, nous avons définile bras-
sage parfait et la probabilité objective parfaite.

Il convient de voir maintenant comment on peut utiliser
ces notions pour I'étude des phénoménes, 'expression « phé-
nomenes » étant prise dans son acception la plus large.

20. — Envisageons un phénomene dontles états aux temps
ty, ty + 7, ty + 27, ..., dépendent des valeurs que prennent,
a chacun de ces instants, n parameétres, et supposons que
ces n parametres ne peuventsatisfaire qu’a des relations tres
compliquées, — soit que ceci résulte de 'observation directe,
soit que ceci résulte de considérations purement théoriques.

Dans ce cas, il sera possible, avec une certaine approxi-
mation, d’établir une correspondance enire un brassage par-
fait et le phénoméne €tudie.

A cet effet, on formera un phénoméne fictif que nous appelle-
rons « schéma de brassage parfait » ; il sera caractérisé par
n parametres correspondant auxr n parameétres ci-dessus, et
effectué par des démons aux temps ty, t, + 7, t, + 2=, ...,
dans des conditions choisies de maniére que les valeurs suc-
cessives prises a ces instants par l'un quelconque des para-
métres du phénoméne, forment, approximativement, une
série possible de valeurs pour le paramétre correspondant
du schéma. Dans ce cas, les propriétés d’ensemble de ce phe-
nomeéne fictif correspondront d’'une maniere approximative
aux proprietés d’ensemble du phénoméne donné, et permet-
tront de les calculer.

C’est ce calcul qui seul importe. La difficulté du probleme
consistera dans le choix convenable des conditions que le
schéma devra remplir dans ce but.

21. — Ainsi, tandis que le mode habituel de représentation
des phénomenes par les équations différentielles donne la
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