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ESQUISSE D'UNE INTRODUCTION A LA THEORIE
DES PROBABILITES

PAR

Edouard GuiLraume (Berne).

Les considérations qui suivent sont empruntées, partielle-
ment, au travail intitulé La Théorie des Probabilités et la
Physique, que j'ai publié dans les ARCHIVES DES SCIENCES
PHYSIQUES ET NATURELLES (Geneéve), en 1914 et 1915. Je les
at réuntes ict pour en former un tout qui, développé dans les
détails, peut servir d’introduction a la Théorie des Proba-
bilités.

I. — INTRODUCTION.

LES NOTIONS DE LOI, DE HASARD SUBJECTIF ET DE
HASARD OBJECGCTIF.

1. — Dans certaines conditions, étant donné certains
événements, notre esprit jouit de la faculté de pouvoir en
« prévoir » d’autres. Lorsque cela a lieu, nous disons que les
événements satisfont 2 une certaine « loi».

La faculté de concevoir des lois est fondamentale ; c’est
par elle que 'on peut passer du particulier au général, du
fini a 'infini, en un mot, que la science méme est possible;
elle nous permet de « comprendre », car comprendre, c’est
enchainer des événements les uns aux autres, c’est-a-dire
établir les relations, les lois qui les unissent.

2. — Le travail de compréhension de 'esprit ne s’exerce
pas directement sur les choses, mais sur les « symboles »,
lettres, signes, mots, etc., qui les représentent.
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Formuler une loi, c’est exprimer par un nombre fini de
symboles une infinité d’événements. Plus le nombre de ces
symboles sera restreint, plus la loi sera dite générale; plus
le travail de l'esprit sera aisé, et plus celui-ci prendra
conscience de sa « puissance » a prévoir.

Au rebours, plus une loi exigera de symboles pour étre
formulée, plus notre esprit sentira sa puissance de prévision
diminuée: — plus la loi, si 'on ose dire, perdra son caractére
méme de loi; les liens apparaitront plus laches, les événe-
ments moins dépendants les uns des autres. Citons I’exemple
classique de la table de logarithmes. Nous savons parfaite-
ment que la table est établie suivant des regles rigides, et
cependant, perdu dans la foule des chiffres, notre esprit aura
la tendance a envisager les décimales des logarithmes des
divers nombres comme plus ou moins indépendantes les
unes des autres.

3. — A la limite, si les événements considérés ne peu-
vent étre reliés entre eux que par une loi dont ’expression
exigerait une 1infinité de symboles, nous pourrons dire,
comme nous le verrons en détails plus loin, que les événe-
ments sont rigoureusement « indépendants » les uns des
autres. Dans ce cas, 'impuissance de ’esprit a prévoir un
événement futur est totale.

Cela nous ameéne a distinguer deux cas principaux d’im-
possibilité de prévision:

1° Tmpossibilité de prévoir par simple « ignorance » de la
loi. Nous savons hien que celle-ci existe, et méme qu’elle
est simple ; mais elle nous échappe momentanément, en tout
ou en partie.

2° Impossibilité de prévoir par « impuissance », parce que
la loi est extrémement compliquée, c’est-a-dire ne pourrait
étre exprimée que par un nombre énorme ou méme infini
de symboles.

Dans le premier cas, nous dirons que les événements ont
lieu suivant le « hasard subjectif », et dans le second, sui-
vant le « hasard objectif ».

4. — Toutes les propositions que nous pourrons formuler
sur ces événements considérés individuellement, auroni un
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caractére commun: elles ne seront pas certaines, elles ne
seront que « probables ». Par contre, la succession de ces
événements forme des suites présentant certains carac-
téeres de symétrie, disons mieux, de « pseudo-symétrie ».
Leur étude constitue la Théorie des Probabilités.

Nous nous proposons dans ce qui suit d’exposer rapide-
ment ces caractéres fondamentaux.

5. — Les deux sortes de hasard ci-dessus spécifiées sufli-
sent a caractériser complétement I'emploi du hasard dans les
sciences.

Lesthéories statistiques ordinaires, les théories cinétiques
de Maxwell-Boltzmann appartiennent au hasard objectif.

Par contre, la Mécanique statistique de Gibbs repose uni-
quement sur le hasard subjectif; ce dernier a recu en outre
des applications importantes dans la théorie des équations
différentielles, le probleme des n corps (Poincaré), etc., et
la théorie des nombres (Borel).

1I. — LE HASARD OBJECTIF. — LES NOTIONS DE COMPLICATION,
DE BRASSAGE PARFAIT ET D INDEPENDANCE.
LLES NOTIONS DE RELATIVITE ET D APPROXIMATION
APPLIQUEES AU HASARD OBJECTIF.

6. — Imaginons, alignées les unes a coté des autres, &
cases numérotées de 1 a % et, sur chaque case, une carte
d’un jeu de % cartes également numérotées de 1 a k.

Nous allons supposer que ces cartes sont permutées sur
les cases par une machine, suivant une certaine loi.

Nous ferons le relevé périodique aux temps ¢, {, + T,
ty + 27, ..., t; + (n — 1) 7, des distributions réalisées a ces
instants, et nous les noterons pour obtenir un diagramme
de la marche du phénomeéne.

Les cartes sur les cases peuvent former 4! distributions
différentes :

D,, D,, D, D,, ..., D,, ..., D, .

l

Selon la loi, un plus ou moins grand nombre de ces distri-
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butions seront réalisées successivement aux époques consi-
dérées.

Cela posé, supposons d'abord que la loi est simple, c’est-
a-dire exprimable par une relation analytique simple ou par
un petit nombre de mots. Il sera possible dans ce cas de
trouver une carte portant le numéro j, et 2 cases de rangs
ays ay, -0 a,. telles que ladite carte ne se trouve pas du
tout, en moyenne, & peu prés A fois sur & sur 'une des cases
choisies. Mais 4 mesure que la loi deviendra de plus en plus
compliquée, il sera de plus en plus difficile de trouver la
carte et la ou les cases qui réalisent ces conditions. Le rap-

, h
port observé tendra vers T s

Or, si compliquée que nous imaginions une machine, elle
ne pourra pas étre infiniment compliquée, autrement dit, 1l
arrivera un moment #, + (N — 1) ot la distribution initiale
se reproduira et ou toutes les distributions suivantes se suc-
céderont toujours dans un méme ordre: le phénomene sera
périodique

Sur les N distributions que comporte la période, la distri-
bution D, apparaitra un certain nombre de fois N,; en appelant
n,le nombre de fois que cette distribution apparaitra pendant
les n observations, on aura évidemment :

n, N,

— — — — coustante = r, 1
. N nstante r; (1)
d'ou :

A,=n, —nr, =0, (2)

Si tous les rapports s, étaient nuls a 'exception d’un seul
nous dirions que la machine est au repos. C'est le cas le plus
simple.

[l est essentiel de remarquer que le nombre N de distri-
butions dont se compose la période, peut étre aussi grand
que l'on veut, et cela quel que soit &, pourva que & > 2 ; nous
pouvons, autrement dit, imaginer des périodes aussi longues
que ngus voulons. Pour un N et un A donnés, leur nombre
sera k.
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7. — Dans le cas limite ou N est infini, la période com-
prendra une infinit¢ d’éléments ; nous dirons que la loi est
infiniment compliquée.

8. — Ainsi, nous sommes en état de créer des lois infini-
ment compliquées. La question intéressante qui se pose
maintenant est la suivante : comment peut-on 1maginer un
systéme évoluant suivant une telle loi ?

Une idée se présente immédiatement al’esprit: rassembler
les cartes en paquet, les battre par un certain nombre de
coups m, puis les replacer sur les cases dans 'ordre obtenu,
Popération étant recommencée n fois de suite.

Nous avons en effet la conviction que le systeme opéra-
teur-cartes considéré n’est pas périodique. Les mouvements
qui président 4 la formation des distributions sont si com-
pliqués que nous devons complétement renoncer a en dé-
couvrir les lois. Mais, si notre pouvoir discriminatif trop
faible ne nous permet pas d’apercevoir ces lois, il permet
toutefois de distinguer quelque chose d’approchant. En effet,
les mouvements de 'opérateur ne sont pas complétement
décoordonnés, et c’est ce que nous exprimons en disant que
I'opérateur-a certaines habitudes. Comment ces habitudes se
manifestent-t-elles ? Par le fait que certaines distributions se
présenteront plus fréquemment que d’autres. Ainsi, nous
aurons des degrés de fréquence différents dans 'apparition
des diverses distributions, et, semble-t-il, nous revenons aux
périodes. Mais, est ceci est I'essentiel, ce ne seront plus de
vraies périodes, ce seront des pseudo-périodes, plus ou
moins bien marquées; les fréquences sont relatives, comme
nous le verrons dans un instant.

Auparavant, nous devons écarter une difficulté. Nous sa-
vons que le systeme opérateur-cartes a un instant donné n’est
jamais identique & ce qu’il était un instant auparavant; autre-
ment dit, ce systeme se transforme constamment, et, remar-
quons-le, c’est peut-étre pour cette raison qu’il n’est pas
périodique. Il en résultera que, si n est trés grand, nous
risquons de voir les habitudes du joueur se modifier sensi-
blement. Pour établir la théorie, nous nous trouverons ainsi
tout naturellement conduit a schématiser le systéme en ima-
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ginant un opérateur fictif capable de garder indéfiniment
des habitudes invariables. Dans ce cas, il sera possible de
définir les pseudo-fréquences par des nombres , invariables
pour chaque distribution D,. Nous ne pourrons plus, bien
entendu, définir les nombres N et N,, mais nous pourrons
considérer des nombres: -

n , n’ n" , ..

! 14

n; , T By | s

tels que les rapports

ni Ill- nl.

’ o3 ) ce

n n n

14

tendent vers une limite bien déterminée lorsque n, n', n”, ...
augmentent indéfiniment; c’est ce que nous résumerons par

I’expression :
ni
Lim — = @, . (1)

(2
n=—=q0o n

Nous dirons que w, est la probabilité objective pour qu’une
des distributions soit la distribution D,; c’est la fréquence
relative d’apparition de cette distribution.

Comme on le voit, la relation (1) est I'analogue de la rela-
tion (1); mais la relation (1) n'est valable rigoureusement
qu’a la limite. Cela concorde avec le fait que la période,
dans ce cas, est infiniel.

De méme, la relation (2) ne sera plus valable. Les diffé-
rences :

AL. = n; — nw,
! 4
. ’
Az = n, — n'm,
14 /4
A =n, — n”aii

que nous appellerons écarts absolus, augmentent au dela de

~ 1 M. L. BAcHELIER a montré aussi d’une autre facon qu’une suite d’événements fortuits a
une période infinie (L’Enseign. math., 1915, p. 5). :
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toute limite. Par contre, en vertu de (1), les écarts relatifs

bruts :

tendront vers 0. En introduisant I’écart étalon e, par 'expres-

\/zwim — @)
n

et V'écart relatif ) par la relation

sion :

X
A= -
e

I’Analyse combinatoire permet de montrer que les fréquences

relatives, ou probabilités objectives des écarts relatils 2,

obéissent a la loi suivante, lorsque n est trés grand :

e
(A ::fe—)‘?dl.
—A

Cest la loi fondamentale des écarts. En remontant, elle
permet de calculer les fréquences relatives des écarts x et A.

9. — En résumé, une lot infiniment compliquée ne peut
étre contenue dans une expression analytique nous permet-
tant d’en déterminer une partie quelconque. Par contre, ses
propriétés d’ensemble sont complétement caractérisées par
les quantités que nous avons appelées écarts et qui satisfont
a un critére analytique stmple.

10. — La question fondamentale quise pose a nous mainte-
nant estcelle de savoir comment varient les quantités », avec
le nombre de battements m et les habitudes de 'opérateur.
Nous poserons le probleme de la facon suivante :

« Si, avant de battre le jeu, les cartes sont dans un certain
ordre que nous prendrons comme initial, que peut-on dire
de l'ordre final des cartes aprés m battements ? »

Ce probleme a été étudié par Poincaré. Nous ne suivrons
pas ce savant dans les développements mathématiques diffi-
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ciles qu'il donne dans son Calcul des Probabilités. Nous nous
contenterons d’indiquer brievement la position de la ques-
tion en nous basant sur I’exposé élémentaire de la préface de
cet ouvrage. '

Considérons un opérateur qui bat un jeu de cartes. A cha-
que battement, I'ordre des cartes est interverti, et il peut
I'étre de plusieurs maniéres. Supposons trois cartes seule-
ment pour simplifier 'exposition. Les cartes qui, avant le
premier battement, occupaient respectivement les rangs 123,
pourront, apres le premier battement, occuper les rangs

123 , 231 , 312 321 , 132 , 213 .

Chacune de ces permutations est possible, mais elles ont
des fréquences relatives d’apparition qui dépendront et ca-
ractériseront les habitudes de l'opérateur, supposées inva-
riables. Nous les désignerons respectivement par :

P> J 2 Ps > J 2 Ps Pe 3

la somme de ces six quantités est égale a 1.

Au second battement et aux suivants, cela recommencera
et dans les mémes conditions; p,, par exemple, représente
toujours la fréquence relative de la permutation qui fait
passer les cartes des rangs 1, 2, 3 aux rangs 321.

Cela posé, on peut démontrer que si le nombre m de batte-
ments est trés grand, les cartes qui, avant le premier batte-

‘ment, occupaient lesrangs 1, 2, 3, pourront, apres le dernier

battement, occuper & peu prés indifféremment les rangs

123 , 231, 312, 321, 132, 213 ;

autrement dit, les fréquences relatives de ces six ordres
sont sensiblement les mémes et égales approximativement a

1 . : .
¢; nous dirons que l'ordre final des cartes est a peu pres

indépendant de 'ordre initial. Cela sera vrai quels que soient
les nombres p,, ..., ps, c'est-a-dire les habitudes du joueur.
Le grand nombre de battements, c’est-a-dire la complexité
des causes, a produit 'indépendance.
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Il y aurait une exception touteflois si I'un des nombres p
était égal a 1 et les autres nuls. Les conditions seraient trop
simples.

Enfin, si tous les nombres p étaient égaux entre eux, n’im-
porte lequel.des six ordres possibles apparaitrait au premier
battement: 'indépendance serait réalisée au premier coup.

11. — Voyons maintenant les conséquences que nous
pourrons tirer de 'analyse sommaire qui précéde.

Pratiquement, on peut distinguer deux cas principaux :

1° L’opérateur a de fortes habitudes, I'un des p est voisin
de 1, les autres voisins de 0. Dans ce cas, m devra étre trés
grand, c’est-a-dire 'opérateur devra battre le jeu un tres
grand nombre de fois pour que l'ordre final soit a peu pres
indépendant de l'ordre initial.

2° L’opérateur n’a presque pas d’habitudes, les différents
p sont tous a peu pres égaux entre eux. Dans ce cas m pourra
étre relativement petit. .

12. — Introduisons maintenant les limites des deux cas
précédents. Pour cela, nous imaginerons des opérateurs
fictifs : |

1° ou bien qui n’ont aucune habitude;

2° ou bien qui ont certaines habitudes, mais peuvent effec-
tuer un nombre infini de battements en un temps fini, trés
court, 7.

Pour abréger, nous pourrons appeler démons?! ces opéra-
teurs fictifs. |

Nous conviendrons de dire que l'ordre final des cartes
d’'un jeu ainsi battu a été obtenu par le brassage parfait, et
nous aurons immédiatement cette proposition :

L’ordre final des cartes, obtenu par le brassage parfait, ne
dépend pas de Uordre initial.

De plus, nous dirons que la succession des cartes dans
l'ordre final forme une loi infiniment compliquée parfaite.

13. — Le passage a la limite que nous venons d’effectuer

1 Ces démons s’opposent a ceux de Maxwell, qui sont des démons d’ordre, chargés du
triage des molécules. On voit que s’il faut un démon, c’est-a-dire une impossibilité, pour
mettre de l’ordre dans un systéme moléculaire, il en taut un également pour créer le dé-
sordre parfait.
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permet de bien préciser les notions d’indépendance et de
complication infinie parfaites.

Il faut remarquer, en effet, que pour la compréhension et
T'emploi d’un concept, il est toujours avantageux d’abstraire
de 'expérience une notion pure, par un passage a la limite
convenable qui en donne la genése, comme on le fait, par
exemple, pour acquérir les notions de ligne droite, de corps
solide, de mouvement rectiligne et uniforme, etc., autour
desquelles viennent se grouper les lignes a peu pres droites,
les corps a peu pres solides, etc., que nous voyons autour
de nous®. 1l est évident que le concept d’indépendance par-
Jaite ne peut étre qu’un concept limite, qui exige un « pas-
sage » pour devenir complétement intelligible. Ici, nous
avons vu quon peut l'acquérir de deux facons distinctes.
soit en imaginant des étres capables de n’avoir aucune habi-
tude, dont les mouvements, autrement dit, sont parfaitement
décoordonnés, soiten imaginant des étres comme nous, dans
le mouvement desquels on peut apercevoir une certaine coor-
dination ; mais alors, dans ce cas, I'indépendance ne pourra
étre parfaite que si le nombre de battements devient infini.
Il y a la une discontinuité remarquable qui jette un jour
précieux sur toute la question: lorsqu’on passe du premier
cas au second, c’est-a-dire de celui ot les p sont tous égaux
a celui ou les p different les uns des autres, le nombre de
battements passe brusquement de la valeur 1 a une valeur
infinie. Or, adopter le premier cas revient purement et sim-
plement a postuler d'emblée I'indépendance parfaite. Le se-
cond cas nous montre que sitét que l'on introduit une coor-
dination, s¢ faible soit-elle, il faut une infinité de coups pour
faire disparaitre toute trace de Uordre initial.

Cela ne peut trop nous surprendre : si I'on veut que 'ordre
final ne conserve « rien » de l'ordre initial, il nous paraitra
naturel de faire appel a I'idée d’ «infini », seule I'idée d’infini
étant compatible avec l'idée de «rien» pour notre esprit
habitué a la détermination.

! La genése et le role des passages a la limite ont été analysés avec une grande pénétra-
tion par M. J.-H, Boex-Borel (J.-H. Rosny ainé) dans l'ouvrage intitulé Le Pluralisme, Paris,
F. Alcan, 1909,
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14. — En ramenant la notion de hasard a la notion de loi,
c’est-a-dire de succession, on réduit & néant l'idée mysté-
rieuse qu'on s’en fait ordinairement, en le prenmant & tort
dans un sens absolu. |

Il convient de remarquer d’abord que cette facon de pro-
céder est la plus naturelle a notre esprit. Lorsqu’un astro-
nome veut connaitre la trajectoire d’'une planete, il commence
par en déterminer un grand nombre de points; puis, les
joignant par un trait continu, il peut constater que la trajec-
toire est une ellipse. Jamais il ne lui viendrait a l'esprit
d’essayer de trouver la trajectoire en partant d'un point uni-
que; ici, du reste, 'impossibilité saute aux yeux?'. De méme,
la question si souvent posée dans les traités de probabilités:
Cet événement a-t-il lieu au hasard ou non ? n’a pas de
sens tant que 'on ne situe pas cet événement dans une chaine
d’événements.

15. — En outre, notre facon de procéder permet de bien
préciser les différentes formes que revétent nos relations
avec les choses.

Il importe de remarquer, en effet, qu'une méme relation
est souvent susceptible de bien des formes différentes, que
quelques-unes de ces formes peuvent étre simples tandis que
d’autres sont tres ou méme infiniment compliquées. Autre-
ment dit, la comme ailleurs, les notions sont relatives, et 'on
est parfaitement en droit de parler de la relativité du hasard,
de la complication et de 'indépendance, a la condition, tou-
tefois, d’y ajouter simultanémentla notion d’approximation?.

Des exemples remarquables et trés simples sont donnés
par les rapports mathématiques et leurs divers modes de
représentation. Considérons, par exemple, le rapport = de

1 On ne se rend pas assez compte, en général, de la difficulté que nous avons & prévoir
les phénomenes d’apparence les plus simples. Un exemple typique est celui de la planéte
Neptune. Citons textuellement M. de la Baume Pluvinel : « Les éléments de l'orbite de
Neptune sont encore mal connues, car on n'observe réguliérement cette planéte que depuis
77 ans, et la durée de sa révolution est de 16% ans; elle n’a donc encore été observée que
pendant une demi-révolution, ce qui n’est pas suffisant pour que l'on pnisse prévoir, avee
précision, les positions futures de la planéte. » .

2 Ceci est conforme a la régle générale : on ne peut introduire la notion de relativité
dans les sciences physiques qu’en négligeant une foule de phénoménes. Suivant Pheureuse
expression de H. PoINCARE (Dernicres Pensées), « I'Univers n’est tiré qu’a un seul exem-
plaire » ; puisqu’aucune de ses parties n’est identique 2 une autre, on ne peut parler de rela-
tivité qu'avec une certaine approximation.
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la circonférence au diameétre. Ce rapport, dans le systéme
décimal, peut étre relié aux dix chiffres 0, 1, 2, ..., 9 de plu-
sieurs facons différentes.

Ecrivons I'une d’elles :

1 1 1 1 1
“_—4<I—§+g—7+_9-_ﬁ+“‘)' (1)

En ’examinant, nous disons tout de suite que la « loi est
évidente ». Si je donne le n®™° terme, je puis écrire immé-
diatement le (n 4 1)*.

Ecrivons-en une autre :

= — 3,14159265358979323846 ... (2)

Cette expression m’apparait infiniment compliquée. J'aurai
beau écrire 10, 100, 1000, ... décimales, aucune loil ne sera
mise en évidence: les chiffres semblent se succéder au ha-
sard; ils paraissent absolument indépendants les uns des
autres. Si je n’al que cette expression a ma disposition, je
seral dans l'impossibilité de prévoir, étant données les 10,
100, 1000, ... premiéres décimales, ce que doivent étre les
115, 1015, 1001°%™, ...

Pourquoi les chiffres, ici, semblent-ils se succéder fortui-
tement ?

Un postulat intéressant du a M. P. Ceresole® permet de
répondre a la question. Nous I'énoncerons britvement de la
facon suivante : )

Il est impossible de calculer la n*** décimale de = sans
avoir auparavant calculé les n — 1 premieéres.

Ce postulat étant admis, il en résulte immédiatement que
le nombre de symboles nécessaires a la détermination d’une
décimale quelconque augmente indéfiniment avec le rang
de celle-ci. On tend donc vers une complication infinie. En
fait, le nombre de symboles augmente si rapidement que la
complication est extréme des le début.

Mais voici maintenant qui est essentiel : la complication
est infinie, mais non parfaite; elle ne peut I'étre puisque le

1 P. CERESOLE, L’irréductibilité de I'intuition des probabilités et l’existence de proposi-
tions mathématiques indémontrables, Arch. de Psych., t. xv, p. 255, 1915.
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nombre d’opérations nécessaires pour passer d’'une décimale
a la suivante est fini. Toutefois, en choisissant des décimales
aussi éloignées qu'on veut les unes des autres, on pourra
dire, en vertu du postulat de M. Ceresole, que ces décimales
sont indépendantes avec une approximation qui augmentera
au dela de toute limite avec 1’éloignement. La suite infini-
ment compliquée de = est «asymptotique » a une suite par-
faite.

Nous avons ici un exemple simple de l'application de la
notion de hasard avec une certaine approximation. Sous ce
point de vue, la série des décimales de = devient « équiva-
lente » a la série des chiffres que 'on obtiendrait en faisant
une infinité de tirages dans une urne appropriée. Tout ce
que I'on peut dire c’est que les opérations qui président a la
formation de = sont beaucoup moins compliquées que les
opérations qui président aux tirages successifs dans une
urne. Il n’y a donc qu’une différence d’approximation et non
une différence de qualité. C’est la quelque chose qui cho-
quera bien des gens; on croira volontiers au dieu hasard
dans le cas de l'urne et non dans le cas de n. Nous nous
heurtons ici & un postulat épistémologique qui joue un tres
grand role dans la science moderne en contenant en puis-
sance les théories dites de relativité. Nous essayerons de
I’énoncer tant bien que mal de la facon suivante:

Considérons deux choses comparables A et B, dont 1'une,
A, semble a priori jouir d’'une « situation privilégiée » par
rapport a B. Si, par aucun moyen, nous ne pouvons mettre
en évidence le « privilege », nous devons en conclure que
A et B sont toutes deux parfaitement « équivalentes ».

On comprend maintenant aisément ce qu’il faut entendre
par la relativité de nos relations. Selon qu’il est représenté
par (1) ou par (2), le rapport = nous apparait simple ou infini-
ment compliqué.

Plus généralement, on peut parler de la relativiié de 1'in-
dépendance et de la complication en ce sens que, selon le
point de vue, des événements nous semblent se succéder au
hasard, ou bien comme susceptibles d’étre prévus par des
lois relativement simples.




306 E. GUILLAUME

16. — Dans toutes les applications, la notion d’approxima-
tton jouera un role important, et il y aura Jieu d’envisager
une indépendance ou une complication plus ou moins appro-
chées. Comme toute théorie, le hasard ne sera réalisé qu’ap-
proximativement. [l sera toujours possible, d’une loi connue,
suffisamment compliquée, de déduire des nombres qui con-
cordent a peu pres avec ceux du hasard parfait, admis lui-
méme comme n’'étant qu’a peu preés réalisé. Les différents
étals d’'un phénomeéne sembleront d’autant plus indépendants
les uns des autres qu'il sera plus difficile de trouver des rela-
tions simples entre ces états.

Celte idée d’approximation dans le hasard peut étre utile-
ment éclaircie par un paralléle entre le brassage et certains
phénomeénes physiques qui n’arrivent a leur terme qu’apres
un temps infini. Tel est, par exemple, l'arrét d’'une piece
mécanique dans un fluide visqueux. On introduit alors un
temps de relaxation. Clest le temps nécessaire a la piéce
pour que sa vitesse tombe & une certaine fraction de sa
vitesse initiale. Semblablement, on peut introduire dans
I’étude du brassage d’un jeu de cartes, un certain nombre
de relaxation. C'est la valeur que doit avoir le nombre m
pour que l'ordre final soitindépendant de I'ordre initial a une
certaine approximation preés. Pour une approximation donnée,
m devra étre d’autant plus grand que les p differeront plus
les uns des autres.

17. — L’introduction du temps de relaxation, en général
du temps, dans le hasard est trés importante pour I'étude des
phénomenes. M. Perrin, par exemple, a été tout naturelle-
ment conduit a repérer, a des intervalles réguliers, les posi-
tions d’un grain d’émulsion, et a constater ainsi que le grain
se déplacait, avec une trés grande approximation, suivant les
lois du hasard. Les pointés étaient faits, par exemple, toutes
les quinze secondes. S’ils avaient pu étre faits a4 des inter-

valles de temps inférieurs au de seconde, on aurait

1
100 000
mis en évidence la loi de mouvement, et l'on ne pourrait
plus, méme approximativement, parler de hasard.

Si, en général, on n’introduit pas explicitement le temps
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dans les probabilités, c’est que celles-ci s’appliquent surtout
a des jeux de hasard ou la succession des événements (par-
ties) a lieu beaucoup moins rapidement que la succession
des battements dans le battage d’un jeu de cartes. Exami-
nons, par exemple, le jeu de pile ou face. Entre chaque partie
il s'écoule un temps tel que le systéme joueur-piéce a com-
pletement «oublié» les états précédents. La relaxation est
quasi compléte. Peut-étlre qu’en jouant suffisamment vite on
ne parviendrait pas i éliminer un certain automatisme. Il
semble méme qu’on ne pourrait parvenir a ramasser et jeter
trés rapidement une piéce de monnaie qu’en faisant des mou-
vements bien coordonnés, comme il arrive dans le battage
des cartes par un joueur.

18. — L’étude que nous venons de faire pourrait s'appli-
quer a tout autre systéme opérateur-objet, tels que : boules
dans une urne, petits chevaux, roulette, etc. Dans tous, ily
a un objet : jeu de cartes, ensemble de boules, machine, etc.,
qui doit présenter certains caractéres de symétrie géométri-
que, et sur lequel s’exercent un ou plusieurs de nos mouve-
ments répétés, qui, a cause de notre constitution en trans-
formation continuelle, se présentent avec une suite indéfinie
de différences. Nous sommes ainsi excellemment constitués
pour «faire» du hasard : notre intelligence, d'une part, nous
permet de répéter un nombre énorme de fois des mouve-
ments tres semblables; d’autre part, des différences involon-
taires dans ces mouvements produisent les petites irrégula-
rités nécessaires. Nous sommes, de la sorte, en mesure de
créer un hasard qui s’approche indéfiniment du hasard par-
fait. De temps a autre, les appareils doivent étre vérifiés,
remplacés a la longue, afin qu’il n'y ait jamais de disymétrie
facheuse, ce qui serait immanquable avec I’ « usure», c’est-
a=dire la transformation inévitable de I'appareil employé.

Il y a la des circonstances qu’il ne faut pas perdre de vue
lorsqu’on veut appliquer les lois du hasard a un systéme
purement physique qui, comme nos machines, finit toujours
par se transformer, de sorte qu’a la fin de l'expérience le
systeme ne correspond plus a la définition initiale que nous
avions adoptée pour faire les considérations de probabilité.
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Aussi est-1] vain de croire que le principe de I'augmentation
de I'Entropie est complétement épuisé lorsqu’on y a intro-
duit les lois du hasard.

1I1. — PREMIER MODE D EMPLOI DU HASARD POUR
L’ETUDE DES PHENOMENES : EMPLOI DU HASARD OBJECTIF.

19. — Au paragraphe précédent, nous avons définile bras-
sage parfait et la probabilité objective parfaite.

Il convient de voir maintenant comment on peut utiliser
ces notions pour I'étude des phénoménes, 'expression « phé-
nomenes » étant prise dans son acception la plus large.

20. — Envisageons un phénomene dontles états aux temps
ty, ty + 7, ty + 27, ..., dépendent des valeurs que prennent,
a chacun de ces instants, n parameétres, et supposons que
ces n parametres ne peuventsatisfaire qu’a des relations tres
compliquées, — soit que ceci résulte de 'observation directe,
soit que ceci résulte de considérations purement théoriques.

Dans ce cas, il sera possible, avec une certaine approxi-
mation, d’établir une correspondance enire un brassage par-
fait et le phénoméne €tudie.

A cet effet, on formera un phénoméne fictif que nous appelle-
rons « schéma de brassage parfait » ; il sera caractérisé par
n parametres correspondant auxr n parameétres ci-dessus, et
effectué par des démons aux temps ty, t, + 7, t, + 2=, ...,
dans des conditions choisies de maniére que les valeurs suc-
cessives prises a ces instants par l'un quelconque des para-
métres du phénoméne, forment, approximativement, une
série possible de valeurs pour le paramétre correspondant
du schéma. Dans ce cas, les propriétés d’ensemble de ce phe-
nomeéne fictif correspondront d’'une maniere approximative
aux proprietés d’ensemble du phénoméne donné, et permet-
tront de les calculer.

C’est ce calcul qui seul importe. La difficulté du probleme
consistera dans le choix convenable des conditions que le
schéma devra remplir dans ce but.

21. — Ainsi, tandis que le mode habituel de représentation
des phénomenes par les équations différentielles donne la
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possibilité de déterminer I'état réel du systeme & l'instant
¢t 1 dt, lorsque 'élat a l'instant ¢ est connu, le mode de
représentation défini ci-dessus est, par nature, essentielle-
ment discontinu, alors méme qu’on se servirait de fonctions
continues pour les calculs. L'intervalle de temps 7z ne pourra
jamais étre un infiniment petit au sens mathématique du
mot, c’est-a-dire une quantité tendant vers zero.

22. — En calculant pour le schéma de brassage les pro-
babilités objectives des divers états possibles, on pourra
répondre a la question qui résume le probléme du présent
paragraphe :

« Quelle est la probabilité pour que le phénoméne phy-
sique donné se trouve dans tel état déterminé?»

On peut dire que le hasard est dans le phénoméne : c’est
un hasard objectif. A

23. — Un cas intéressant est celuiou certains états voisins
sont de beaucoup les plus probables. Les autres seront dits
exceptionnels. Dans ce cas, le phénoméne nous apparaitra
avec une certaine uniformité : il nous semblera toujours
dans un méme état moyen.

Ceci a lieu pour les systemes a un trés grand nombre de
degrés de liberté, un gaz parfait, par exemple.

24. — C'est a la méthode ci-dessus qu'il convient de ra-
mener, outre la théorie cinétique ordinaire, la théorie des
mouvements browniens, la théorie des quanta de Planck,
etc., tous les schémas des urnes, faits en Statistique pour

les mortalités, les naissauces, etc., en biologie, en biomé-
trique, etc.

IV. — DEFINITION DE LA PROBABILITE SUBJECTIVE.
LE HASARD DANS I’OBSERVATEUR OU HASARD SUBJECTIF.

25. — Nous allons introduire une nouvelle notion de pro-
babilité, qui joue un grand role dans la vie pratique, ou 'on
a des déterminations a prendre en face d’événements qu’on
ne peut prévoir entiérement.

Comme nous le verrons, cette notion occupe une place
importante dans les sciences physiques et mathématiques.

I’Enseignement mathém., 18c année, 1916. 21




310 E. GUILLAUME

26. — Commencons par une définition.

Imaginons de nouveau, alignées les unes a coté des autres,
ke cases numérotées de 1 a k%, et, sur chacune de ces cases,
une carte d'un jeu de % cartes, également numérotées de
1ak.

Un opérateur ramassera les cartes et les reposera sur les
cases dans un certain ordre. Nous obtiendrons ainsi une
nouvelle distribution. L’opération sera répétée a intervalles
fixes, c’est-a-dire a des temps /,, /, + 7, f, + 27, ..., et les
distributions réalisées a ces instants seront notées sur un
diagramme, de facon qu’a la fin de l'expérience nous puis-
sions nous rendre compte de la marche du phénomene. Nous
supposons l'opérateur complétement libre de choisir, pour
la succession des distributions, telle loi qu’il voudra; en
particulier, il pourrait maintenir les cartes toujours dans le
méme ordre. |

Ceci posé, choisissons £ cases: pour préciser, celles por-
tant les numéros a,, oy, ... ,, OU 1 < % <k, j=1,2, ..,
h < k, et demandons-nous quelle est la probabilité pour
que dans une des distributions, considérée isolément, par
exemple celle réalisée au temps ¢, 4+ =, la carte n° 7 soit sur
I’'une des & cases choisies.

Ne sachant rien du tout, nous ne pouvons croire favorisée
aucune case en particulier. Nous dirons simplement qu’il y
a k cas possibles et h cas favorables, et nous obtiendrons

e, h
pour cette probabilité la valeur = -

C’est ce que nous appellerons la probabilité subjective de
I’événement considéré.

Examinant ensuite le diagramme, nous constaterons qu’en

général ladite carte ne se trouve pas du tout, en moyenne,
a peu pres  fois sur % sur 'une des cases choisies, et qu’il
est impossible de satisfaire a la loi des écarts, méme d’une
facon grossiérement approximative. Il pourrait arriver en
particulier ‘que la Joi de succession adoptée fut telle que
ladite carte ne se trouvat jamais dans ['une des £ cases indi-
quées.

Ce serait par contre le cas si, entre chaque distribution,

R S Ll i e ia
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les cartes étaient soumises a un battage parfait, ou bien si
I'opérateur adoptait volontairement une loi de succession.
qui, continuée indéfiniment, serait infiniment compliquée.

27. — La définition ci-dessus peut s’appliquer au continu
en faisant tendre % et & vers l'infini, de fagon que le rap-

h .
porl:/—f reste fini.

On le rencontre sous cette forme dans la Mécanique sta-
tistique de Gibbs.
C'est, en général, dans les cas extrémes, c’est-a-dire
lorsque ,
Lim k = ou 0
PR

k=

que la probabilité subjective rend des services en Mathé-
matique et en Physique. Citons, par exemple, la probabilité
subjective pour qu'un nombre soit rationuel ; elle est infini-
ment petite.

28. — La question fondamentale ui se pose maintenant
est celle de savoir si la probabilité subjective est d’'une nature
autre que la probabilité objective.

A cet effet, nous nous souviendrons que nous avons preé-
cisé la notion de hasard objectif en la ramenant a une loi
infiniment compliquée, et cette loi elle-méme a la loi des
écarts. Nous devons donc nous efforcer a retrouver une loi
infiniment compliquée. Pour y arriver, il suffit d'introduire
un grand nombre d’événements qui puissent étre considérés
comme indépendants les uns des autres.

Dans ce but, nous formerons un ensemble comprenant un
nombre énorme d’observateurs fictifs que nous supposerons
absolument isolés les uns des autres, c¢’est-a-dire sans com-
munication aucune, et ne connaissant pas les intentions de
l'opérateur. Dans ces conditions, leurs décisions seront par-
faitement indépendantes.

Cela posé, il pourra se présenter deux cas:

1° étant donné la carte n° 7, les observateurs fixeront les
I cases. Si, lorsque chacun d’eux aura fait son choix, on
établit une statistique, on verra que ladite carte, dans la
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distribution considérée, se trouve bien en moyenne a peu
prés / fois sur % dans les cases indiquées ;

2° étant donné les h cases, les observateurs fixeront
chacun une carte. En faisant une statistique comme ci-dessus,
on verra alors que les cartes choisies sont a peu prés % fois
sur /£ dans une des cases données.

Alnsi, en définitive, la probabilité subjective peut conduire
a une loi infiniment compliquée; il suftit de postuler 'indé-
pendance des décisions des observateurs. Celles-ci dépen-
dront, pour chacun d’eux, des circonstances qui les entou-
rent, et on admettra que ces circonstances varient infiniment
d'un observateur a un autre,

Nous sommes de nouveau dans un cas limite. Dans la pra-
tique, 'indépendance peut étre réalisée avec une trés grande
approximation.

29. — Nous voyons maintenant clairement la différence
qui sépare les deux probabilités: dans la probabilité objec-
tive, c'est pour le phénomene étudié qu'a lieu la loi des
écarls; dans la probabilité subjective, cette loi s’applique
aux observateurs mémes : le hasard n’est plus dans le phé-
nomeéne qui peut obéir a une loi quelconque, mais dans
lobservateur (sujet). Nous dirons qu’il est subjectif.

Ainsli, la loi des écarts nous donne un critére simple pour
distinguer les deux sories de probabilités.

30. — Si les cartes sur les cases sont soumises au bras-
sage parfait, ou, plus généralement, si un systeme évolue
suivant le hasard objectif, les probabilités objectives auront
mémes valeurs numériques que les probabilités subjectives
correspondantes, celles-ci se rapportant évidemment a cha-
que état, considéré isolément, par lequel passe le systéme.

C’est cette identité des valeurs numériques qui masque la
distinction que permet de faire la loi des écarts.

Il en résulte qu’a toute probabilité objective correspond
une probabilité subjective de méme valeur numérique. Mais
Iinverse n’a pas lieu nécessairement.

31. — Nous citerons, pour terminer, un paradoxe fameux
di a d’Alembert, et qui trouve une solution satisfaisante
dans la probabilité objective. D’Alembert affirmait obstiné-



ment que toute probabilité devait étre égale a /2, car, disait-
il, pour tout événement il n'y a que deux alternatives possi-
bles : il arrive ou n’arrive pas. On peut donner une interpré-
tation de la pensée de d’Alembert en se placant au point de
vue suivant : il s’agit d’'une probabilité subjective et l'igno-
rance de l'observateur est totale. Si 'on imagine, en effet,
un grand nombre d’observateurs indépendants qui engagent
des paris sur 'arrivée ou la non-arrivée d’'un certain événe-
ment, la moitié d’entre eux 4 peu prés pariera pour l'arrivée
et autre moitié pour la non-arrivée.
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V. — DEUXIEME MODE D'EMPLOI DU HASARD POUR L’ETUDE
DES PHENOMENES : EMPLOI DU HASARD SUBJECTIF.

32. — La probabilité subjective va nous fournir une autre
maniere d’utiliser le hasard, maniére plus raflinée et moins
immédiate que la premiére, quoique plus générale et mieux
dans la nature des choses. Comme nous le verrons, cette
méthode met bien en évidence nos rapports avec le monde
extérieur; elle fournit un instrument précieux non seule-
ment au physicien, mais encore au mathématicien, comme
en témoignent les travaux de Poincaré, Borel, etc. C'est elle
qui permet d’allier le hasard a la rigueur mathématique, non
pas en supposant que le hasard puisse étre dans nos créa-
tions mathématiques, mais en traitant ces créations comme
des objets extérieurs qui nous seraient partiellement étran-
gers.

33. — Envisageons un systéme dont Pétat est défini a
chaque instant par n parametres :

et supposons que les lois qui nous font connaitre les varia-
tions de ces parameétres s ‘expriment par les équations diffé-
rentielles :

s s oo W
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ou les-X sont des fonctions des « et du temps ¢. Les équa-
tions précédentes n’expriment pas autre chose qu’un certain
déterminisme : étant donné l'état du systéme au temps ¢,
Iétat de ce systéme au temps ¢ + d¢ est compléetement dé-
terminé.

Il est commode de représenter I'état du systéme, a l'ins-
tant #, par un point figuratif de I'hyperespace a n dimen-
sions, dont les coordonnées sont x,, x,, ..., 2, . L'ensemble
des états que traverse le systéeme au cours du temps forme
une certaine trajectoire dans ’hyperespace ; cette trajectoire
est parcourue par le point figuratif avec I'hypervitesse repré-
sentée par les équations ci-dessus.

Nous pouvons dire que nous connaissons la constitution
de notre systeme. Si nous connaissions, en outre, les condi-
tions initiales, — en supposant toutefois que l'on sache in-
tégrer, — nous pourrions prédire ’état dans lequel sera le
systéeme a un instant quelconque.

Par un pareil systéme, nous pourrons entendre, par exem-
ple, un systéme mécanique formé d’un certain nombre de
points matériels en mouvement les uns par rapport aux au-
tres. Il pourra alors nous importer de savoir quelle chance
nous avons de rencontrer le systéme voisin de tel état (confi-
guration) plutdt que de tel autre.

Nous sommes ainsi amenés a poser un nouveau probléme
de hasard que ’on pourrait formuler de la facon suivante :

Lorsqu’un observateur est tout a coup en présence d'un
systéme de constitution donnée, quelle est la probabilité sub-
jective pour que cet observateur trouve le systéme voisin de
tel état détermine ?

Si les conditions initiales étaient connues, l'observateur
pourrait prévoir exactement comment le systeme évolue. On
peut donc encore énoncer le probleme précédent en disant :

« Lorsqu'un observateur rencontre un systéme de consti-
tution donnée, quelle est la probabilité subjective pour que
cet observateur se trouve en présence d’'un systéeme ayant
eu telles conditions initiales ? »

3%4. — On voit maintenant clairement la différence entre la
méthode objective et la méthode subjective.
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Dans la premiére, il faut nécessairement que le phéno-
méne étudié offre une complication suflisante ; dans la
seconde cette condition n’est pas nécessaire.

Dans la premiére, on cherche, au moyen du hasard objectif
parfait, a établir une image de la constitution méme du
systéme, a trouver les états par lesquels il pourrait passer
et a indiquer leurs successions possibles, non continues :
on met le hasard dans le systéme. Dans la seconde, il n'y
a aucun hasard dans le systéme; sa constitution, au sens
indiqué plus haut, est parfaitement connue, c'est-a-dire est
donnée par des lois connues qui nous indiquent déja tous
les états possibles et leurs lois de succession. Le fortuit pro-
vient de I'impuissance de 'observateur a prévoir dans lequel
de ces états se trouvera le systéme a l'instant de l'obser-
vation, ou, ce ce qui revient au méme, dans lequel de ces
états était le systéme a l'origine du temps. Le hasard est
dans I'observateur qui, ignorant les conditions initiales, est
lié au systéeme par une loitrop compliquée pour pouvoir faire
des prévisions sur ces conditions.

35. — Les considérations ci-dessus trouvent une de leurs
plus belles applications dans 'ceuvre de J.-W. Gibbs. Dans
sa Mécanique statistique, Gibbs «répéte » un nombre énorme
de fois un méme systéme mécanique, de facon a former un
ensemble de systemes obéissant aux mémes équations diffé-
rentielles, mais qui, a l'instant ¢ == 0, sont tous dans des
conditions initiales différant d’'un individu & Pautre.

Il est alors commode de supposer I'hyperespace représen-
tatif peuplé de points figuratifs en mouvement sur des tra-
jectoires correspondant chacune a un systéme de conditions
initiales déterminées. Une petite région de I’hyperespace
représente une série d’états voisins.

La question de probabilité énoncée plus haut revient alors
a celle-ci1: _

« Lorsqu’un observateur rencontre un systéme de cons-
titution donnée, quelle est la probabilité subjective pour que
le point figuratif de ce systéme soit dans telle région de
I'hyperespace ? »

Cet énoncé spécial de la question du n° 32 résume la mé-
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thode de Gibbs. L'analogie avec le schéma des cartes du §III
saute aux yeux: chaque groupe de 2 cases représente un
état, et une carte représente un systéme. La probabilité sub-
jective qui répond a la question est alors :

. h
Lim — — const.
h—ew k

k=

Il est essentiel de remarquer que la trajectoire du sys-
téeme considéré pourrait ne pas traverser ladite région, de
sorte que le point figuratif ne s’y trouverait jamais.

Parmni les systémes intéressants, il convient de citer ceux
qui, grice a leur constitution, évoluent, en général, dans
des états qui different trés peu d’un certain état moyen,
autrement dit, qui se comportent généralement a peu prés
comme un certain fype moyen, de sorte que la probabilité
subjective pour qu'un tel systeme difféere peu du type moyen
lorsque 'observateur le rencontre, ou encore a I’époque que
celui-ci a choisie pour origine du temps, est trés voisine de
I'unité. Les autres états seront dits exceptionnels.

Ce sera le cas, par exemple, si le systeme est tres compli-
qué, c'est-a-dire présente un nombre énorme de libertés,
tels les corps ordinaires dans la théorie moléculaire. Dans
ce cas, la probabilité subjective conduit a des résultats ayant
certains points communs avec ceux fournis par la probabilité
objective (Gf. n° 23).

36. — On peut encore répondre a la question fondamen-
tale du n° 34 d’un point de vue un peu différent, préconisé
surtout par Einstein.

Considérons un systéme unique et sa représentation par
un point figuratif en mouvement sur la trajectoire de I'hyper-
espace. Fixons une certaine région de cet espace et suppo-
‘sons-la traversée un grand nombre de fois par la trajectoire.
Suivons le point sur celle-ci d’'une époque /7, a une époque
o + O, © étantune trés longue durée. A une certaine épocque
{, le point pénétrera dans la région pour en sortir a I'épo-
“que t, + 0,; il y rentrera a I'époque ¢, et en ressortira a
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etc. Posons :
6, + 6, + ... =10,

et fixons un instant ¢ compris entre 7, et 7, + @

La réponse a la questlon posée pourra alors se formuler
ainsi : :

Lorsqu’un observateur rencontre, a l'instant ¢, un systeme
de constitution donnée, mais dont les conditions initiales
lui sont inconnues, la probabilité subjective pour que le
point représentatif de ce systeme soit, a l-’instant ¢, dans la

29

I'époque 7, + 0

région choisie de I'hyperespace, est egflle a . Cette défini-

tion ne pourra avoir de sens que si ce rapport peut étre con-
sidéré comme indépendant de ¢, et de ®, pourvu que O soit
tres grand ; autrement dit, on doit avoir:

Lim —8- — const.
O=w @
37. — Pour établir le lien entre cette probabilité et la loi

des écarts, on peut procéder comme suit : on tracera un axe
des temps sur lequel on marquera les points:

£y s £ t, + 0, , fy+ 05, oo t, + O .

‘On demandera 4 un grand nombre d’observateurs indé-
pendants de nous fixer un instant z. On verra alors que les
instants choisis tomberont & peu pres 6 fois sur ® dans 'un
des segments 6,.0,, ..., c’est-a-dire dans un segment de
longueur totale # intérieur & un segment de longueur ©.

Il est évident que nous aurions pu procéder antrement et
considérer 'instant ¢ comme fixé une fois pour toutes; c’est
alors la région traversée que les observateurs auraient eu a

“choisir.

38. — Sile mouvement du systéme est périodique, la défi-
nition du n° 35 est évidente. On a alors :

01:92:...:6’

et si 'on appelle T la période, on a:

Lim—e—::0

B=» @ Tf
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Ce ne sera en général pas le cas; mais Poincaré a dé-
montré que les mouvements des systemes mécaniques sont
quasi périodiques, de sorte qu’on aura, pour de semblables
systémes, en désignant par 6 et T des valeurs moyennes :

)
Lim — = — .
9 —oo rl\

Enfin remarquons que pour cette probabilité subjective

que p p )
il faut nécessairement que la région envisagée de 'hyperes-
pace soit traversée par la trajectoire.

39. — On comprendra maintenant aisément le sens d'une
question comme celle-ci: quelle est la probabilité subjective
pour qu’il y ait pleine lune aujourd’hui, 15 juillet 1916 ? Le
mouvement est quasi périodique. C’est, répondra-t-on, un

peu moins de 5—7 Le hasard est dans le choix de I'époque. Si
nous imaginons un grand nombre d’observateurs indépen-
dants les uns des autres, ils fixeront, chacun selon ses cir-
constances propres, une date qui, en général, différera d'un
observateur a l'autre. En moyenne, il y aura pleine lune a
peu prés une fois sur vingt-sept dates choisies.

40. — On interpréterait de la méme facon des questions
comme celles-ci: quelle est la probabilité pour qu'il pleuve
demain ? Ou encore: quelle est la probabilité pour qu'il y
ait éclipse de lune le mois prochain? citées par Bertrand
comme des non-sens.

VI. — CONCLUSIONS GENERALES.

41. — Dans le présent essai, nous avons introduit la loz
comme notion fondamentale primitive et le hasard comme
notion dérivée, prenant naissance lorsque la loi se complique
de plus en plus; a la limite, on obtient la loi infiniment com-
pliguée, précisée par la loi des écarts.

42. — Une loi infiniment compliquée est formée par une
suite d’événements que nous considérons comme plus ou
moins indépendants les uns des autres. Nous avons acquis
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un résultat important en reconnaissant que deux événements
ne pouvaient étre déclarés rigoureusement indépendants que
s'il fallait une infinité d’opérations pour passer de l'un a
'autre. C’est ainsi que nous avons été conduits a la notion
de brassage parfait et de lo¢ infiniment compliquée parfatte.
De notre point de vue, le hasard, la complication, l'indépen-
dance, se présentent donc comme des cas limites, irréali-
sables, mais dont on peut s’approcher autant qu’on veut.

43. — Enfin, nous avons vu qu’il était essentiel de distin-
guer le hasard objectif du hasard subjectif. Pour le premier,
la loi des écarts s’applique aux événements mémes, qui doi-
vent, a cet effet, former une suite infiniment compliquée.
Pour le second, la loi des écarts s’applique & ceux, supposés
en grand nombre, qui observent les événements; ces der-
niers peuvent se succéder suivant une loi quelconque, sim-
ple ou compliquée.

44. — Par ces considérations, on met bien en relief la trés
orande importance de la notion d'indépendance dans la ge-
nése de l'idée de hasard. Ici, nous l'avons acquise par la
complication ; c’est une notion « subjective » ; nous pouvons
imaginer des cerveaux de plus en plus puissants, capables
d’embrasser facilement des lois de plus en plus compliquées.
Le fortuit diminue donc en raison inverse de la puissance
du cerveau. Il est du reste certain que le domaine du hasard
a beaucoup décru depuis I'antiquité, grace surtout a la per-
fection de notre appareil analytique. |

Peut-on concevoir I'indépendance engendrée d'une autre
facon ? Nous ne pouvons que mentionner ici, a ce propos,
la théorie de la relativité d’Einstein, suivant laquelle il est
possible, et cela d’'une infinité de maniéres, de trouver des
événements qui ne pourront jamais étre en relation de cause
a effet. Dans cette théorie, il y aurait des indépendances
absolues .

! On sait que cette conséquence de la théorie d’Einstein provient du fait que Ion exclut
toute transmission de signaux avec une vitesse infinie. Cette théorie est donc incompatible
avec la conception d'une intelligence infinie (Poincaré) qui serait capable de classer a la fois
PUnivers entier dans son temps, comme nous classons, dans notre temps, le peu que nous
voyons. 1l faudrait, en effet, que cette intelligence reciit des impressions simultanées de tous
les coins de I'Univers, quelque éloignés qu’ils soient.
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