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La trajectoire de Uéclaireur est donc la projection
horizontale d'une hélice tracée sur un paraboloïde hyperbolique
a plan directeur horizontal.

Posons enfin :

x± — z z=z aZ x z=z iaVX y iaVY ;

les équations de l'hélice deviennent

X + YZ 0 dX2 + dY2 + dZ2 — 0

Les hélices considérées sont donc affines, par voie complexe,
aux lignes de longueur nulle d'un paraboloïde hyperbolique.
Cette dernière propriété présente une grande importance,
car elle donne naissance à une nouvelle méthode de
détermination des équations de la courbe de l'éclaireur : il suffit de

rapporter le paraboloïde à ses lignes de courbure pour
réduire aux fonctions elliptiques la détermination de ses
lignes de longueur nulle.

23 mai 1915.

SUR LA DÉTERMINATION
DES TRAJECTOIRES ORTHOGONALES

D'UNE FAMILLE DE CERCLES

PAR

L. Baxlif (Angonlême).

1. — Considérons d'abord une famille de cercles situés
dans un même plan. Soient#, y les coordonnées du centre
C d'un cercle, 9 l'angle du rayon CM avec ox, et XY les
coordonnées d'un point M du cercle. Ecrivons que MC est
tangent au lieu de M

dY
lge IX

et comme
X X + R cos 0 Y J + R iin 0
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Il V 1 Cil L

t
dy -J- R cos 6 dd -j- sin 0 c/R

^ dx — R sin 6 d§ -j- cos 0 dK

OU

sin 0 dx — cos 0 dy — Rg?0 — 0 (I)

Il faut remarquer que celte
Fig- u équation différentielle est la

même que R soit constant ou
variable, puisqu'elle ne contient pas de terme en ^/R.

On peut encore l'écrire

sin 0 ~ — cos 0^- — d() — 0
R K

et sous cette forme on voit que les coefficients de l'équation
seront les mêmes pour deux familles de cercles telles que

dx dx/ dy dy'
~R=Z~Br ' R ~ R7 *

Deux familles satisfaisant à ces conditions sont dites
similaires. Elles sont telles que, si à un point C du lieu des
(-entres de l'une on fait correspondre un point C du lieu des
centres de l'autre, où les tangentes sont parallèles, le rapport
des rayons des cercles de chaque famille en ces points soit
égal au rapport des rayons de courbure des lieux des centres
en ces points.

Pour le voir, il suffit d'élever au carré les égalités
précédentes et de les ajouter

dx2 -j- dy2 dx'2 -f- dy'2 ds2 ds'2
R2 — W2 ' °U R2 W2

Ceci montre en passant que la recherche des trajectoires
orthogonales d'une famille de cercles peut toujours se ramener

à celle d'une famille de cercles de rayon constant.
Ce fait est intéressant en ce sens que les procédés

d'intégration mécanique donnent immédiatement les trajectoires
d'une famille de cercles de rayon constant : en effet, si l'on



TRAJECTOIRES ORTHOGONALES 217

fait décrire à la pointe d'une tige de longueur constante la

courbe lieu des centres C, et si l'autre extrémité porte une
lame analogue à celle d'un planimètre de Pritz, cette lame
tracera une trajectoire
orthogonale r.

Ce cas particulier est
encore digne d'attention à un Fig 2

autre point de vue, car il est
au fond le même que le problème de cinématique suivant :

Sur quelle courbe Y faut-il faire rouler une droite D, (sans
glisser) pour quun point P du plan de cette droite décrive une
courbe donnée à l'avance C P

On voit immédiatement que cette courbe Y est la
développée du lieu du point Q, projection de P sur D.

Or la tangente au lieu de Q, étant dirigée suivant QP, le
lieu de Q est une trajectoire orthogonale des cercles de rayon
constant PQ dont le centre est sur C.

Ce problème peut avoir des

applications intéressantes si la

droite D est un levier qui s'appuie

sur la came P. Il peut
permettre des transformations de

mouvements alternatifs en
mouvements continus, ou
réciproquement. Si le levier D est
manœuvré à la main, on peut se

Fig. 3. donner la courbe C de façon
que la main de l'opérateur

agisse dans les meilleures conditions (pointage des canons).
2. — Passons maintenant au cas général. Reprenons l'équation

(I). Nous pouvons la transformer en posant :

tg 2 =' sin 0 zu
2t

1 + t2 ' cos 0
1 -M2 '

il vient alors
2tdx — (1 — P) dy — 2R dt — 0

Si nous exprimons x et y en fonction d'un paramètre nous
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pourrons encore écrire :

ou

2£( + ^i-i2»-2^=°
dt rf x'
^ + Ir<1-^-R' 0 •

Pour ramener cette équation à la forme canonique de l'équation

de Riccati nous pouvons choisir le paramètre u de façon
à vérifier l'égalité

On a alors

ou encore

ou mieux

d( t

£- -12R

dt _ „ xf
dît R ' •

dt f x' „
~J7. \

1
OD — 1 — 7102 ~ 0

du '
V 2R/ 4R2

2R / /. ,x'\2 x'2 dfx'\_+ ^ rUa TT. öd ^
du

1

\ 2R / 4K2
1 du\ 2R

Posons
/ *' - a' ^ 2R

on aura

+ A(^)-odu^4R2rf«V2R/

ou encore

S + '-'-f-s(7) '-

La symétrie de cette équation en y- et en 9 est remarquable.
Nous savons intégrer cette équation dans un certain nombre
de cas particuliers, notamment lorsque l'on a :

d x'\ x'2
77 + -r2 + 1 cte

du \j
OU

d fx'\ x'



TRAJECTOIRES ORTHOGONALES 219

on en tire
d

ou

7AL-L + du o

si on pose

Mais

on a donc

ou

— + C
J/2 +

dy d tg sx

2R tg2 a + C '

x
arc tg — — a

dy p cos a da

p cos a da 1 + lg2 a

2R — tg2 a + C

«t» tg2 a + G
2R — p cos a—5 —

lg2 a + 1

formule qui donne la valeur de R en chaque point. Si l'on
fait G 1 dans cette formule, elle se simplifie particulièrement

et donne :

2R * -,
OC

d arc tg —7
y

On aura, en appelant p le rayon de courbure de la courbe lieu
des centres et ds son élément d'arc,

p cos a da
zK :

p cos a

ce qui donne une expression très simple du rayon du cercle
en chaque point. On peut donc énoncer ce

Théorème : Si le centre d'an cercle décrit une courbe de

façon que le rayon de ce cercle soit constamment égal et la
moitié de la projection du rayon de courbure de cette courbe
sur une direction fixe, on sait trouver les trajectoires de la
famille de cercles ainsi formée.

Si l'on fait C 0 on obtient

2R p cos a sin (2a) ou 2R — p sin a sin (2a)
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Nous savons encore intégrer l'équation (2) lorsque Ton a

kk
d fx'\ x'2 %k~i~I / .vT~ ~~j H To + 1 U (k étant entier)
du\y J y "

xr
Mais, si Ton essayait de déterminer y en fonction de n, on ne

le pourrait en général, puisque cette équation est encore du

type de Riceati et qu'elle n'est pas généralement intégrable.
3. — Reprenons alors l'équation générale

dt y' x' r/ + k° w

et essayons de la ramener à un type général d'équations de

Riccati intégrables; par exemple au type

dl+ a* - u"' -- o
du

où m a la valeur ^ k étant un entier.

Posons 9 A V a étant une fonction de u. On aura

0' XV' + X'V

XV' -I- X'V + X2V2 — vm — 0

- / TT 111

y + XV2 + t Y r- 0
À À

Choisissons 1 de sorte que
TT ni m

À g ou >. u2
A

On aura alors
m m

y + U¥ V2 + |u_1 Y — U2 =0

équation qui sera identique à (1) si on prend
m

UT=- ; — u—1
2R 2 R

OU

— 2uÀ du — y R Ç— ~ u
1 du ~
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si l'on suppose R constant; ou

[ f + i i
\ r — _ R— — — 2R(2k -I- i)U2A"+1 ou 2R(2Â- — 1)U *k-\

1 " m
2 +1

»=-jRlogU + f]^-i.RlogU

Ces équations définissent les courbes que doit décrire le

centre d'un cercle de rayon constant pour que les trajectoires
s'intègrent.

4. — Nous avons encore à signaler deux cas importants
où l'on connaît des trajectoires particulières :

Le premier est celui où le rayon du cercle est proportionnel

au rayon de courbure du lieu du centre de ce point :

la trajectoire particulière est alors la développée à angle
constant du lieu du centre; elle se réduit à la développée
ordinaire lorsque le rayon du cercle est égal au rayon de

courbure.

Le second est celui où le rayon du cercle est égal à la
moitié du rayon de courbure de l'une des branches de son
enveloppe, au point où le cercle touche son enveloppe. La
trajectoire particulière est alors la développée de celte
branche d'enveloppe.

Si l'on veut généraliser ce cas et lui faire fournir, comme
au précédent, une infinité de cas d'intégration et non pas un
seul, on peut dire : si une famille de cercles est telle que le
rayon de chaque cercle est proportionnel au rayon de cour-
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bure de l'une des branches de son enveloppe, il existe une
famille de cercles dont les centres sont les mêmes et dont
les rayons sont multipliés par un facteur constant, et dont
on connaît une trajectoire particulière, qui est la développée
de l'enveloppe de la première famille.

Si le lieu des centres devient une droite, l'enveloppe des
cercles est alors une courbe de Ribaucour. C'est sans doute

par ce problème que Ribaucour a été amené à les considérer.
On peut alors énoncer le théorème suivant :

Théorème : Une famille de cercles ayant leurs centres en

ligne droite, et tangents à une courbe de Ribaucour, possède

la propriété d'avoir ses trajectoires orthogonales
déterminées sans quadratures.

En effet on connaît trois trajectoires particulières : la
développée de la courbe de Ribaucour, et deux fois la droite lieu
des centres.

Il faut encore ajouter un certain nombre de cas bien connus

où l'on peut déterminer complètement les trajectoires :

D'abord dans le cas où les cercles ont leurs centres en

ligne droite (on a alors deux fois la droite comme trajectoire).
Ensuite le cas où les cercles passent par un point fixe; car
une inversion ramène au problème des trajectoires d'une
famille de droites, c'est-à-dire à la recherche de la développante

de leur enveloppe, problème bien connu.
Puis le cas où l'enveloppe des cercles est une anallagma-

tique la trajectoire particulière est le cercle ayant pour centre
le centre d'inversion et pour rayon la racine carrée de la

puissance d'inversion.
Il en résulte que les cercles tangents à deux cercles fixes,

à deux spirales logarithmiques égales de même pôle, mais
tournées en sens inverse, aux cycliques planes, jouissent de
cette propriété.

Les cercles tangents à deux spirales logarithmiques égales,
de même pôle et de même sens ont deux trajectoires connues
qui sont deux autres spirales logarithmiques de même pôle
et de même sens.

Les cercles de rayon constant dont le centre décrit une
chaînette rentrent dans l'un de nos cas d'intégration puisque
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la projection da rayon de courbure de la chaînette sur une

droite fixe est constante.
A chaque cas d'intégration on peut en faire correspondre

un autre par voie d'inversion, mais on ne peut appliquer ceci

qu'une fois, deux inversions se ramenant à une seule suivie
d'une symétrie.

D'une façon plus générale, à chaque cas

on peut en faire correspondre une infinité
d'autres, dépendant d'une fonction
arbitraire en donnant le lieu des centres d'une
autre famille et en déterminant le rayon
du cercle en chaque point de cette courbe

par proportionnalité des rayons des cercles
aux rayons de courbure en des points ho- Fig. 6>

mologues.
C'est ainsi, par exemple, que la famille composée de cercles

de rayon constant dont le centre décrit un cercle nous donne
la famille de cercles de rayon proportionnel au rayon de

courbure du lieu des centres.

SUR LES TRAJECTOIRES ORTHOGONALES
D'UN SYSTÈME DE CERCLES ET SUR UN PROBLÈME

CONNEXE DE GÉOMÉTRIE RÉGLÉE

PAR

C. Cailler, professeur à l'Université de Genève.

§ 1. — Dans un article publié en 1913 par les Annales de
M. Teixeira1, M. Turrière a résolu en coordonnées tangentielles
le problème des trajectoires orthogonales des faisceaux de cercles
à un paramètre variable. Il a consacré récemment à cette question
un nouvel article paru dans Y Enseignement mathématique2? en
étendant aux trajectoires de co1 courbes quelconques la méthode
des coordonnées tangentielles.

1 Voir tome VI II, Annaes da Academia Polytechnica do Porto.
2 Enseign. Math., tome XVI, 1914, p. 468.


	SUR LA DÉTERMINATION DES TRAJECTOIRES ORTHOGONALES D'UNE FAMILLE DE CERCLES

