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La trajectoire de Uéclaireur est donc la projection hort-
zontale d’une hélice tracée sur un paraboloide hyperbolique
a plan directeur horizontal.

Posons enfin :

¥y == g == pk , x — 1aVX , y=1aVY ;

les équations de I’hélice deviennent

X+ YZ=90 dX? 4 dY? +dZ> =0 .

Les hélices considerées sont donc affines, par vote complexe,
auwx lignes de longueur nulle d’un paraboloide hyperbolique.
Cette derniéere propriété présente une grande importance,
car elle donne naissance a une nouvelle méthode de déter-
mination des équations de la'courbe de I'éclaireur : il suffit de
rapporter le paraboloide a ses lignes de courbure pour
réduire aux fonctions elliptiques la détermination de ses

lignes de longueur nulle.
23 mai 1915. 7

SUR LA DETERMINATION
DES TRAJECTOIRES ORTHOGONALES
D’UNE FAMILLE DE CERCLES

PAR

L. Barrir (Angouléme).

1. — Considérons d’abord une famille de cercles situés

dans un méme plan. Soient x, y les coordonnées du centre
b bl

C d'un cercle, 6 'angle du rayon CM avec ox, et XY les

coordonnées d’un point M du cercle. Ecrivons que MC est

tangent au lien de M
tgﬂ:ﬁ
¢ dX
et comme
X—=x-+ R cos0 , Y=y -+ Rsino,
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% il vient
| f6~aljy'—i—R(:osf).df)—f—sinO.dR
M(X Y) & " dx— Rsin0.db + cosO.dR
C 8 ou

sin ldoe — cosfdy — Rdf = 0 . (I)

Il faut remarquer que celte
Fig. 1. équation différentielle est la
méme que R soit conslant ou
variable, puisqu’elle ne contient pas de terme en dR.
On peut encore ’écrire

., dx dy
sin 0 " —-cosOE — db =0
et sous cette forme on voit que les coeflicients de I'équation

seront les mémes pour deux familles de cercles telles que

de _ dx’ dy dy’
R R’ R~ R

Deux familles satisfaisant a ces conditions sont dites simi-
laires. Elles sont telles que, si @ un point G du lieu des
centres de I'une on fait correspondre un point C’ du lieu des
centres de 'autre, ou les tangentes sont paralléles, le rapport
des rayons des cercles de chaque famille en ces points soit
égal au rapport des rayons de courbure des lieux des centres
en ces points.

Pour le voir, il suffit d'élever au carré les égalités précé-
dentes et de les ajouter

da? + dy?  da’® + dy’? ds®  ds'?

R ~ ~ mr®* " ®RTRT

Ceci montre en passant que la recherche des trajectoires
orthogonales d’une famille de cercles peut toujours se rame-
ner a celle d'une famille de cercles de rayon constant.

Ce fait est intéressant en ce sens que les procédés d’inté-
gration mécanique donnent immédiatement les trajectoires
d’'une famille de cercles de rayon constant : en effet, si 'on
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fait décrire a la pointe d’une tige de longueur constante la
courbe lieu des centres C, et si I'autre extrémité porte une
lame analogue a celle d’'un planimeétre de Prilz, cette lame
tracera une trajectoire ortho-
gonale T'. }K

Ce cas particulier est en- T L
core digne d’'attention a un i
autre point de vue, car il est
au fond le méme que le probléme de cinématique suivant :

Sur quelle courbe T' faut-il faire rouler une droite D, (sans
glisser) pour qu’un point P du plan de cette droite décrive une
courbe donnée a Uavance C ?

On voit immédiatement que cette courbe I'" est la déve-
loppée du lieu du point Q, projection de P sur D.

Or la tangente au lieu de Q, étant dirigée suivant QP, le
lieu de Q est une trajectoire orthogonale des cercles de rayon
constant PQ dont le centre est sur C.

Ce probleme peut avoir des

P applications intéressantes si la

droite D est un levier qui s’ap-

C puie sur la came I'. 1l peut per-
mettre des transformations de

D / , g mouvements alternatifs en mou-
vements conlinus, ou récipro-

quement. Si le levier D est ma-

I neceuvré a la main, on peut se

Fig. 3. donner la courbe C de facon

que la main de ['opérateur

agisse dans les meilleures conditions (pointage des canons).

2. — Passons maintenant au cas général. Reprenons 'équa-
tion (I). Nous pouvons la transformer en posant :

v

2¢
14 27

o

—
Tt

cos i —

)

[

]
tg—é:t, sin § —=

[N

1l vient alors
2tdxe — (1 — t¥)dy — 2Rdt = 0 .

Si nous exprimons x et y en fonction d’un paramélre u, nous
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pourrons encore écrire :

o dt v’ x’
— .‘___/ U 2 __2_ p—
2du+R\1 t?) Rt 0,
ou
dt ')I ) /7
— . - — 0
a’u+2R(1 ¥ t

Pour ramener cette équation a la forme canonique de I'équa-
tion de Riccati nous pouvons choisir le parametre « de facon
a vérifier 'égalité

y
¥ = _ .1
2R
On a alors
dt x’
i1 -_Yi—o,
du Rt
ou encore
dt x’\2 x’?
du <’ ﬁ) —l=m="
ou mieux
/L’
d<tw2R> (t x’\2 1 x’? d /x 0
—dd ) T T T dl\m) T
Posons
x/
t — — —=
2R b,
on aura

dad 5 x’2 d [x

— —_1 — — — == )] =0,

du + d 4R2 + du <2R> L
ou encore

db . x’? d [x"\
7t =1 gl(3) =0 .

xl

La symétrie de cette équation en 57 et en 6 est remarquable.

Nous savons intégrer cette équation dans un certain nombre
de cas particuliers, notamment lorsque 'on a :

d [x x’?
[ P A — cte
dlt <y/> _l )",2 + 1 =c ’

ou

d (x'\ | a
s, | i I [g— .
dlt( _/> + yrz i C=0 ’




-a
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on en lire

x’?
7T
ou
dy d.tg.a
2R tg?a + C
St on pOSG ,
arc tg —7 — a
Mais
dy = p cos ada
on a donc
ecosada 14 1g%a
2R T tgfa 4+ C
ou
tg?a + G

formule qui donne la valeur de R en chaque point. Si 'on
fait C =1 dans cette formule, elle se simplifie particuliere-
ment et donne :

2R = dy

x/
d arc tg— .
gy

On aura, en appelant o le rayon de courbure de la courbe lieu
des centres et ds son élément d’arc,

o cos a da
L " —o5scosa ,

2R — T (

ce qui donne une expression trés simple durayon du cercle
en chaque point. On peut donc énoncer ce

THEOREME : St le centre d'un cercle décrit une courbe de
facon que le rayon de ce cercle soit constamment égal a la
motiié de la projection du rayon de courbure de cette courbe
sur une direction fixe, on sail trouver les trajectoires de la
famzille de cercles ainst formée.

Si l'on fait C = 0 on obtient

2R = p cos a sin (2«) ou 2R = p sina sin (20) .

5 s g TR T
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Nous savons encore intégrer ’équation (2) lorsque I'on a
uk
" T2kl .
— (k étant entier)

S

< <£,> + 5+ 1=U
du\ y 0

/
. .1y . » . X
Mais,si l'on essayait de déterminer > en fonction de «, on ne
le pourrait en général, puisque cette équation est encore du
type de Riccati et qu’elle n’est pas généralement intégrable.
3. — Reprenons alors I’équation générale

dt y , 2y
dw " omP T RITgR=O (1)

et essayons de la ramener a un type général d’équations de
Riccati intégrables; par exemple au type

2 UI)I —
a'u Ll 0,

. — 4k
/ It un en k.
ou m a la valeur T k étant un entier
Posons @ -— 1 V, i étant une fonction de w. On aura

f =V 4NV,

AV 4+ WV 4 2V2 0" =0,

’ m
V'+Aw+) V“E)_:o.

Choisissons A de sorte que

Ul)l
= — ou A
A

vl 3

I
-

~/
P

nm

On aura alors
vV -U? =0 ,

IIZ

VUV 4 DU

quation qui sera identique a (1) s1 on prend

n
iy ¥y m x
- — =, —U s s
L 2R R
ou
)il:
R/-———u du = x

Rt/’— 2u2.du:y ,
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si 'on suppose R constant; ou

g B | .
2 - .
e — R = Rk + DT¥H ou 2R(2% — LU #=
i m
g +1
-m o2k ;
x:~—-~2~R10gU:—{—2—————ki_1.RlogL.

Ces équations définissent les courbes que doit décrire le
centre d’un cercle de rayon constant pour que les trajectoires
s'integrent.

4. — Nous avons encore a signaler deux cas importants
ou l'on connait des trajectoires parliculieres :

Le premier est celui ou le rayon du cercle est propor-
tionnel au rayon de courbure du lieu du centre de ce point :
la trajectoire particuliére est alors la développée a angle
constant du lieu du centre; elle se réduit a la développée
ordinaire lorsque le rayon du cercle est égal au rayon de
courbure.

Fig. 4. Fig. 5.

Le sccond est celui on le rayon du cercle est égal a la
moitié du rayon de courbure de 'une des branches de son
enveloppe, au point ou le cercle touche son enveloppe. La
trajectoire particuliere est alors la développée de celte
branche d’enveloppe.

Si I'on veut généraliser ce cas et lui faire fournir, comme
au précédent, une infinité de cas d'intégration et non pas un
scul, on peut dire : si une famille de cercles est telle que le
rayon de chaque cercle est proportionnel au rayon de cour-
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bure de I'une des branches de son enveloppe, il existe une
famille de cercles dont les centres sont les mémes et dont
les rayons sont multipliés par un facteur constant, et dont
on connait une trajectoire particuliere, qui est la développée
de 'enveloppe de la premiére famille.

Si le lieu des centres devient une droite, I'enveloppe des
cercles est alors une courbe de Risavcour. C'est sans doule
par ce probleme que Ribaucour a été amené a les considérer.
On peut alors énoncer le théoréme suivant :

TuroreME : Une famille de cercles ayant leurs centres en
ligne drotte, et tangents a une courbe de Ribaucour, pos-
sede la propriété d’avoir ses trajectoires orthogonales déter-
minées sans quadratures.

En effet on connait trois trajectoires particulieres: la déve-
loppée de la courbe de Ribaucour, et deux fois la droite lieun
des centres.

Il faut encore ajouter un certain nombre de cas bien con-
nus ou l'on peut déterminer complétement les trajectoires :

D’abord dans le cas ou les cercles ont leurs centres en
ligne droite (on a alors deux fois la droite comme trajectoire).
Ensuite le cas o les cercles passent par un point fixe; car
une inversion raméne au probleme des trajectoires d'une
famille de droites, c¢’est-a-dire a la recherche de la dévelop-
pante de leur enveloppe, probléme bien connu.

Puis le cas ou l'enveloppe des cercles est une anallagma-
tique la trajectoire particuliére est le cercle ayant pour centre
le centre d’inversion et pour rayon la racine carrée de la
puissance d’'inversion.

Il en résulte que les cercles tangents a deux cercles fixes,
a deux spirales logarithmiques égales de méme pole, mais
tournées en sens inverse, aux cycliques planes, jouissent de
cetlte propriété.

Les cercles tangents a deux spirales logarithmiques égales,
de méme pole et de méme sens ont deux trajectoires connues
qui sont deux autres spirales logarithmiques de méme pole
et de méme sens.

Les cercles de rayon constant dont le centre décrit une
chainette rentrent dans 'un de nos cas d’intégration puisque
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la projection du rayon de courbure de la chainette sur une
droite fixe est constante.

A chaque cas d'intégration on peut en faire correspondre
un autre par voie d’inversion, mais on ne peut appliquer ceci
qu'une fois, deux inversions se ramenant a une seule sulvie
d'une symétrie.

D’une facon plus générale, a chaque cas
on peut en faire correspondre une infinité a
d’autres, dépendant d’une fonction arbi- ‘
traire en donnant le lien des centres d’une
autre famille et en déterminant le rayon
du cercle en chaque point de cette courbe
par proportionnalité des rayons des cercles
aux rayons de courbure en des points ho- fig, 6.
mologues.

(C’est ainsi, par exemple, que la famille composée de cercles
de rayon constant dont le centre décrit un cercle nous donne
la famille de cercles de rayon proportionnel au rayon de
courbure du lieu des centres.

SUR LES TRAJECTOIRES ORTHOGONALES
D'UN SYSTEME DE CERCLES ET SUR UN PROBLEME
CONNEXE DE GEOMETRIE REGLEE

PAR

C. CarcLer, professear a I’'Université de Genéve.

§ 1. — Dans un article publié en 1913 par les Annales de
M. Teixemrat, M. Turrigre a résolu en coordonnées tangentielles
le probleme des trajectoires orthogonales des faisceaux de cercles
a un parametre variable. Il a consacré récemment a cette question
un nouvel article paru dans I'Enseignement mathématique?, en
étendant aux trajectoires de o' courbes quelconques la méthode
des coordonnées tangentielles.

1 Voir tome VIIl, Annaes da Academia Polytechnica do Porto.
“ Enseign. Math., tome XVI, 1914, p. 468.
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