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II

Tâchons de démontrer qu'à l'équation :

F (x) x2n -j- A1^2,z—1 + A2x2n~2 -j- -F A2n_1x + A2n =z 0

peut satisfaire une valeur de x comme : x — u -f- iv.
On sait que :

F(« + iv) F(«) + ivF1^) -d^F11^) - in(u)

1 2n (u)
'

Cette équation F (u + iv) 0 pourra se vérifier, si
simultanément :

F<") - A F>) + ÏTOT4 F>> " O FVI(îti ' •

F (a)'1 — 0 (4)— 1 2n

et

pI(") - rr-3Fin|"' + rriiF>> - CV"" -
F S«"-11 0 (5)

1 (2 n- 1)

Les premiers membres de ces deux équations sont des fonctions

de c2 ; s'il y a une valeur v — cq satisfaisant aux
conditions exposées ci-dessus, il y aura de même une valeur
v — vi ; d'où il s'ensuit qu'une équation du 2zzième degré
ayant une racine x — a -f- iv en possède aussi une autre :

x u — iv.
En posant : c2 v\ (4) et (5) deviennent :

V + + U4/ -j- Y2n_2v' -j- u2„ =: 0 (4a)
et

-r ^3k T ^5v T ••• -r ^2«-3K T

(On voit que est une fonction du Aième degré par rapport

Vy 1

+ u3/'
2

+ U5/"
3

+ + l'„, + U2„_t 0 (5a)
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à u.) De l'élimination de v' entre (4a) et (5a) il résulte une

équation en u représentée par le déterminant qui se trouve
ci-dessous. Quant au degré de cette équation-ci, c'est celui
d'un terme quelconque, par exemple, celui de la diagonale :

UÎUJT1; c'est-à-dire :

n + 2n (n — 1) n(2n — 1)

Donc, encore une fois, si le degré de l'équation proposée ne
contient qu'un seul facteur 2, celui de l'équation finale sera
impair, d'où suit une valeur réelle de u ; ensuite (4a) et (5a)

donneront une valeur réelle de c', c'est-à-dire de c2; la

réalité de ç dépendra encore du signe de cette valeur de c2,

mais n'a rien à faire avec la conclusion qu'il est permis de

tirer de ces faits : qu'il v a actuellement des valeurs de u et
de v, de sorte que u -f- iv représente une racine de F(x) — 0.

V I o 0 0 0

0 U-i V • • • Uo„-l 0 0 0

0 0 u. U3 U2,-l 0 0

IT

uo U2 U4 • • u2Ä 0 0 0

0 U0 U2 U2„ 0 0

0 0 U0 U» • U2ll • 0

• u2/i

Ensuite, si dans le nombre 2n il existe plus d'un facteur
2, on peut appliquer le même procédé à l'équation résultante
en m, en posant :

Il Uj[ —|— IS'±

L'équation résultante en a aura alors dans son degré
deux facteurs 2 de moins que l'équation proposée. Posant
pour aller plus loin uA u2 + /c2, etc., on obtiendra enfin
une résultante par exemple en up, dont le degré est un
nombre impair, laquelle aura donc une racine réelle.



202 B. G ONG GB YP

Alors nous aurons posé successivement :

x ~ u 4" A'
«

u u± -P is\

u± — u2 -j- zV2

«p_, 'V + "p ;

d'où
# — up + i(v -\~ vi + ^ llp ~b ^ '

en sachant qu'il existe actuellement une valeur réelle de up.
Or, dans ce cas, nous avons vu ci-dessus qu'il y a aussi une
valeur réelle pour V2 et par conséquent une valeur ou réelle
ou imaginaire de V, satisfaisant aux conditions nécessaires;
en d'autres termes :

Une équation clu 2nièmo degré possède en tout cas une racine,
soit réelle, soit complexe.

Vérification et application des résultats obtenus.

Prenons pour exemple l'équation du quatrième degré :

x4 -p ktxz -f- A2«x2 -f- k2x -j- A4 — 0

1° Nous pouvons supposer que le premier membre est égal
au produit :

{x2 -— px — q) (x2 -j- citx -J- as)

D'après les formules du système (A) on obtiendra :

(2p -|- kt)q -j- p3 -j- A1p2 -|- k2p ~p As — 0

et
q2 -p (3/?2 -p 2Atp -p A2)q p4 -p k±p3 -f- A2p2 -p A2p p A4 n 0

L'élimination de q conduit à l'équation du sixième degré :

(2p -p ki)2{p4: -P ktp3 -p k2p2 ~p k2p -p A4) -P (p3 -p kxp2 ~p k2p -f" -^3)"

— (p3 Ai p2 -p k2p -p A3) (3p2 -p 2kip -p Aa) (2p -p Aj) 0 (6)

L'expression n(2n — 1) se vérifie donc, car : 2(4 — 1) 6.

Ensuite, en supposant Ai=0, l'équation (6) se réduit à :

p6 + 2k2p4 4- (A* - 4AJ/4 - k[ - 0 (7)
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c'est-à-dire précisément à l'équation auxiliaire de la méthode
de Descartes, à quoi il fallait s'attendre.

2° On peut poser :

x — u + iv

D'après les formules (4) et (5) les inconnues u et v seront
données par :

a4 + ktiT -j- A2ir 4* A»« A4 — v2[6u2 -f- 3Ax?£ -j- A2) + A — 0

et
4iE -}- 3Axu2 -f- 2A2u -f- Ag — v2(ku -]- Ai) 0

L'élimination de- c2 conduit à l'équation du sixième degré :

(4u -f- Ax)2(w4 -j- Ai m3 -f- k2u2 -f- A2u A4) (4iT -f- 3Atw2 -}- 2A2u -f- Ag)2

— (4iE + 3Ax^2 + 2A2u + Ag) (6u2 -j- 3 Ai« + A2) (4u + Ai) 0

Dans le cas où A, — 0, cette équation devient :

«• + jV + -(f) 0. (»I

Celle-ci est précisément l'équation auxiliaire de la méthode
de résolution cVEuler. Les deux équations, le signe du terme
connu étant négatif, auront chacune deux racines égales,
l'une affectée du signe + l'autre du signe —

Remarque. Dans la seconde démonstration, on a cherché

pour x une valeur x — u + iv ; or, puisque cette racine est
en tout cas accompagnée d'une autre x u — iv, cette
recherche revient tout à fait au même que l'investigation
d'un facteur quadratique :

j (x — u) — iv j j (x — u] + iv j m ,r2 — 2ax -f- u2 -f r2-

La comparaison de cette expression avec

x2 — px — q

employée dans la première démonstration nous fait conclure
a priori que l'équation finale en u aura des racines dont
chacune est la moitié d'une racine de l'équation à laquelle p
doit satisfaire (première démonstration).

Cette conclusion se vérifie complètement par (7) et (8).
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Note sur la formation cles équations finales
de la première démonstration.

Nous nous servirons de la notation :

Fhip) — Ph + A-iph
1

+ a2ph 2 + ••• + Ah—\P + À/z (9)

donc

Fh+l(P) ph+^ + A1 ph + A2Ph
1 + ••• + A-hP + AÄ+1 '

d'où
Fh+fp) PFh(p) + aa+i • (io>

De (10) on peut déduire :

f'a+iM + ; f11)

de même
Fl(/é — PF'h-éP) + Fh-fP) - (12)

En poursuivant de (12) nous tirons :

F"h(p) pfä—î(P) + 2Fl_i(p) ; (13)

en général :

?[h\p) pdé(p)+ mFi-i 1](p) • (14)

Maintenant nous pouvons démontrer qu'une inconnue quel
conque ah du système (A) peut être représentée ainsi :

ah ph(p)+ îfa-i (/>) + Fa—a (p) + 377^-7-3 Fi—3 (f) +

7 [A]

+ (c • (15>
1 * ' 2 2

Cette formule se rapporte au cas où h est un nombre pair
h étant impair, la puissance la plus élevée de l'inconnue

h — lsera —y
Pour démontrer la formule (15) nous ferons voir qu'ell
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est vraie pour # si elle se vérifie pour cth_x et pour aÄ.

A (15) nous ajoutons donc :

ah~-1 — fa-I(/>) + + ^K-sip) + T72A"B

— fczS

+ —Ç=-2Ffta W * <16»

1 •• 2 2

Or, d'après le système (A)

«Ä+i — Pah + + Aa+1

Donc se trouve en ajoutant ensemble les expressions
suivantes :

Aa+1 + pFh(p) + pqF h-i(p)+iJ0Fi-2 (p) + P 5-7^—3 FfttL3 (p) +

h

+ P~ÎL-Jl¥HiPp)
1.2 - *

,[41+ fP'h^(P)+ Tg-2FÏL{p) + ••• + ^ •

1... -

Les termes consécutifs de la formule résultante seront :

Aa+i +/>F,t(^) ph+\(p) Yoir (10)

</\pF'h-iip) + fa._1 (p) j-= <Uh(p) » (12)

o j pvfUp)+ K-2(p) I oFil (p) » (13)

h r~h~i rh 1 h

CU ^bJ, h G-],.u__d_.Iî]
pF» Jw + în w =—4'; w <lsh )TX h \lJ) -r k A h \F) — h h

-2[ 2 2
5 1.2 — -
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Il en résulte :

ah+1 ^ Fh^\{P) + fiFh(p) + f^Fili(/d + 12 3
FIiâ if)

Yh~

+ -11-7,Frj w
1.2... J 2+1

c'est-à-dire précisément ce qu'il fallait démontrer.
Or, une simple vérification montrant que la formule est

juste en posant h I et h — 2, la vérité en est prouvée pour
toute valeur entière de h.

Nous avons donc par exemple :

F2/i-3(P) + (IF2,i-^(P) + 0FL]-2(/f + ••• + '
•2)

Cl2 ?i-2 — F2,i-2^P) + 7F27i-3(P) + ,p^2 F2n-i(p) + ' * + T.. \ll — 1)
F«-l ^

De :

(l2,i-2P + a-2n-Z{l + K,i-\ 0 (ou (l27i-\ ~ °)

il en résulte : (16)

Fîn-1 (P) + -?F2^(p) + F2»-3f/)) + - + i.2..g"(»
— 1)

Ff11 0 '

tandis que
a2,1-2 Cl + A2/i — 0

peut se remplacer par :

'/F2n-^P)+ F2«-3 + K2~3 F2«-4^;) + "•

+ 1 (2/1-1)
F'[è

1

+ Aä« 0 ' (17>

Enfin, p x (16) + (17) nous donne l'équation

**<P> + *FL. </» + O »SL.U») + " +ÏT~TF»3^) " ° ' (18)

que l'on peut trouver immédiatement en considérant a2n— 0

Les équations finales sont d'après ce qui précède (16) et
(18). Elles donnent directement les équations particulières
qui nous ont servi à déduire, dans notre vérification et
application, les résolvantes de Descartes et d'Euler.
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