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DEMONSTRATION DIRECTE DU THEOREME
FONDAMENTAL DE LA THEORIE DES EQUATIONS
ALGEBRIQUES

PAR

B. GoxGgGrYr (Amsterdam).

La théorie des équations algébriques présente, a mon avis,
une certaine lacune quant a la démonstration du théoréme
principal : que toute équation d’un degré quelconque (a coef-
ficients réels) possede une racine. En éludiant ce chapitre
(c’est-a-dire la théorie des équations algébriques) de 'ana-
lyse, il faut d’abord admettre la vérité du théoréme, el
méme, apres avoir acquis une notion plus ou moins com-
plete de la nature et des propriétés des équations et de leurs
racines, il faut encore recourir a des moyens qui ne tou-
chent la théorie des équations elles-mémes qu’indirectement,
par exemple a la représentation graphique des fonctions de
quantités complexes, etc. CG’est pour cette raison que les
démonstrations données jusqu'a présent ne me semblent
pas tout a fait de nature a porter immédialement la convic-
tion dans l'esprit, et que jose demander au lecteur un mo-
ment d’attention pour les deux démonstrations suivantes,
directes, inductives, toutes deux assez simples, et dont sur-
tout la seconde, par sa simplicité, me semble mériter d’étre
admise dans un Cours élémentaire d’algebre supérieure.

En considérant qu’il est d'une extréme facilité de démon-
) z = 2 z P ? - L2 5 2 1 10
trer qu’une équation algébrique d’'un degré impair (ayant des




Aap-g — QapgP — Qg 44 — A2n—2 (A)..
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coeflicients réels) a toujours une racine, laquelle est en outre
réelle, il est clair que l'on aura démontré le théoréme dans
toute sa généralité du moment ol I'on aura su ramener la
démonstration pour une équation d’un degré pair a celle
pour une équation dont le degré est un nombre impair. Gest
ce que j'ai tdché de faire dans les pages suivantes.

Rien de plus naturel, 'existence des racines de I'équation
quadratique étant siure, que de chercher a comparer aux
racines de cette équation paire, fort spéciale, celle de I'équa-
tion du 2n* degré. Or, pour cela on peut se demander s'il
est possible de satisfaire a I’équation :

2n—1

AT AT Ay, A, =0 (1)

par les racines de I'équation quadratique
2 —px—q=20,

ou, ce qui revient au méme, de démontrer qu'une expression
x? — px — ¢ peut étre un facteur du premier membre de (1).
Posons donc:

Flx) = 2™ + Al‘x‘“’”“‘1 + A2x2”_2 oAy A,

—4

= (#* — px — q) (% p a, 28 4 iy a? ch gy + Ay, o)

Au premier coup d'eeil, il est évident que cette supposi-
tion peut étre admise a la condition qu 'il soit possible de
satisfaire au systeme d’équations :

a —p =4, . ' ay =p -+ A,
ay — a;p — q=A4A, a, =a,p+ A, + ¢
ay — agp — a,q = A, ag = ayp + A; + a, g

ou bien

@y = azp + A, + ayq

T Qgp 9P T Ay, 39 = A2n—1 Aop-g — Qo3P T A?n-—2 -+ Uon-49

— Gy, o = Ay, ' AgpoP + Qg 34 + Ay, =10

! \%ap-29 + Af!n =0.
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Or on voit que ce systéme conduit & exprimer successive-
ment toutes les inconnues «a,, a,, etc. en p, ¢ et les quantités
données A,, A,...A,,, de telle sorte qu'a la fin on ait deux
équations distinctes en p et en ¢; et s’il parait possible de
satisfaire a ces deux derniéres, tout le systéme (A) devra étre
admis, et par conséquent l'existence du facteur 22— pr — g,
et enfin celle de deux racines de I'équation proposée sera
démontrée.

Les expressions consécutives, qu’on obtient pour a,, a,,

etc., ont un degré, quant ép et ¢, qu’on trouve dans la table
suivante :

degré de a, a, y Qy o Qg Gy o,
en p 1 2 3 4 . .. 2n—3 2n—2,
en ¢ 0 1 1 2 ... n—1 n—1.

Les deux derniéres équations du systéeme (A) seront donc
en ¢ du n—1"" et du n'* degré respectivement.
On peut les représenter par:

Pg" '+ P+ ..+ Py aqg+Py =0, (2)
Pog" + Pyg" '+ .4 Py, yqg+ Py, =0 . (3)

(P» est un polynome en p du /A degré.)

Comme on sait, I’¢limination de ¢ entre ces équations peut
s’effectuer 4 'aide d’une simple application de la théorie des
déterminants (méthode de Sylvester).

L’équation résultante en p sera :

P, Py ... ... Py, O 0 0 ... 0

0 P, P, . .... Py, O o ... 0

0o 0 P, P, P, , O 0

0 0 0 0 Py | .
P, P, P, P, 0 0 0

o P, P, P, P, 0 0

o o P, P, P, By, 0

o 0 0 0 P,
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Celle-ci représente la condition a laquelle on peut satis-
faire aux équations (2) et (3) par la méme valeur de ¢, ¢ ‘est-
a-dire précisément la condition de laquelle dépend la vérité
du systeme (A) et par conséquent I'existence de deux racines
de I’équation proposée.

Or, quant & cetle équation finale en p, nous n'avons besoin
que du degré. Pour déterminer celui-ci il faut seulement
considérer que pour I'élimination (2) a donné n équations et
que (3) en a procuré n — 1, de sorte que la diagonale du
déterminant, se composant de n facteurs P, et de n — 1 fac-
teurs P,,, sera une expression, fonction de p, du degré

2n(n — 1) + n=mn(2n — 1) .

Aucun autre terme du déterminant ne peut surpasser le
degré de cette diagonale, et une simple vérification fera
sauter aux yeux qu’ils ont tous le méme degré; par exemple
Pr=' Py, a pour degré n(2n — 1).

Or, ce nombre n (211 — 1) est impair, si n posséde cette
propriété, c’est-a-dire si le degré 2n de I'équation proposée
est un nombre pair, ne possedant qu'un seul facteur 2. Alors
il est clair qu'il y aura une racine réelle de p satisfaisant &
la condition représentée par le déterminant; qu'ensuite les
deux équations (2) et (3) donneront une Valeur (réelle égale-
ment) de ¢; qu’en allant plus loin le systeme (A) peut se véri-
fier, et qu’enfin I'équation proposée posséde actuellement les
deux racines de I’équation quadratique : 2° — pxr — ¢ = 0.

Sile degré de I’équation (1) est un nombre pair, se com-
posant de plus d'un facteur 2, l'expression n(2n — 1) sera
encore un nombre pair; mats cependant ce nombre aura un
facteur 2 de moins. Gect montre que la question de savoir
si une équation d'un degré pair se composant de /. facteurs
2 a une racine peut se réduire par notre procédé ala méme
question pour une équation dont le degré ne se compose
que de & — 1 facteurs 2. Et comme nous avons démontré
qu'une équation d'un degré, ayant un seul facteur 2, posséde
actuellement une racine, le théoreme est démontré dans
toute sa généralité.
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I

Tachons de démontrer qu’a 1’équation :
—_— 2 271—1 2n—2
Fle)=a™ 4 Aje™ " 4 Aye™ ™" . L+ Ay, 2+ A, =

peut satisfaire une vaieur de x comme : x = u - iy.
On sait que :

2 3
Flu + w) = Flu) + ivFI(u) — /lv-—'—QFH(u) — ir;—.gFm(u)

Cette équation F(u -+ 7o) = 0 pourra se vérifier, si simul-
tanément :

g2 LI1 y 1V, o6 VI
A A - _ 7
Flo) =gz W+ sz W—r—t ®
2n
4 (2n]
— 4
— 1 ... QnF(u) 0 (%)
et
Fl(u) v? PIII( )+ ot Fv(u) . ¢O FVH( )
1.2.3 1 5! 1 7
2n—2
_ v [2n—1] __
T2 — 1,)F‘”> =0 (5)

Les premiers membres de ces deux équations sont des fone-
tions de ¢2; s’il y a une valeur ¢ = ¢, , salisfaisant aux con-
ditions exposées ci-dessus, il y aura de méme une valeur
9 =—y¢,; dou il s’ensuit qu'une équation du 2r**° degré
ayant une racine x = u 4+ v, en posséde aussi une autre :
X =u—1Iv.

En posant: 0% = ¢', (4) et (5) deviennent :

Y —1 n—-2 .
Uy + Uy’ 4+ U + . 40U, v+ T, =0 (4a)

et

7

n—1 . 2 S—3 . ,
U, + Uy’ + Uy’ +...4+0,, ¢ +U, ,=0. (5a)

(On voit que U, est une fonction du 2** degré par rapport
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4 u.) De I'é¢limination de ¢ entre (4,) et (b,) il résulte une
équation en u représentée par le déterminant qui se trouve
ci-dessous. Quant au degré de cette équation-ci, c’est celui
d'un terme quelconque, par exemple, celui de la diagonale :
U Ut cest-a-dire :

2n

n+42nn—1) =n(2n—1) .

Donc, encore une fois, si le degré de I'équation proposée ne
contient qu'un seul facteur 2, celui de I'équation finale sera
impair, d’ou suit une valeur réelle de u; ensuite (4,) et (54)
donneront une valeur réelle de ¢', c’est-a-dire de ¢%; la
réalité de ¢ dépendra encore du signe de cette valeur de ¢?
mais n’a rien a faire avec la conclusion qu’il est permis de
tirer de ces faits : qu’il y a actuellement des valeurs de « et
de ¢, de sorte que « + iv représente une racine de F(x) = 0.

U, U | U, , © 0 o ... 0
0 U, U, Uy, 0 o ... 0
0 0 v v ....... U, , 0 0

- U?/;——l 0
v, U, U, ...... U, 0 0 ... 0 -
0 U, U, S U,, o ... 0
0 0 v, U, U,, 0

U?/z

Ensuite, si dans le nombre 2n il existe plus d’un facteur
2, on peut appliquer le méme procédé a ’équation résultante
en u, en posant :

U= uy -+ vy .

. L’équation résultante en « aura alors dans son degré
deux facteurs 2 de moins que l'équation proposée. Posant
pour aller plus loin w, = u, 4+ i¢,, etc., on obtiendra enfin
une résultante par exemple en u,, dont le degré est un
nombre impair, laquelle aura donc une racine réelle.
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Alors nous aurons posé successivement :

x = u 4 v,
W= uy + ivg ,

Uy = Uy -+ vy ,

o Uy_q = U, -+ Wy
d’out
= u, + Ly + v 4 ... vp) = u, + v,

en sachant qu'il existe actuellement une valeur réelle de u,.
Or, dans ce cas, nous avons vu ci-dessus qu’il y a aussi une
valeur réelle pour V? et par conséquent une valeur ou réelle
ou imaginaire de V, satisfaisant aux conditions nécessaires;
en d’autres termes : |

Une équation du 2n'*** degré posséde en tout cas une racine,
sout réelle, soit complexe.

B

i
¥
i
3
4
i

Vérification et application des résultats obtenus.

Prenons pour exemple 1'équation du quatrieme deoré :
P 1 | 8

xt + A1.%'3 + A2x2 + Agx —"— A4: 0.

1° Nous pouvons supposer que le premier membre est égal

au produit :
(22 — px — q) (x* + wx + a) .

D’apres les formules du systeme (A) on obtiendra :
(2]7 + A g + P3 -+ A1[32 + Aep + Ay =10
et
92 . & (3[92 ~+ 2A1P 4 Az)q =} P4 = A1P3 oo A2P2 e AzP 4 Ay =0 .

L’élimination de ¢ conduit a I’équation du sixieme degré :

(2p + AP (p* 4 Aap® 4 Aap® + Aap + Ad) + (7 A Aup® o+ Aop + Ag)°

|" — (p® 4 Ap? 4+ Asp + Ag) (Bp* -+ 2A4p + Ag) (2p + Ay =0 . (6)

- L’expression n(2n — 1) se vérifie donc, car : 2(4 — 1) = 6.
Ensuite, en supposant A; =0, 'équation (6) se réduit a :

PP 2Apt (AL — GA )PP — Al =0 . (7)
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¢’est-a-dire précisément a ’équation auxiliaire de la méthode
de Descartes, a quoi il fallait s’attendre.

90 POTY
2° On peut poser : iy
X — U v .

D’aprés les formules (4) et (5) les inconnues u et ¢ seront
données par :

wb - Agud 4 Au? - Agu -+ Ay — (602 + 3Aju + Ay vt =0

et
Gud 4+ 3Aju® + 2A,u + Ag — vildu + A = 0 .

L’élimination de- ¢? conduit a I’équation du sixieme degré :

(Gu 4+ Ay (u* 4+ Agu® + Agu® + Azu 3 Ag) - (4?4 3A0° + 2Au + AP
— (4u® 4+ 3A 0 + 2A,u -+ Ag) (6u® + 3Acu + Ay) (bu + Ay) =0 .

Dans le cas ou A, = 0, cette équation devient :

2
A, Ay — 4A, Ag\? ‘
6 L Tyt o e | 2 | = ), 8
u—i—2u+ T u <8> 0, (8)

Celle-ci est précisément.I’équation auxiliaire de la méthode
de résolution d’Euler. Les deux équations, le signe du terme
connu étant négatif, auront chacune deux racines égales,
lune affectée du signe 4, l'autre du signe —.

Remargue. Dans la seconde démonstration, on a cherché
pour x une valeur x = u + i¢; or, puisque cette racine est
en tout cas accompagnée d'une autre x=—=u— v, celtte
recherche revient tout a fait au méme que linvestigation
d’un facteur quadratique :

;(x — u) — is'g ;(x — u) - iv§ = % ~ 2ux -+ u? 4 9%
La comparaison de cette GXPPGSSiOH avec
x? — px — q ,

employée dans la premiere démonstration nous fait conclure
a priori que l’équation finale en u aura des racines dont
chacune est la moitié d’une racine de I'équation a laquelle p
doit satisfaire (premiére démonstration).

Cette conclusion se vérifie completement par (7) et (8).

&
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Note sur la formation des équations finales
de la premiere démonstration.

Nous nous servirons de la notation :

Frip) = Ph + A1Ph_1 + AzPh_—2 + .+ A, pt+ A, (9)
donc
Frpialp) = PR AP A T 4+ Ap Appr s

d’ou
Frpi(p) = pFulp) + Appy - (10)
De (10) on peut déduire :

Fyp1(p) = pFyip) + Fplp) (11)
de méme
Folp) = pFu_(p) + Fh__1(P) . (12)

En poursuivant de (12) nous tirons :

Fi(p) = pFy_y(p) + 26,4 (p) ; (13)
en général : :
L[m] [m—1]

(p) = p¥y_i(p) + mF,_, “(p) . (14)

Maintenant nous pouvons démontrer qu'une inconnue quel-
conque «, du systeme (A) peut étre représentée ainsi :

' ” 3 [3]
a, = Fulp) 4 qF4_i(p) + 75 FralP) + 755 Frms (P) + -

LT
92 p2

+ 7 (p) (15)
1 3 P

Cette formule se rapporte au cas ou 2 est un nombre pair;

h étant impair, la puissance la plus élevée de l'inconnue ¢
h—1

sera 5

Pour démontrer la formule (15) nous ferons voir qu’elle
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est vraie pour a, ., sl elle se vérifie pour @, ,, et pour a,.
A (15) nous ajoutons donc :

Or, d’apres le systeme (A)
Upgn = Py, + qap_q + Mgy

Donc «,,, se trouve en ajoutant ensemble les expressions

suivantes :

, L > _[2) g-
Apps + PFAP) + pAF) 1 (P) + Py Fasa(p) + p 55 Fasa (P) + -

2R A ‘/g [Lj]
¥y (p) + ¢F,_5(p) + 19 F, slp) + o +—F—=F, (p) -

Les termes consécutifs de la formule résultante seront :

A1 + PFLP) = Fops(p) | voir (10)
91 PF st (p) + Fyy(p) E-: 4¥,(p) » o (12)
§ (2] ; ' q* 2] 19
i3 PP+ 28, ] = 5 e ) » 13

!Z' h h h h

q? H p il I
i %th p) + 5 ¥y (p) % = —1 o ] (p) > (14

1o woe =+ 5 3 1.2 - g1l
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Il en résulte :

. . ! 4 (2] ¥ 3]
Bpapa = Plz-{-l(])) + qF,(p) + x Fh_l(l) -+ J_é‘.‘th_z(P)

i [”‘]
l

1.2 ... = —+’
2

c'esl-a-dire précisément ce qu'il fallait démontrer.

Or, une simple vérification montrant que la formule est
juste en posant/ =1 et =2, la vérité en est prouvée pour
toute valeur entiere de /4.

Nous avons donc par exemple :

orpg — F an-3P) (/F;n—é(P) -+ 1(1_~9F2.n—2 (P) + +4T~m Q)Fn—l (p) '

2|2 [r-
opp — r)n— P+ (/r‘)n s(p) + —§F2n—4(p) + e 1. (n—_:T)F”-'l

ap-2P -+ yn-3q T A2n—1 =0 (Ou ap-y — 0)
il en résulte : (16)
" S i"_ [2] ([”_1 (1] .
P?n—i([)) + ([[21L-2(P) + 1. QFQIL-S(P) + + 1.2 .. (n — 1)F11 (P) =0 ’
tandis que
A3p-29 -+ A:Z;L =0
peut se remplacer par :
([2 ’ qB ﬂl_]
(/FQIL—'Z(P) + mFQn—?)(p) =+ 1.2.3 l42n 4(])) 4
¢ e .
- 1...(2n — 1) Pt ) B =0 )

Enfin, p >< (16) + (17) nous donne I'équation
Paulp) -+ Fa s (p) + 115 B (p) + o+ b =0, (18)

que I’on peut.trouver immédiatement en considérant @, = 0.

Les équations finales sont d’apres ce qui précede (16) et
(18). Elles donnent directement les équations particuliéres
quinous ont servi a déduire, dans notre vérificalion et appli-
cation, les résolvantes de Descartes et d'Euler.
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