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DÉMONSTRATION DIRECTE DU THÉORÈME

FONDAMENTAL DE LA THÉORIE DES ÉQUATIONS
ALGÉBRIQUES

PAR

B. Gönggryp (Amsterdam).

La théorie des équations algébriques présente, à mon avis,
une certaine lacune quant à la démonstration du théorème
principal : que toute équation d'un degré quelconque (à

coefficients réels) possède une racine. En étudiant ce chapitre
(c'est-à-dire la théorie des équations algébriques) de l'analyse,

il faut d'abord admettre la vérité du théorème, et
même, après avoir acquis une notion plus ou moins complète

de la nature et des propriétés des équations et de leurs
racines, il faut encore recourir à des moyens qui ne
touchent la théorie des équations elles-mêmes qu'indirectement,
par exemple à la représentation graphique des fonctions de

quantités complexes, etc. C'est pour cette raison que les
démonstrations données jusqu'à présent ne me semblent

pas tout à fait de nature à porter immédiatement la conviction

dans l'esprit, et que j'ose demander au lecteur un
moment d'attention pour les deux démonstrations suivantes,
directes, inductives, toutes deux assez simples, et dont
surtout la seconde, par sa simplicité, me semble mériter d'être
admise dans un Cours élémentaire d'algèbre supérieure.

I

En considérant qu'il est d'une extrême facilité de démontrer

qu'une équation algébrique d'un degré impair (ayant des
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coefficients réels) a toujours une racine, laquelle est en outre
réelle, il est clair que Ton aura démontré le théorème dans

toute sa généralité du moment où Ton aura su ramener la

démonstration pour une équation d'un degré pair à celle

pour une équation dont le degré est un nombre impair. C'est
ce que j'ai tâché de faire dans les pages suivantes.

Rien de plus naturel, l'existence des racines de l'équation
quadratique étant sûre, que de chercher à comparer aux
racines de cette équation paire, fort spéciale, celle de l'équation

du 2/zième degré. Or, pour cela on peut se demander s'il
est possible de satisfaire à l'équation :

+ A1x + A 2 x + + Aa/z-1* + A2/i 0 (1)

par les racines de l'équation quadratique

x2 — px — q — 0

ou, ce qui revient au même, de démontrer qu'une expression
x2 — px — q peut être un facteur du premier membre de (1).

Posons donc :

F (a;) : x~n -j- A.j x~n 1

-j- A2x2n " -f- -J- A2/?__rr -j- A2n

(.x2 — px — q) [x'n " -j- ax x n 3 + a2x~11 * -f- a2n_3x -f- a2n

Au premier coup d'oeil, il est évident que cette supposition

peut être admise à la condition qu'il soit possible de
satisfaire au système d'équations :

ou bien

— pA.j

ct2 — ax p — q — A2

a3 — a2 P — a [ C1 ~ A3

Ct2n-2 ~ a2n-3P ~ a2n-Pl ~ A2n-2 f (A)-

a2n-2p a2n-3Cl — A2n-\

— a2n-2Cl~A2n

jal — p -f At

a2 — ax p -f- A2 -{- q

ftg — (i2 p —j- Ag -j— Ci,y Cj

ak — a3 P + A4 -j- a2q

la2n-2 — a2n-3P + A2n-2 + a2n-Ui

f a2n-2P + a2n-3CI + A2ji-\ 0

\ a2n-2 C! + A2n — 0 '
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Or on voit que ce système conduit à exprimer successivement

toutes les inconnues av a2, etc. enp, q et les quantités
données At, A2...A2», de telle sorte qu'à la fin on ait deux
équations distinctes en p et en q ; et s'il paraît possible de

satisfaire à ces deux dernières, tout le système (A) devra être
admis, et par conséquent l'existence du facteur x2 — px— q,
et enfin celle de deux racines de l'équation proposée sera
démontrée.

Les expressions consécutives, qu'on obtient pour au a2,

etc., ont un degré, quant àp et q, qu'on trouve dans la table
suivante :

degré de ax a2 rt3 3 a"2n—2 *

en p 1 2 1 4 2n — 3 2/z — 2

en ^ 0 1 1 2 7i — 1 n — 1

Les deux dernières équations du système (A) seront donc
en q du n—lième et du niëme degré respectivement.

On peut les représenter par :

P1 (ïl
1 + P3 y11

2 + + P2/z—3# + P2/z—1 — 0
' (2)

P0 Cil + P2C/1
1 + ••• + P2«—2*7 + P2n — 0 * 0)

(Pä est un polynome en du Aième degré.)
Gomme on sait, l'élimination de g entre ces équations peut

s'effectuer à l'aide d'une simple application de la théorie des
déterminants (méthode de Sylvester).

L'équation résultante en p sera :

pi P3 hT0 T o 0 0 0

0 pl P3 • • • ' P2u—1 0 0 0

0 0 pl P3 p2n—1
0 0

0 0 0 0 • pX 2/z—1

Po P2 P4 P2„ 0 0 0

0 po P2 p4 • P2/t 0 0

0 0 po P2 P4 P2„ • •
0

0 0 0 0
• P2„
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Celle-ci représente la condition à laquelle on peut satisfaire

aux équations (2) et (3) par la même valeur de q, c est-

à-dire précisément la condition de laquelle dépend la vérité
du système (A) et par conséquent l'existence de deux racines

de l'équation proposée.
Or, quant à cette équation finale en p, nous n'avons besoin

que du clegré. Pour déterminer celui-ci il faut seulement
considérer que pour l'élimination (2) a donné n équations et

que (3) en a procuré n—1, cle sorte que la diagonale du

déterminant, se composant de n facteurs Pi et de n — 1

facteurs P2/l, sera une expression, fonction de p, du degré :

2n (n — Ij q- n — n(2n — 1)

Aucun autre ternie du déterminant ne peut surpasser le

degré de cette diagonale, et une simple vérification fera

sauter aux yeux qu'ils ont tous le même degré; par exemple
PJp1 Pon—i a pour degré n(2n — 1).

Or, ce nombre n(2n— i) est impair, si n possède cette

propriété, c'est-à-dire si le degré 2a de l'équation proposée
est un nombre pair, ne possédant qi\un seul facteur 2. Alors
il est clair qu'il y aura une racine réelle de p satisfaisant à

la condition représentée par le déterminant; qu'ensuite les
deux équations (2) et (3) donneront une valeur (réelle également)

de q ; qu'en allant plus loin le système (A) peut se vérifier,

et qu'enfin l'équation proposée possède actuellement les
deux racines de l'équation quadratique : x2 — px — q 0.

Si le degré de l'équation (1) est un nombre pair, se

composant de plus d'un facteur 2, l'expression n(2n— i) sera
encore un nombre pair; mais cependant ce nombre aura un
facteur 2 de moins. Ceci montre que la question de savoir
si une équation d'un degré pair se composant de h facteurs
2 a une racine peut se réduire par notre procédé à la même
question pour une équation dont le degré ne se compose
que de h — 1 facteurs 2. Et comme nous avons démontré
qu'une équation d'un degré, ayant un seul facteur 2, possède
actuellement une racine, le théorème est démontré dans
toute sa généralité.
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II

Tâchons de démontrer qu'à l'équation :

F (x) x2n -j- A1^2,z—1 + A2x2n~2 -j- -F A2n_1x + A2n =z 0

peut satisfaire une valeur de x comme : x — u -f- iv.
On sait que :

F(« + iv) F(«) + ivF1^) -d^F11^) - in(u)

1 2n (u)
'

Cette équation F (u + iv) 0 pourra se vérifier, si
simultanément :

F<") - A F>) + ÏTOT4 F>> " O FVI(îti ' •

F (a)'1 — 0 (4)— 1 2n

et

pI(") - rr-3Fin|"' + rriiF>> - CV"" -
F S«"-11 0 (5)

1 (2 n- 1)

Les premiers membres de ces deux équations sont des fonctions

de c2 ; s'il y a une valeur v — cq satisfaisant aux
conditions exposées ci-dessus, il y aura de même une valeur
v — vi ; d'où il s'ensuit qu'une équation du 2zzième degré
ayant une racine x — a -f- iv en possède aussi une autre :

x u — iv.
En posant : c2 v\ (4) et (5) deviennent :

V + + U4/ -j- Y2n_2v' -j- u2„ =: 0 (4a)
et

-r ^3k T ^5v T ••• -r ^2«-3K T

(On voit que est une fonction du Aième degré par rapport

Vy 1

+ u3/'
2

+ U5/"
3

+ + l'„, + U2„_t 0 (5a)
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à u.) De l'élimination de v' entre (4a) et (5a) il résulte une

équation en u représentée par le déterminant qui se trouve
ci-dessous. Quant au degré de cette équation-ci, c'est celui
d'un terme quelconque, par exemple, celui de la diagonale :

UÎUJT1; c'est-à-dire :

n + 2n (n — 1) n(2n — 1)

Donc, encore une fois, si le degré de l'équation proposée ne
contient qu'un seul facteur 2, celui de l'équation finale sera
impair, d'où suit une valeur réelle de u ; ensuite (4a) et (5a)

donneront une valeur réelle de c', c'est-à-dire de c2; la

réalité de ç dépendra encore du signe de cette valeur de c2,

mais n'a rien à faire avec la conclusion qu'il est permis de

tirer de ces faits : qu'il v a actuellement des valeurs de u et
de v, de sorte que u -f- iv représente une racine de F(x) — 0.

V I o 0 0 0

0 U-i V • • • Uo„-l 0 0 0

0 0 u. U3 U2,-l 0 0

IT

uo U2 U4 • • u2Ä 0 0 0

0 U0 U2 U2„ 0 0

0 0 U0 U» • U2ll • 0

• u2/i

Ensuite, si dans le nombre 2n il existe plus d'un facteur
2, on peut appliquer le même procédé à l'équation résultante
en m, en posant :

Il Uj[ —|— IS'±

L'équation résultante en a aura alors dans son degré
deux facteurs 2 de moins que l'équation proposée. Posant
pour aller plus loin uA u2 + /c2, etc., on obtiendra enfin
une résultante par exemple en up, dont le degré est un
nombre impair, laquelle aura donc une racine réelle.
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Alors nous aurons posé successivement :

x ~ u 4" A'
«

u u± -P is\

u± — u2 -j- zV2

«p_, 'V + "p ;

d'où
# — up + i(v -\~ vi + ^ llp ~b ^ '

en sachant qu'il existe actuellement une valeur réelle de up.
Or, dans ce cas, nous avons vu ci-dessus qu'il y a aussi une
valeur réelle pour V2 et par conséquent une valeur ou réelle
ou imaginaire de V, satisfaisant aux conditions nécessaires;
en d'autres termes :

Une équation clu 2nièmo degré possède en tout cas une racine,
soit réelle, soit complexe.

Vérification et application des résultats obtenus.

Prenons pour exemple l'équation du quatrième degré :

x4 -p ktxz -f- A2«x2 -f- k2x -j- A4 — 0

1° Nous pouvons supposer que le premier membre est égal
au produit :

{x2 -— px — q) (x2 -j- citx -J- as)

D'après les formules du système (A) on obtiendra :

(2p -|- kt)q -j- p3 -j- A1p2 -|- k2p ~p As — 0

et
q2 -p (3/?2 -p 2Atp -p A2)q p4 -p k±p3 -f- A2p2 -p A2p p A4 n 0

L'élimination de q conduit à l'équation du sixième degré :

(2p -p ki)2{p4: -P ktp3 -p k2p2 ~p k2p -p A4) -P (p3 -p kxp2 ~p k2p -f" -^3)"

— (p3 Ai p2 -p k2p -p A3) (3p2 -p 2kip -p Aa) (2p -p Aj) 0 (6)

L'expression n(2n — 1) se vérifie donc, car : 2(4 — 1) 6.

Ensuite, en supposant Ai=0, l'équation (6) se réduit à :

p6 + 2k2p4 4- (A* - 4AJ/4 - k[ - 0 (7)
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c'est-à-dire précisément à l'équation auxiliaire de la méthode
de Descartes, à quoi il fallait s'attendre.

2° On peut poser :

x — u + iv

D'après les formules (4) et (5) les inconnues u et v seront
données par :

a4 + ktiT -j- A2ir 4* A»« A4 — v2[6u2 -f- 3Ax?£ -j- A2) + A — 0

et
4iE -}- 3Axu2 -f- 2A2u -f- Ag — v2(ku -]- Ai) 0

L'élimination de- c2 conduit à l'équation du sixième degré :

(4u -f- Ax)2(w4 -j- Ai m3 -f- k2u2 -f- A2u A4) (4iT -f- 3Atw2 -}- 2A2u -f- Ag)2

— (4iE + 3Ax^2 + 2A2u + Ag) (6u2 -j- 3 Ai« + A2) (4u + Ai) 0

Dans le cas où A, — 0, cette équation devient :

«• + jV + -(f) 0. (»I

Celle-ci est précisément l'équation auxiliaire de la méthode
de résolution cVEuler. Les deux équations, le signe du terme
connu étant négatif, auront chacune deux racines égales,
l'une affectée du signe + l'autre du signe —

Remarque. Dans la seconde démonstration, on a cherché

pour x une valeur x — u + iv ; or, puisque cette racine est
en tout cas accompagnée d'une autre x u — iv, cette
recherche revient tout à fait au même que l'investigation
d'un facteur quadratique :

j (x — u) — iv j j (x — u] + iv j m ,r2 — 2ax -f- u2 -f r2-

La comparaison de cette expression avec

x2 — px — q

employée dans la première démonstration nous fait conclure
a priori que l'équation finale en u aura des racines dont
chacune est la moitié d'une racine de l'équation à laquelle p
doit satisfaire (première démonstration).

Cette conclusion se vérifie complètement par (7) et (8).
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Note sur la formation cles équations finales
de la première démonstration.

Nous nous servirons de la notation :

Fhip) — Ph + A-iph
1

+ a2ph 2 + ••• + Ah—\P + À/z (9)

donc

Fh+l(P) ph+^ + A1 ph + A2Ph
1 + ••• + A-hP + AÄ+1 '

d'où
Fh+fp) PFh(p) + aa+i • (io>

De (10) on peut déduire :

f'a+iM + ; f11)

de même
Fl(/é — PF'h-éP) + Fh-fP) - (12)

En poursuivant de (12) nous tirons :

F"h(p) pfä—î(P) + 2Fl_i(p) ; (13)

en général :

?[h\p) pdé(p)+ mFi-i 1](p) • (14)

Maintenant nous pouvons démontrer qu'une inconnue quel
conque ah du système (A) peut être représentée ainsi :

ah ph(p)+ îfa-i (/>) + Fa—a (p) + 377^-7-3 Fi—3 (f) +

7 [A]

+ (c • (15>
1 * ' 2 2

Cette formule se rapporte au cas où h est un nombre pair
h étant impair, la puissance la plus élevée de l'inconnue

h — lsera —y
Pour démontrer la formule (15) nous ferons voir qu'ell
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est vraie pour # si elle se vérifie pour cth_x et pour aÄ.

A (15) nous ajoutons donc :

ah~-1 — fa-I(/>) + + ^K-sip) + T72A"B

— fczS

+ —Ç=-2Ffta W * <16»

1 •• 2 2

Or, d'après le système (A)

«Ä+i — Pah + + Aa+1

Donc se trouve en ajoutant ensemble les expressions
suivantes :

Aa+1 + pFh(p) + pqF h-i(p)+iJ0Fi-2 (p) + P 5-7^—3 FfttL3 (p) +

h

+ P~ÎL-Jl¥HiPp)
1.2 - *

,[41+ fP'h^(P)+ Tg-2FÏL{p) + ••• + ^ •

1... -

Les termes consécutifs de la formule résultante seront :

Aa+i +/>F,t(^) ph+\(p) Yoir (10)

</\pF'h-iip) + fa._1 (p) j-= <Uh(p) » (12)

o j pvfUp)+ K-2(p) I oFil (p) » (13)

h r~h~i rh 1 h

CU ^bJ, h G-],.u__d_.Iî]
pF» Jw + în w =—4'; w <lsh )TX h \lJ) -r k A h \F) — h h

-2[ 2 2
5 1.2 — -
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Il en résulte :

ah+1 ^ Fh^\{P) + fiFh(p) + f^Fili(/d + 12 3
FIiâ if)

Yh~

+ -11-7,Frj w
1.2... J 2+1

c'est-à-dire précisément ce qu'il fallait démontrer.
Or, une simple vérification montrant que la formule est

juste en posant h I et h — 2, la vérité en est prouvée pour
toute valeur entière de h.

Nous avons donc par exemple :

F2/i-3(P) + (IF2,i-^(P) + 0FL]-2(/f + ••• + '
•2)

Cl2 ?i-2 — F2,i-2^P) + 7F27i-3(P) + ,p^2 F2n-i(p) + ' * + T.. \ll — 1)
F«-l ^

De :

(l2,i-2P + a-2n-Z{l + K,i-\ 0 (ou (l27i-\ ~ °)

il en résulte : (16)

Fîn-1 (P) + -?F2^(p) + F2»-3f/)) + - + i.2..g"(»
— 1)

Ff11 0 '

tandis que
a2,1-2 Cl + A2/i — 0

peut se remplacer par :

'/F2n-^P)+ F2«-3 + K2~3 F2«-4^;) + "•

+ 1 (2/1-1)
F'[è

1

+ Aä« 0 ' (17>

Enfin, p x (16) + (17) nous donne l'équation

**<P> + *FL. </» + O »SL.U») + " +ÏT~TF»3^) " ° ' (18)

que l'on peut trouver immédiatement en considérant a2n— 0

Les équations finales sont d'après ce qui précède (16) et
(18). Elles donnent directement les équations particulières
qui nous ont servi à déduire, dans notre vérification et
application, les résolvantes de Descartes et d'Euler.
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