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176 A AUBRY

plus petits et jouissant des mêmes propriétés; et ainsi de

suite, ce qui implique contradiction avec le nombre limité
des entiers inférieurs à ceux donnés d'abôrd.

Exemple. L'aire d'un triangle ne saurait être un carré
(Fermât). Démonstration rétablie par Eu 1er. Les trois côtés
étant p + g2, 2fg et p — g2, Faire A est fg(p — g2) ; f et g
sont premiers entre eux avec f2—g2. Pour que A soit un
carré, il faut que /, g et p — g2 soient également des carrés;
posons en conséquence /= A2, g p ; /2 — g2 A4 — p
doit être un carré. Or A et y sont premiers entre eux, de

même que A2 + p et A2 — p ; ces deux derniers sont donc
des carrés. Ecrivons donc

X2 -\- u.2 r2 X2 — [j.2 — .s2 d'où [j.2 -f s3 — X2 s2 -f- 2a2 — rÀ *

La dernière égalité donne, à cause de (19)

s — t2 — 2a2 p. — 2tu r zz: t2 -j- 2u2 d'où X2 — a2 -{- s2 — -f- 4^4

c'est à-dire un triangle t2, 2w2, A dont l'aire A' t2a2 serait
également un carré et qui serait beaucoup plus petit que le

premier, car on a :

A — X2[j.2(X4 — u.4) zz: 4i2u£(t* -|- 4iA) (t2 + 2A2)2 (P — 2u1)2 A'

On aurait ainsi la possibilité de trouver une suite indéfinie
de triangles dans ce cas, ce qui est impossible puisqu'il
s'agit de nombres entiers, qui ne peuvent indéfiniment
décroître. (Voir Ens. Math., 1909, p. 331, pour un autre exemple.)

Exercices.

1. Trouver graphiquement les développements de (a -fi b)

(c + d), de(a ± b)3, de (a + b)(a — b), de (OA - (~A)
(Euelide), ainsi que Ici sommation cl'une progression
arithmétique (Archimède).

2. La somme des n premiers impairs successifs est un carré.

1 C'est de cette dernière figuration qu'on a tiré l'idée de remplacer les multiplications par
des soustractions, à l'aide de tables de quarts de carrés.
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Hen est tie même cle deux triangulaires successifs1. Tout carré
impair est la différence de deux triangulaires, et eu même

temps, Toctuple d'un triangulaire augmenté de l'unité
(Pythagoriciens). Se démontrent par des configurations géométriques

de points.
3. Démontrer géométriquement que si (a, b) est une solution

de x2 — 2y2=n, (2b-fi a, a fi-b) en est une de x2 — 2y2 =— n.
Construisons le triangle rectangle isoscèle ABC; abaissons
sur l'hypoténuse AC, la hauteur BD et d'un point E de BC,
la perpendiculaire EF. On aura :

AFa + EF2 — AB8 + BE2 ou (2b + ay2 fié' 2(a + bf + 2/fi

en posant DF b, FC-= a. Cette proposition semble due
aux Platoniciens, qui s'en servaient pour trouver des
approximations de plus en plus serrées de l'irrationnelle \/2 en

partant des soi niions a 3, 6 2, de l'équation x2 — 2y2 — i.
4. Résoudre les équations

1° Ax — By ; 2° xy r=r Az ; 3° my z=z uv ; 4° x2 — yz ;

5° x9' ay ; 6o xyz =z tuv ; 7° x* tuv ; 8° x2y z=z u2 v

i° Si A et B sont premiers entre eux, on pose x Ba,

y — A a, a entier quelconque.
Si A et B ont h comme p. g. c. d., on écrit: hx Ba,

hy r= Aa.
2° Soit A ctb ; on fierira z yd, x cty, y by ; y et <î

quelconques. Il y a autant de solutions que de manières de

décomposer A en deux facteurs.
3° On fera x — aß, y yd, u= ay, c ßd ; a, /3, y, <î,

quelconques.
4° On fera .r aßy, y a2/3, z /3y2.
5° Soit a 62c; on fera # 6ca, y Ca2.

6° On écrira: x aß, y yd, z e<p, t=ay, u ßs,
Ç $(p.

i

7° On écrira : X' «/3y, toe'ß, u /52y, c y2a.

1 On appelle triangulaire un nombre de la forme " —-

L'Enseignement mathém.. 17e année; 1915.
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8° On écrira : x aß, y y2$2, u ay, c /32$2 h
5. Résoudre xy + Ax + By G. On a :

Soit AB -j- G ab \ on posera : x — a — B ou b — BT

d'où deux solutions pour chaque décomposition de AB -f G

en deux facteurs (Euler).
6. Résoudre x2 -f y2 z2. Posons z y + A, ce qui nous

fera éliminer un carré2. Il viendra x2 — z fly -f z'), ce qui
conduit à poser :

x — iuv z'=zfu, 2yz'=z uv2 d'où 2y — u(v2 — t2) 2 z~u(A-\-i2)

On retrouve la formule (10) présentée un peu plus généralement,

telle qu'Euclide l'a donnée.
7. Résoudre x2 — y2 az2. Soit a fg ; on peut écrire :

# -f- y —f'X2 x—y — g g2 d'où 2x — fX1 g-gg 2y f\2— g\X z — X[j.

Il y a autant de solutions que de manières de décomposer a
en deux facteurs (Lagrange).

8. Tout cube est égal et la différence cle deux triangulaires
successifs (Ibn AI madjdi).

9. Tout nombre de let forme x2 ± x -f 1 est la somme de
deux triangulaires (de Roquigny). En général, tout nombre
x2 zL xy + y2 est en même temps de la forme z2 -|- 3w2 (Euler).
Voir Ens. Math., 1907, p. 441.

10. Aucun nombre 2(x2-f y2-f xy) ne peut être un carré
(Fermât), ni aucun cles suivants 2x2 -f 3y2. 2\v2 + v2, 3x2 + 7y2,
5x2 + 7y2, 6x2 + 7y2, ni le nombre 2x4 + 2 (Euler).

Si a et b ne sont pas tous les deux divisibles par 3, ou 7,

ou 11, ou 19, ou 23, il en est de même de a2 -f- b2.

1 On multiplierait aisément ces exercices, et d'autres de genre analogue. En voici, par
exemple, un dû à Cauchy : les nombres a, b, c étant premiers entre eux, la solution générale
de ax X by cz est donnée par les formules

x brj. — cß y cy — «a z by — a[I
2 Ce procédé d'élimination d'un carré de l'énoncé est dû à Diophante, qui pour résoudre

z* — b
xt X ax d~ ^ V2-, égale le premier membre à (# -f~ z)2, ce qui lui donne x

^
d'où

une infinité de valeurs fractionnaires de x, en faisant z 1, 2, 3,
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11. Tout nombre 2a2— b2 est en même temps de la forme
x2 — 2v2. Tout nombre 5a2 — b2 est en même temps de la
forme x2 — 5y2 (Lagrange). En général, on a cette identité
de Mathews Collins

igMcY - (/» 4 S"2) (>2 (f2 H- g*) iw ± fl)* - [(f* + S2)b ± M2
12. Le double d'un nombre de la forme x2 -+- y2 + xy est

une somme de trois carrés, et le double cle son carré, la somme
de trois bicarrés (Catalan), Il en est de même du nombre
x2 -f y2 + z2 — xy — yz — zx (Ed. Lucas).

13. a2n+' -Jz 1 n'est jamais divisible par a2 — i. En effet,
le quotient de a2n dz 1 par a zb 1 peut s'écrire

a [a _)_ 1) (a~u 1 4 C(~n 4 4 • • • H- 'L 1
•

14. Posons F =2fix?H-2bxy+ y2, x ax'+/3y\ y ^x' + J\/;
o/? trouvera, en substituant} une nouvelle forme F' — «'x'2

+ 2b'xy + c'y'8 telle que b'a ~ a'c/ (b2 — ac) (ai — ßy}2.
Tout nombre représentable par la forme F l'est par la forme
F', et la réciproque a lieu également si ad — ßy ± 1

(Ln grange).
15. 1° Faisant dans (23) d — S — 0, on arrive à cette

conclusion que le produit de deux sommes de trois carrés est

une somme de quatre carrés 1 (Euler).
2° Chercher l'expression du produit de la somme de quatre

carrés par 3 i2 + l2 -+- i2 -+- 0, par 4 — i2 -+- l2 -+- l2 +- i2,
par 4 (— i)2 -+- l2 -+- l2 4 l2, par 5 44 1 + 0 + 0, par
6 4+1 + 1 + 0, par 7 — 4-4 1- + 1 + 1, par 10 4 -+- 4

-+ 1 +- C etc- ; on obtiendra ainsi diverses formules, dont
les trois premières sont dues à Euler, Cauchy et Jacobi.

3° On trouvera une généralisation de (23), due à Lagrange,
en y changeant ß, y, d, ß' y d'en ß\/k y\/ l d\/kl, ß'\/k
yVT, d'V~kl-

16. Soit A le produit de nombres impairs a, a', a", les
deux nombres

À — 1 a — 1 (T — 1

O et Ö
1

Ö
u •••

1 Cauchy a fait voir que ce théorème résulte de la considération d'un triangle projeté sur
trois plans rectangulaires.
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sont respectivement de même parité que les suivants

A2 — 1 a2 — 1 a'2 — 1

et 1 + (Gauss)

17. Toute sixième puissance est de l'une ces formes 7 + 0, 1;

toute dixième puissance, cle Tune cles formes 11 + 0, 1 ; toute
douzième, de l'une des formes 13 + 0, 1 ; toute seizième, cle

l'une cles formes 17 +0, 1; etc. Pat' exemple, on a, pour les
carrés, les formes 7 + 0, i, 4, 2 ; d'où, pour celles des
bicarrés, 7 + 0, 1, 2, 4; et pour les sixièmes puissances,
7+0,1,1,1.

18. Divers problèmes de Goldbach et d'Eu 1er. Voir Ens.
Afath1909, pp. 354 et 355.

19. Le quadruple d'un triangulaire ne peut être un
triangulaire (de Rocquigny). On devrait avoir x2 + x — Sy2 + 4y2,
égalité qui revient à l'une quelconque des suivantes :

x2 -j- x -j- 1 (2y -j- l)2 2x -f- 1 — H- +4 (2j + l)2 — 3

(4y -j- 2x — 3) (4y — 2x -I- 1) 3 (a: + 2y -j- 2) (x — 2y) x

dont l'impossibilité est aisée à démontrer, car le premier
membre de la première ne peut être un carré; 3 ne peut être
la différence d'autres carrés que 4 et 1; enfin les deux
dernières ne peuvent avoir lieu que pour x y 0. (/. M.,
1894, pp. 303 et 394.)

20. Si a est premier avec b, les congruences n h (mocl a j

et n h (mocl h) entraînent la suivante n h (mod ab). En
effet le nombre n — h étant divisible par a et 4, l'est par ab.
Cette question s'étend, à un nombre quelconque d'entiers
premiers entre eux : c'est un cas particulier de la suivante,
qui remonte à l'antiquité : trouver un nombre qui, divisé par
a, b, c, donne les restes a, /3, y,

21. Tout nombre impair est 8 + 1 sises facteurs cle forme
8 + 3, 5, 7 sont tous en nombre pair ou tous en nombre
impair. Zéro est compté pour un nombre pair.

22. a et b étant premiers entre eux, si ax — by =1, les
nombres

x — olc + Xb y 55; fie -f- la

satisfont à l'équation ax — by c
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23. Des solutions des équations

ax — by — c ax' — b'yf — c ax" — fJ''y" — c

déduire celles de ax — bb'b"... y c (Gauss).

24. Soit l'équation a2x2 -f- bx -j- c y2. Posons y ax + -
on en tirera une expression de x, en z et u qui donnera les

valeurs positives de x en donnant à % et u des valeurs telles

2° Soit ax2 + bx -f c2 y2. On posera y c -f* ^x% ce qui

donnera pour x une formule analogue. On s'occupera
seulement des valeurs de ~ comprises entre \/a et ^

3° Le cas général ax2 + bx + c= y2 est bien moins aisé à

résoudre ; aussi il faut tout d'abord tâcher de voir s'il n'y a pas
impossibilité, comme c'est le cas pour 13x2 + 54/r + 69 y2,

puisque le premier nombre peut s'écrire 7(.r + 3)2 + 6(.r + l)2.
4° On sait que si b2 — 4ac est un carré, le trinôme

ax2 + bx + c peut se décomposer en deux facteurs linéaires.
On peut donc le supposer égal à [ax -f- f) (x -f g) ou à

~y{x -b g-)2, d'où on tire x, qui sera entier si on fait
v2a — u2 dz 1 (Euler).

Si ax2 + bx -j- c peut se mettre sous la forme (fx + g)2

-f- (hx + j) (hx f- l), on égalera sa racine carrée à (fx + g)

+ U- (hx + y), ce qui donnera une valeur de x en u et c dont

on essaiera d'égaler le dénominateur à =fc 1 (Euler).
6° Résolvons algébriquement ax2 -f~ bx -f- c y2 par rapport

à m ; on est ramené, en posant X 2y, b2 — 4ac B,
à résoudre «X2 + B Y2, ce qu'on fait en donnant des

valeurs convenables à Y. Inutile d'ailleurs de prendre Y > ^
puisque (Y ~b ko)2 — B est divisible par a, en même temps

que Y2— B. Si jusqu'à Y on ne trouve aucune solution,

l'équation est insoluble (Lagrange).
25. Soit ax2 -f- 2bcx + c2 y2 et supposons x > b et > c ;

la valeur de y est de la forme zx2 — bx -f- c. «



182 A. AU BR Y

26. Déterminer les valeurs de x supérieures ci b et ci c données

par Véquation a2x2 + bx + c y2. On a :

b + 1 b

> y — ax >2 a ^ ^ 2a + 1
'

?/ est de la forme ax* + d avec cl <f ,r, car a? > b >
En écrivant c+r2 -|- + c (ô.:r -f- cZ)2, il vient (6 — 2ad)x
+ c— d2 0. On essaie, dans cette expression, les valeurs
de cl ~ y — comprises entre les limites données plus
haut (5. Œ., 1910, p. 146).

21. On peut toujours former une puissance entière
quelconque par l'addition cle termes d'une progression arithmétique

(Rallier des Ourmes). Application à l'étude des suites
formées :

1° par le premier entier 1 ; la somme, 2 + 3, des deux
suivants ; celle, 4 + 5 + 6, des trois suivants ; etc.

2° par le premier entier 1 ; la somme, 2+3 + 4, des trois
suivants; celle des cinq suivants ; etc.

3° par le premier impair; la somme des deux suivants; etc.
4° par la somme des deux premiers impairs; celle des

quatre suivants; etc.
5° par le premier impair; la somme des quatre premiers;

celle des neuf premiers ; etc.
6° par le premier impair ; la somme des (1 + 4) suivants;

celle des (1 + 4 + 9) suivants ; etc.
7° par le premier impair; la somme des (1 + 8) suivants;

celle des (1 + 8 + 27) suivants ; etc. (de Rocquigny).
28. Combien cle zéros dans les n premiers entiers (Ed.

Lucas).

29. Le nombre 1000 se termine à droite par 249 zéros
(de Rocquigny).

30. Quels sont les derniers chiffres ci droite de 21000, de
31000 (id.)

31. Il y a quinze nombres clans les 10001000premiers entiers
qui sont ci la fois carrés, cubes, bicarrés, dixièmes
puissances (de Laplanche)1.

1 On peut rappeler ici le problème de Comiers, jadis célèbre : quel est le produit des deux
nombres formés respectivement de 666 chiffres 9 et de 666 chiffres 6
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32. Dans quatre cents ans, combien cle mois cle février de

cinq dimanches? (N. A.) Combien de vendredis 13? (Buray)

Il y a au plus trois de ces derniers et au moins un annuellement

(G. Tarry).
33. La série cle Fibonacci 1, 2, 3, 5, 8, 13, 21, 34,

un+1 un + un__i ne peut avoir que quatre ou cinq termes
d'un nombre donné cle chiffres (Lamé). Cela vient de ce que si

uk < 10uk__k < uk+l et i < 10"*—3 < uk+2 '

il s'ensuit U&+.2 < 10^—2 < Uk+3 •

34. Disposer les douze premiers entiers sur trois lignes, qui
donnent des sommes égales, et cle telle manière que, clans
chacune cles quatre colonnes, le plus grand cles trois nombres
soit égal à la somme cles deux autres.

35. Placer les neuf premiers nombres aux sommets et sur
les côtés d'un triangle, cle manière que la somme cles nombres
d'un côté quelconque soit constante, ainsi que celle cle leurs
carrés (Proth). Appelons x, y, z les trois sommets; les
valeurs des deux expressions x -f- y + z et x2 + y2 + 32 sont
toutes deux des multiples de 3, ce qui demande que x, y,
et 3 soient ensemble 3 ou 3 + 1 ou 3 — 1. De là trois
solutions, dont la seconde seule 2, 5, 8 est à conserver. Le reste
s'achève facilement.

36. Le carré d'un polynome de 2k termes ayant autant cle

termes négatifs que de positifs contient 22k~2 doublesproduits
négatifs et 2k' 1

(2~k
1

— ]) doubles produits positifs (Barbette).
Pour que le carré cl'un polynome de n termes présente

autant de doubles produits positifs que cle négatifs, il faut que n
7 .7 n+l/llsoit un carre, et alors il y a — termes positifs (Id.)1.

37. Quel est le signe du nlème terme cht développement du
produit

(1 — a) (1 — b) (i — c) (Catalan)

Montrer l'identité de ce problème avec le suivant : considérons

les lettres a, b, que nous ferons suivre du groupe ren-

1 A rapprocher de la question suivante : trouver le. produit de deux expressions de la
forme /a -f- /b + qui ne diffèrent qu'en ce que, dans la deuxième, certains radicaux
sont pris avec le signe —. Voir Fitz-Patrick, Exercices d'Arithmétique, p. 575.
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versé ba, d'où le groupe abba, auquel nous accolerons le

groupe inverse, ce qui nous donnera abbabaab, et ainsi de
suite. Quelle est la nième lettre? (Laisant). Voir A. F1881.

38. Soit a la base de numération; aT1 — 1 est divisible par
a — 1 ; il s'ensuit que tout nombre N An + Bn—1 + fournit

la relation N S A B -f- (mocl a — l) et que l'un des
nombres an dz 1 est divisible par a + 1 selon que n est pair
ou impair. Donc si n est pair, on a : N A — B-f-C —
(mod a + 1) (Gauss).

39. Soit d un diviseur cle alOb ± c .Un nombre est divisible
par d quand, ayant séparé b chiffres à la droite cle ce nombre
et divisé le nombre restant et gauche par a, la somme ou la
différence entre c fois le quotient et le nombre formé en écrivant

le nombre cle droite à la droite clu reste est divisible par d

(E. Gelin). Voir les Caract. de cliv. du même auteur, et les
E.r. d?A rith. de Fitz-Patrick, pp. 24 et seq.

40. 1° L'expression [a + l)7i — a11 est la somme des n
termes

(a + l)*-1 (a + 1 )n-2a (a + 1 )n~V an~x

et par suite elle comprend visiblement n fois le terme an~1,
plus des termes en all~2, en an~~3, On peut donc écrire :

(a) (a + l)n — a11 nall~l + Aall~2 + + La + 1 1

2° Soit la suite de fonctions

Ft(x) F(x + 1) — F (x)

F2(x') zzz -pi) — Fi(^)

F3(x) F2f.r H- 1) — F2(.r)

les fonctions Fi, F2, F3, sont appelées la différence
première

y la différence seconde, la différence troisième, de la
fonction F. Posons maintenant

F (x) Axn + Bx"-1 + Cx"—2 + + Lx + M ;

sa différence première F (x +1) — F (.r) — 1;\ (,r) contiendra

1 Voir Eus. Math.. 1907, p. 297.
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le terme nkx7l~~1, plus des termes en xll~2, On peut donc

écrire F4(.r) nAx7l-{ + B'x"—- + La différence seconde

est donc de la forme

n{n — 1)àjc"—"2 -r
3 +

La différence troisième est de la forme n{n — i) (n — 2) Axn~:3

-f \Y'x1l~k + On voit qu'on a :

Vm(x + 1) + FJx) n(n - 1) 2 1A

Ainsi, la différence nième du polynôme Axn + est égale cc

An proposition connue des An ci ens, mais laissée sans
démonstration jusqu'à Mereator.

3° La fonction

F (x, k) — x — Ck(x - l)w -f CJh.2(x — 2)n —

est du degré /z, et par suite sa différence /zième a pour valeur n

Or, à cause de (16), on trouve, pour l'expression de ses
différences première, seconde, /zième,

F (x -f- 1, k) — F (x f k) ^ F (x -j- 1, k 1)

F (x + 2, k + 1) — F (x + 1, k -f 4] F (x + 3, A- + 2)

F [x -f- nk n) zzi n

Faisant x -f- n -= a, k 0, il vient cette identité de Mer-
cator

a1 Gn^(a — 1)" q- C„j2(a — 2)7i — + 1 — {a ^ a)

4° Si a et b sont premiers entre eux, tout diviseur commun
an bn

à a — b et à c— — divise également n (Lebesgue). Il suffit

de changer dans (a) a en —.0 v ' a — b

Lebesgue démontre ce théorème à l'aide de la formule du
binôme. Malebranche, qui l'avait aussi rencontré (voir
Ch. Henry, Rech, sur les man. de Fermât, p. 92), en donne
une démonstration dont le principe pourrait être utilisé
ailleurs : tout diviseur commun à a — b et à an~x + ban~-

+ b2an~3 -f- divise atl~'2(a — b) — a71"1 — bct,7~2, et par
suite — 2ban~2 — b2cin~3 — ; or il divise 2ban~3(a — b)
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2ball~- — 2b2an~3, il s'ensuit qu'il divise aussi — 3b2an~~3

— b3— ; on voit qu'on arrivera à prouver qu'il
divise nbtl.

41. Les nombres Ak et Bk de la formule (a + \/h Ak

+ Bk\/ b se calculenty de proche en proche, d'après les
formules suivantes d'Euler

A„+l — «A7i + bBn B/i+1 — An + aBn ;

An+1 ^ - b).kn__, B#l+1 2«B„ - (a2 - h) Bn__x

42. Les nombres y2 — 3z2 et 3y2 -— z2 ne peuvent être
premiers qu'autant qu'ils sont respectivement des formes 12 + 1,

et 12 — 1.

Si le nombre y2 — 5z2 est premier, il ne peut être que de
Vune des quatre formes 20 ± 1, dz 9.

43. Tout nombre a2 + 1 en divise une infinité d'autres
isomorphes. En effet

(a2 + J [(ax -f- l)2 + x2] (a2x + x -f- a)2 -J- 1

Plus généralement, le nombre n — ka2 -f- lb2 divise une
infinité de nombres de la forme x2 -f- kly2, qui sont en même

temps de la forme kx2 -f ly2 (Euler). En effet, on a :

iifl -f- kl) L- (kci ± lb)2 + kl(a 4= b)2 — k(a ± lb)2 + l(b zp ka)2

44. Tout diviseur commun aux nombres a2 — kb2, c2—ld2,...
divise également un nombre de la forme x2 — kl y2. En
effet, il divise

a2(c2 — ld2) + ld2(a2 — kb2) — (ac)2 — kl(bd)2 (Lagrange)

45. Posons X xxf — Qyyf Y xy' -|- yx + Pyy'-, il
viendra, si a et b sont les racines de l'équation z2— Pz + Q 0,

(x + ay) (x' + af) ~ X -f aX

Or on a : (x -f ay) + %) >%2 + Pxy + Qy2 ; donc le produit

de deux nombres cle la forme x2 -f- Pxy + Qy2 est

isomorphe (Lagrange).

46. Dans (21) changeons h en ^ puis dans (8), a, c, ô, d,

respectivement en a f/k b\/1 a, ß\/kl\ il viendra deux



THÉORIE ÉLÉMENTAIRE DES NOMBRES 187

nouvelles formules, dues à Euler, lesquelles, avec (8),

montrent que le produit d'entiers des deux formes ax2 + by2
et x2 + aby2 est de la première ou de la seconde forme, selon

que le nombre de ceux de la seconde est pair ou impair (Euler).
47. 1° Faisant dans (9) a a2 + b2, ß c2, on obtiendra

une formule d'Euier permettant de décomposer le carré
d'une somme de trois carrés en une somme de trois carrés.

2° Faisant a a2 + 1, ß a, on trouvera une identité
dont Euler s'est servi pour l'étude du produit (t a + cd)

(i + at+a^il + at + a*)...
3° Faisant a — x2 + Q, ß \/2(Q — P)x, on aura une

extension de (11), qui en donne une de l'identité d'Auri-
2/z —1

feuille, en posant Q — P — a, x (2a) 2 On peut trouver
d'autres cas intéressants, par exemple en faisant Q 1,

2/1+1

P rJQ
Q 2

2' ; ces extensions sont dues à Catalan.
4° Faisant a ci2 + b2 + c2 + cl2 et ß cl2 + b2 -f c2 + cl2,

on aura un moyen, dû à Ed. Lucas, de décomposer le carré
d'une somme de quatre carrés en une somme de quatre carrés.

5° Faisant a Ax3 -f- Cx et ß Bx2 -f D, il vient, en
identifiant à x6 — i,

A — D 1 2C — B2 0 C2 — 2B 0 B G — 2

d'où une remarquable identité, due à A. Boutin.
6° Faisant, de deux manières différentes, le produit de

2(a + b) (c — d) par 2(a •— b) (c -F cl), à l'aide de cette
transformation de (9)

2f* szn (/' -+ g)2 (f o-)2

où on fait f a2 — b2, g — c2 — cl2, on obtiendra une identité

de forme x2 + y2 + z* x'2 + y'2 + z'2, trouvée par
B. af Genas.

48. Si ax — by 1, les valeurs X y2(3ax — by) et
Y x2(3by — ax) satisfont à l'équation b2X — a2Y — 1

(Bouniakowsky)1. On n'a qu'à changer a et ß en - et - dans
l'identité (« — ßf (3a — ß)ß2 — (3/3 — a)a2.

1 Le savant russe est arrivé à cette conclusion, ainsi qu'à d'autres plus générales, cà l'aide
de la formule d'intégration par parties.
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49. Soit f3 + ag8 bh8; on aura une autre solution cle

x3 4- ay3 bz3 en faisant

X — t\r + 2tf#3) y — g(2/'8 + a g1) M h(f* — ag*) {Euler)

Prestet avait trouvé, avant Euler, le cas particulier de

a b JI..

50. Effectuant, de deux manières différentes, le produit

gv~w,
on aura une identité de A. Boutin donnant une solution de
x4 — y2 + hz2.

51. Posant k\/ a -f l\/—b (x\/ a + y\/—Of, puis
égalant les coefficients de \/a et ceux de \/—b, il vient

| — ax3 — 3bxy2 i — oax2y — byz

d'où
ak2 -\~ hi% — [ax2 -J- by2)3 (Euler)

52. Développant l'expression (a + bif(a — ùf)3 et l'identifiant

à (a2 -b b2f, on trouvera un cas particulier de l'identité

précédente, qui montre à déterminer un cube qui soit la

somme de deux carrés (Euler).
53. Théorème cle Binet* Voir Ens. Math., 1907, p. 303, ex. 11.

54. Egalités multiples. Voir Ens. Math., 1914, p. 18.

55. Eactorisation. Voir Ens. Math., 1913, p. 202 et seq.
passim.

56. Fractions continues. Voir Ens. Math., 1912, p. 184 et

seq. passim.
57. Carrelages. On obtient de remarquables carrelages en

considérant comme axes de coordonnées deux droites
rectangulaires d'une feuille quadrillée et mettant la case [x, y)
en gris ou en noir, selon que le reste de la division de
a(x2 y2) par n est de la forme 3 j- 1 ou de la forme 3 — 1.

Voir S. Œ., 1912.
58. Triangles. 1° L'une cles cathètes du triangle x2 + y2 — z2

est toujours paire (Pré nie le). On la désignera par 2fg.
2° Tous les triangles sont donnés par la formule d'Euelide

(ex. n° 6). Conséquence de 1°. Les deux générateurs sont,
dans ce qui suit, désignés par / et g.
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3° L'hypoténuse est de l'une des formes 12 + 1,5 (anonyme
arabe). Le triangle étant primitif, z f2 + g2 est impair,
et z2, cle la forme 4+1.

4° Une cathète est multiple de 3 et une autre, multiple de 4

(Frénicle).
5° L'un des côtés est multiple de 5 (Id.). On examine les

formes linéaires de f et de g relativement au module 5.

6° La somme et la différence de deux cathètes sont de l'une
clés formes 8 ± 1 (Id.).

7° Le seul triangle 3, 4, 5 a ses côtés en progression
arithmétique. Il n'y en et aucun les ayant en progression géométrique

(Ozanam).
8° Si les générateurs f, g sont deux triangulaires consécutifs,

le côté f2 — g2 est cube (Id.).
9° Si f g + 1, Thypoténuse surpasse cle t la cathète

paire (Id.).
10° Si les deux cathètes diffèrent de 1, le triangle ayant

pour générateurs (2f + g) et f sera dans le même cas (Fermai).
11° Si l'on prend pour générateurs deux termes successifs

de let série 1, 2, 5, 12, 29, 70, les deux cathètes diffèrent
de 1 (Ozanam). G est le théorème précédent de Fermât1.

12° Trouver un triangle dont let bissectrice soit rationnelle
(Diophante). Il faut rendre rationnelle F expression 2f\/f'*-\-g2,
ce qui se fait en posant f ~ 4(<p2 — y2), g k(2yy).

13° Trouver un triangle dont le périmètre soit un carré
(Id.). Il s'agit d'égaler à un carré le nombre 2/'(/'+g), ee

qu'on fait en écrivant f= 2a2, g — v2 — 2u2.
14° Trouver un triangle clout let somme des cathètes soit un

carré (Teilhel). La question se ramène à rendre carré le
nombre f2 + 2fg — g2 ; on y arrive en faisant

f — a2 — 2uv + v2 g — 2uv

15° Trouver trois carrés en progression arithmétique (Fibo-

1 En général si les deux premiers termes sont 1, a, les cathètes successives different de
<z2—— 1. On peut d'ailleurs continuer la série en remontant: ainsi, pour a 4, on a.:

— 19, 8, — 3, 2, 1, 4, 9, 22, C'est vraisemblablement ainsi qu'Ozanam a trouvé la liste
des triangles dont les cathètes diffèrent de 7 (Diet. math.). On voit qu'il pratiquait virtuellement

la théorie des séries récurrentes.
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nacci). Gomme on a :

(a + bf -j- (a - bf 2 (a2 + (A)

le problème est ramené à faire a f2 — g2. b 2fg\ ce qui
donne l'identité

(p - g> _ 2fof -I- (P _ f + 2fgf 2 (P +
Cette solution paraît due aux Arabes1. Fibonacci a fait remarquer

que la raison 4fgif2— g2) est divisible par 24; il en
déduit la solution du système x2 -j- y2 u2, x2 — y c2.

On est ramené à ce même problème en che rehaut un
triangle dont la seconde bissectrice soit rationnelle> ou
encore, en cherchant avec xA. Boutin trois triangulaires en

progression arithmétique.
16° Trouver deux triangles tels que la différence des deux

plus grands côtés de chacun soit égale à celle des deux plus
petits de Vautre (Frénicle). Voir Œuvres de Fermât, t. IV,
p. 253.

17° Trouver trois triangles dont les aires soient égales
(Diophante). Les valeurs

x — k2 — 1 y z=z 2k + 1 z k2 + k + i
satisfont à Féquation x2 -j- xy + y2 z2; de là la solution de

Diophante
2xz(z* — x2) 2zy(z* — y2) 2z[x + y) [(x 4- y)2 — z2]

18° Il est impossible de trouver deux triangles tels que les
deux plus grands côtés diffèrent également de même que les

plus petits.
19° Trouver un triangle dont l'hypoténuse soit un carré,

ainsi que la somme de ses cathèles (Fermât). Ces dernières
étanl x — u2 — v2 et y 2uv, on pose u l2— y2 et
v —: 2Ay. Il faut que x + y A4 + 4Py — 6X2y2 — 47g3 + yé
soit un carré, qu'on supposera

2 égal à celui de 72 — 2ly y2.

1 On la voit, pour la première fois, dans S'G-ravesande, Math. aniv. ele/n. (Leyde, 1727).
2 Ce procédé porte le nom de Fermât. Si a a2, ou si e s"2, on résoudra a -f- bx 4 ex2

4 dxz 4 ex4 y2 en l'assimilant au carré de a 4 ux -f- ex2, ou de u -f- ex 4 sx2, et on
disposera de il et de v de manière à obtenir une égalité de la forme Ax B. Connaissant une
solution x u, on en aura une nouvelle en changeant x en x' -f- n, et ainsi de suite. Eider a
traité des cas analogues de l'équation a -j- èx -f ex2 4 — V2-
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ce qui donnera A ~ et g — 119, solution à rejeter.

Posons, en conséquence, À — ^ + v, il viendra une expression

en p. et y qu'on assimilera au carré de p.2 + 148gy — 4v2;

on trouvera ainsi p 84, y 1343, X 1469, d'où

X 4565486027761 y — 106165229352

Lagrange a montré que ces nombres sont bien les plus petits
qui répondent à la question, ainsi que l avait affirmé Fermât.

20° Si (x, y, z)- définit un triangle, les nombres (2x + y + 2z,

x + 2y + 2z, 2x -f- 2y + 3z) en définissent un autre dont les

cathètes diffèrent autant que celles du premier. De là, le

moyen de trouver une série infinie de triangles dont les

cathètes diffèrent de la même quantité (Wilkinson). Les séries
ainsi obtenues, en partant cle 0, n, n, et faisant varier n,
donnent tous les triangles possibles (Monck). Voir M., 1906,

p. 113.
21° En outre du triangle possédant un angle droit, on

pourrait étudier le triangle possédant un angle de 60°. La
formule qui relie les côtés d'un tel triangle est x2 — xy + y2 z2,

et les formules générales clés côtés sont :
1

* sp - g2 - 2 fg r r= 3P - g2 + 2fg s 3^ + g

59. Si (a, b, c; cl) désigne une solution de l'équation
x2 + y2 + z2 — w2 donnant, en nombres entiers, les côtés et
la diagonale cVun parallélipipècle rectangle, l'expression

(a g- b g- d a g- c g- d b g- c g- d ; a g- b g- c g- 2d)

en désigne un autre dans le même cas (Monck). De là une
infinité de semblables solides, en partant de (1, 2, 2; 3)2.

1 Elles se tirent des formules de l'exercice 7, en remarquant que (2.s)2 (x -j- y)2 -f- %{x — y)2-
Les triangles quelconques lournissent également d'intéressantes questions. Ainsi considérons

la série des triangles tels que les côtés de chacun soient les demi-sommes de ceux du précèdent,

ces triangles tendront vers le triangle èquilatèral isopèrimètre (Mackay). Voir aussi
S. Œ., 1913, p. 182.

2 On a étudié de même, à la suite d'Euler, le parallélipipède rectangle dont les côtés et les
diagonales superficielles sont des nombres entiers, ainsi que le trièdre tri-rectangle à côtés
entiers. Mais on ne connaît pas de solutions générales de ces deux problèmes.
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60. 1° Désignons par E&> la partie entière du nombre non
entier go, on a :

(a) 0 <b w — Ecü</ 1 (|î) — 1 <C Eto — w </ 0

(y) Ew < w < 1 + Eto (8) E (to + ft) Eto + ft

<£) E (to + to7) — E (<o + to") E (to' — w") (ç) E (« — to) a — 1 — Eto

2° Entre go et &/ zï y a (Eco — Eco') entiers.

3° Dans les b premiers entiers, z7 y a E— multiples de a.

4° Le plus grand multiple de a inférieur à 1) est aE^-. On

peut le désigner aussi par l'expression b —

5° Déterminer x tel que le quotient q de a divisé par b ne

change pas quand on ajoute x à chacun de ces deux nombres.
On a

0 ^ a -j- oc + q (b + oc) ^ h x

d'où deux limites de x.
l6° Si 03 — Eco < - on a : E(n«) nEo>. On multiplie la

relation donnée par n et on lui ajoute, membre à membre,
la relation iß) après qu'on y a changé 03 en zzco.

7° On a : 0 ^ E(/2co) — /?Eco < n. On multiplie (oc) par n et

on ajoute la transformée de (ß) du n° précédent.
8° On a :

cl a a /— /— - ^
1

r; < r^—n ; V(° — V Ew < ——; ;

Eto to (i^to)2 2|/Eù3

1
Eto -|- |/(o — E03 — to <b - ; ccEto — E (too/) — E [(a — to7) to] ~ 0 ou 1 ;

3

E 0 ci il —]— 1 — E 0 ft ft "E ^ — E j// ci ci —j— 1 -|— 2 .— ci ;

E [/a (a + 1) (ft -j- 2) (a -J- 3) zn a {a -f- 3) 1
;

E\/a(a + 1) (a + 5) z= a2 + 5a + 3 ; (Goulard)

E (e')/n '.) n ß 1 (Ens. Math., 1906, p. 354)

Eïï E "
9° On a : E— E-r^-=E^-. On fait co 7 dans (oc) et

c b be b v ;

1 On n'a ainsi d'ailleurs que des approximations assez grossières, car, augmentant de 1 la
partie sous le radical, on obtient le carré de a(a -f- il*
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on divise par c\ on ajoute ensuite, membre à membre, avec

la relation (ß) où on a fait co ~

10° Faisons, dans la relation de 7°, n 2, w qr puis
2 adans (/S), w — y 1 et additionnons ; on conclura cfue

|ej — 2E^j est égal cl 0 ou à 1, selon que Ey est pair ou

impair (Catalan). Généraliser.
11° Pour a < b, on a :

E (4E—\c — 1 et
b a 2(. + E")]

Par exemple, pour la première relation, on fait d'abord
a a r^cb
C PLl,s w /7E«dans (a), co — et on multiplie par j ; puis &> ~ E— et

on additionne, membre à membre.
12° Soit (3 + V h)n a -f b\/ 5 o/7 a : a E(b\/ 5; + 1.

Voir Fitz-Patrick, op. cit. 563.
13° Voir Ens. Math., 1910, pp. 458 et 472, plusieurs

utilisations et figurations de la fonction Eco.

14° De la relation É(w + 1) 1 + Era, on conclut que, quel
que soit l'entier n, il y a un nombre non entier £ positif et plus

petit que 72, tel que co + -» 1 + E« ; ce qui donne £ nEoy

— nu + 77, d'où, à cause de ($)

EÇ 77 Eco — Epico) -j- n ;

à cause de 7°. On peut donc dire, avec Hermite, que dans la
suite

Ew / t \ [ 2 \(w 3_ — \ E CO -j- ~V n V 77/

chacun des (nEw — E(n«) + 11 premiers termes est égal au
premier.

15° Soit Ego a, l'expression

ri I n n—1 2 i t—^ n—2 4
CO + C2/^2co a 4- C2//>4co a +

^2/i, lw a d~ C2#l>3co' " a3 -j- C2/^5co"
3 cd -f

•L'Enseignement mathém., 17e année; 1915 13
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tend vers la limite \/ &>, à mesure que n augmente.
16° Le nombre de fois que le nombre premier p est facteur

dans n s exprime par

E — -f- E —^ —j— JE —5 -4- (Eegendre)
p /r p*

17° Si a < b, les ^ premiers termes de la

serie

E——- E —-—
a -f- 1 a 2

sont égaux au premier (Berger).
18° Démontrer les relations suivantes •

E -—1— 4- E "j" -f E ~j(~ -f- a (Gesaro)
'1 -t o

$ — bx « — c«r 1
TTLE =: SE 7 (Hermite)cb

SE^if 2E^, (Cesaro)

19° On pourra s'exercer sur d'autres fonctions analogues.
Ainsi, appelons f («) E(2«) — E(o)) l'expression de l'entier
le plus voisin du nombre &>, non entier ni moitié d'un entier;
on a :

lj + l| + + Eco (Cesaro)

61. Soit rt un nombre non carré, et désignons respectivement

par a, b, c, d, l'excès de n, de na, de nb, de /zc,

sur le plus grand carré inférieur au nombre considéré n,
na, zzô, /zc, ; les nombres 1, a, è, c, cl forment une suite
de Brocard. Une telle suite est périodique, e/ le nombre des

1 Chacun des deux membres de cette égalité représente le nombre de solutions du
problème figuré par la relation cy -f- bz ^ a (Cesaro).
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termes cle la période est inférieur ci 4n. Soient en effet k et l
deux termes successifs, et ku r2 -f- s ; on a :

l — s s — 2r 4 kn — 4r2 -f- r±s — 6'2 + 4s > s2

d'où P < 4/zk. Si h désigne une certaine puissance de 2, on a :

l2 (4/2) (2 \/ n) (\/2 [/ n)(\///2 \/ n) j/ « < 16/i2 a d'où l — Sn

oo r. 7 n • sin (272 — 1) 0-1- sin o
62. Posons kn ny\ L expression — 2 / ' 5 a pour

valeur n ou 0, selon que k est ou n'est pas multiple de n

(Libri).
Les fonctions 0° 0° -et (l —0° (i — 0° ont la

valeur 1 pour 0 ^5 x ^ a, et la valeur 0 pour toute autre valeur
cle x (Id.).

Libri lire de là de curieuses formules sur le nombre des
solutions des congruences cix — bx c et ctx2 — by2 c,
sur la représentation des nombres premiers, la somme des
nombres premiers compris entre deux limites données, la
détermination d'un nombre premier supérieur à une limite
donnée, enfin la somme des diviseurs de divers groupes de
nombres. Ces formules n'ont du reste aucun intérêt pratique.
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