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LE PREMIER CHAPITRE
DE LA THEORIE ELEMENTAIRE DES NOMBRES

PAR

A. Ausry (Dijon).

Avaxt-Provos. — Plusieurs jeunes correspondants m’ont si sou-
pent demandé des renseignements sur les tout premiers clements
de la théorie élementaire des nombres, que j’ai pensé qu’il seratt
utile d'en écrire un chapitre introductif’ faisant simplement pres-
sentir Uesprit et les méthodes de celte theorie.

Jai donc écrit ce chapitre, — par lequel jaurais dit commencer
mes études, — en y définissant les idées et les procédeés particuliers
a cette science. J'al ainsi rassemblé des formules, des théories et
des problemes épars un peu partout et dont le rapprochement fail
mieux et plus rapidement pénétrer le sujet, en meme temps qu’il
suggere de nouveaux points de pue et de nouyelles demonsirations,
Jai complété par des problemes célebres ou utiles, que j'al traités
accessoirement et seulement a titre d’application : il est aise de se
proposer autant gu’on voudra de problemes indetermines, et sou-
pent assez aisé d’en trouver une, plusieurs ow méme une infinite
de solutions; — mais les cas sont rares ow on peut trouver la solu-
tion générale, et cependant c’est dans ce seul cas que le probleme
peut étre considere comme résolu. — Car peut-on se déclarer entie-
rement satisfait de savoir uniquement que tel nombre répond &
telle question? Ce nombre a-t-il une particularité quile distingue ?
Est-tl sewl? le plus grand ? le plus petit ? le plus facile & découyrir?

Il semble d’ailleurs qu’il y aurait liew de réagir contre cette
marée montante des problemes particuliers, menacant de submer-
ston la science elle-méme, et qu’il faudrait se borner a des recueils
d’exercices choisis: interessants, comme enonces ou déemonstra-
tions; wtiles, comme illustrations de theories ou sujets d’études;
enfin, et surtout, susceptibles d’'une réponse complete et précise.

La théorie des nombres! comporte trois degrés bien définis :

1 Ce mot, qui désigne si mal son objet, ne peut étre remplacé par l'appellation exacte
d’arithmétique, détournée de son sens. On a proposé la dénomination d’arithmologie, qui ne
vaut pas micux et peut-dtre méme moins que théorie des nombres; arithmonomie scrait
micux mais est trop long: labrégé arithnomic me conviendrait assez, mais je n’ai ‘pas
wvoulu créer un néologisme.

L’Enseignement mathém., 17¢ année, 1915. 11
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[arithmétique élémentaire, gui pourrait porter le nom d’Euclide,
et dont le traité le plus récent est le recueil d’exercices, de Fitz-
Patrick ;

[a théorie élémentaire des nombres, ou arithmétique de Fermat,
mise en lumiere par Fuler et Lagrange, et pour la vulgarisation
de laquelle j’al écrit mes articles de ’Ens. Math. ;

enfin la théorie générale des nombres, ou arithmétigue de Gauss,
quie beaucoup ne peupentou ne veulent pas entreprendre : M. Cahen
vient de publier le premier volume de cette derniere.

Les domaines des devx premiers stades sont aujourd’hui bien
délimités ; aussi, la, on peut entrer en maltiére tout de suite. (’est
pourquoi j'estime suffisant le chapitre introductif tel que je lUai
congu, sans qu’il y soit besoin de préliminaires plus étendus.

A. Ausry (Dijon).

1. Définitions. La théorie élémentaire des nombres traite
des relations des nombres entiers entre eux, et particulie-
rement des formes sous lesquelles ils peuvent étre mis, ainsi
que leurs diviseurs et leurs multiples. |

Dans tout ce qui suit, saufl indication contraire, toutes les
leltres représentent des nombres entiers.

Les coeflicients «, 0, ¢, désignant des entiers donnés, on
dit qu'un nombre n est de la forme linéaire ax 4 b, ou de
la forme quadratique ax® - bxy + cy?, quand on peut déter-
miner, — ou tout au moins prouver qu’il existe, — cerlaines
valeurs entieres de x, ou de x et de y, qui rendent la valeur
de cette expression égale a n. On dit également qu'on peut,
dans les mémes cas, écrire n—ax + b ou n=—ax® -+
bry + cy?. |

Ainsi 47 est des deux formes 4x 4 3 et x* 4 3wy + 7Ty2,
car, faisant x == 11 dans la premiere, et x =5, y =— 1 dans
la seconde, on trouve 47.

Le plus souvent, les coeflicients @, 0, ¢ n’ont pas de fac-
teur commun : la forme est alors dite premitive.

2. Rappel des théorémes fondamentaux. Les recherches
de ce genre empruntent a I'algeébre I'art du calcul littéral et
celui de la transformation des formules; elles s'appuient en
outre sur quelques propositions arithmétiques élémentaires,
qu’il suffira de rappeler et qu’on trouve déja, au moins impli-
citement, chez Euclide. '
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Tout diviseur de a et de b divise ka + b et en particulier
a -+ b et a—Dbh. Réciproquement, si ¢ divise a et non b, ¢/
ne divise pas a 4= b.

Tout nombre divisible par plusieurs entiers premiers entre
eux, lest par leur produit.

St un nombre divise un produit de deux facteurs el qu’il
soit premier avec l'un de ces facteurs, il divise l'autre.

Tout nombre premier qui divise un produit divise au motns
un des facteurs de ce produit.

Un nombre premier avec plusieurs autres l'est avec lewr
produit. En particulier, le produit de plusieurs entiers infé-
rieurs a un nombre premier donné, ne peut étre divisible par
celut-ci.

Un nombre est une puissance n'*™ st les exposants de ses
facteurs sont tous des multiples de n.

St dewx nombres sont premziers entre eux, tl en est de méme
de leurs puissances. |

St un nombre premier divise a®, il divise également a.

3. Congruences. Deux entiers a et b, qui ne different que
d’un multiple de 'entier n, sont dits, d’apres Gauss, congrus
par rapport au module n?, et cetle relation s'indique par la
notation

(o) a=10b . (mod n)
Par exemple, on a:

) (nx + @) (e + @) = ad (id.)
De (&), on tire:

(2) atc=b+e,  ka=kb. (id.)

S1tA=a, B=0b, G=c, ... (mod n), on peut écrire :

A+B=a+1b,
(3) . (mod n)
fA4+gB+ArC + ... = fa+ gb+ he + ... :
(4) ABC ... = abe ... (id.)
d’ou |
(5) : A* = ot . (id.)

, e .. . a
! Le plus souvent, b représente le reste de la division de a par n; on écrit alors 6 = R - .
n
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Si ka = kb (mod n) et que d soit le p. g.c.d. de fi et de n,
on a:

(6) a« =D . (mod §>

On appelle congruence une expression algébrique de la
forme Ax™ + Bam=' + Caxm—2 4 ... Le + M = 0 (mod »n), ol
les coeflicients A, B, ... L, M sont entiers ou nuls, et les
valeurs de v astreintes a étre également des nombres entiers.

Les valeurs de .x inlérieures & n qui satisfonl a cette con-
gruence sont les racines de celle-ci; les autres sont ses
non-racines. Ainsi les nombres 1, 3, 4 sonl les racines de
x®—3r*— x4+ 3=0 (mod 5) et 0, 2, ses non-racines. La
congruence x* 4+ 2x + 5 =0 (mod 7) n'a aucune racine:
elle a donc les non-racines 0, 1, 2, 3, 4, b, 6.

4. De quelques formes particuliéres. Les formes linéaires
s'indiquent d’'une maniere plus expressive au moven de carac-
téres gras: ainsi 'expression 4x + 1, qui désigne un mul-
tiple de 4 augmentéde 1, s'écrira 4 + 1. On remarquera que
les formules 4 4 3, 6 + 4, par exemple, peuvent s’écrire
aussi 4 — 1, 6 — 2; on peut souvent de la sorte condenser
deux formules en une seule: ainsi on écrira « les formules
8 &+ 3» au lien de «la formule 8 4+ 3 ou la formule 8 -+ 5».

Voici maintenant quelques propositions trés simples, la plu-
part assez connues, et quon pourrait étendre indéfiniment.

Le produit de plusieurs entiers est pair st lun d’'eux est
pair, et 1l est impair s¢ tous sont impazirs.

Tout entier est de l'une des deux formes 2, 2 4+ 1; ou de
Uune des trois formes 3, 3 == 1 ou de Uune des quatre formes
4, 441, & + 2, ctc.

Tout nombre premuer, sauf 2, est de l'une des formes & == 1.

Tout nombre premier, sauf 2 et 3, est de l'une des formes
6 -+ 1.

De méwme, fout nombre premier est de l'une des quatre
formes 10 4= 1, 10 == 3; ou de lune des qualre suivantes
12 = 1, 12 += 5 elc.

Le produit de nombres de la forme ax + 1 est isomorphe
(le la méme forme). Ainst (6.5 4+ 1)(6.9 + 1) = 6.284
+ 1 =06 4 1. Conséquence de (1).
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Tout nombre impair est de U'une des formes 4& == 1, selon
que le nombre de ses facteurs & — 1 est pair ou impair. Car
le produit de deux nombres 4 4 1 donne un produit 4 4- 1,
ainsi que celui de deux nombres 4 — 1, tandis que
(4f + 1)(4g — 1) = & — 1. On conclut de la que tout nombre
4 — 1 a quelque diviseur isomorphe. 1d.

Tout nombre impair et non multiple de 3 est de Uune des
formes 6 + 1, selon que le nombre de ses facteurs 6 — 1 est
paur ou tmpaur. 1d.

Le carré d'un nombre entier est pair ou impair, selon que
ce nombre est lui-méme pair ou impair. 1d.

Le carré de 2a + b est de la forme 4ax + b%. St a et b sont
impairs, ce carré est de la forme S8ax - b2 Ainsi les carrés
de nombres des formes 2, 2 + 1, 6 =1, 6 &= 2 sont respec-
ttvement des formes &, 8 + 1, 24 + 1. 12 + 4.

Aucun nombre 8 + 2, 8 + 3, ou 8 — 1 ne peut étre un
carré. Ainsi x* 4+ 4y + 2 ne peut représenter un carré, car,
selon que x est pair ou impair, celte expression prend la
forme 4 4 2 ou la forme 4 + 3, qui ne peuvent convenir a
un carré. De méme, pour x différent de zéro, aucune des
expressions x? = 1, x* &= x + 1, x% 2= 2x, ... ne peut repré-
senter un carré; de méme x® + 4xr + 5, puisque cette ex-
pression peut s'écrire (r + 2)2 + 1.

Tout carré est de l'une des formes 9 ou 3 + 1; ou de l'une
des sutvantes 25 ou 5 + 1 ete. Tout bicarré est de 'une des
formes 625 ou 5 4= 1; eic. (Voir exercice n° 10.)

Soit k tmpair, le nombre y? 4+ kz? ne peut étre premier si 'y
et 7 sont de pariies différentes. 1° En particulier, soit £ = 1;
le nombre impair y? + 2% n’est pas premier s’il n’est pas de
la forme 4 + 1.

2° Soit k= =+ 2; y? 4= 2z% n'est impair que si y est impair,
et alors la formule linéaire de %2 + 2z%2 est8 4+ 1 ou 8 + 3;
celle de y? — 222 est 8 4 1 ou 8 — 1. :

3° Soit £ =3; si y est impair et z pair, y ne peut étre
que 6 1, son carré 24 &= 1 et celui de z, 4, de sorte que
y* 4+ 32 =12 4 1. Si y est pair et z impair, on a les deux
cas

3y =642 et =611 ou 6 -3,
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d'ou y? 4 322 =12 + 7. Ainsi s¢ le nombre y? -+ 32% est pre-
meer, il est de la forme 6 4 1.

5. Analyse indéterminée. On appelle équations indéler-
minées un systéme d’équations en nombre inférieur a celui
des inconnues, lesquelles sont supposées entiéres; et ana-
lyse indéterminée 'art de les résoudre ou de démontrer
leur insolubilité. On connait seulement la résolution des
équations indéterminées des deux premiers degrés; et en-
core les calculs qu’elles nécessitent la rendent-elle a peu
pres illusoire, tout au moins pour le second; aussi, le plus
souvent, les résout-on par des titonnements méthodiques,
quon cherche a rendre aussi rapides que possible.

Occupons-nous de 'importante équation ax®+ bx + c = y2.
Comme il ne s’agit que de nombres entiers, la premiere idée
qui se présente est d’essayer pour x, successivement les
nombres 1, 2, 3, ..., soit directement, ou mieux a l'aide de
la méthode des différences. Mais comme le plus souvent, le
nombre des solutions, c’est-a-dire des valeurs satisfaisant
au systéme, est peu considérable, il est préférable d'essayer
de déterminer les régions ou peuvent se trouver des solu-
tions : par exemple, on localisera notablement les recherches
si on arrive a fixer des limites inférieures ou supérieures
des solutions. Ou bien, — ce qui sera a la fois plus facile et
plus avantageux, — on essaiera de déterminer les régions,
— en général bien plus vastes, — ou il ne peut se trouver
aucune solution; l'idée de ce procédé est due a Frénicle,
qui lui a donné le nom d’exclusion.

Applications. Soit a résoudre 4&x* + 5x + 7 = y*. On
écrira :

poar =10, 4a* 4 5x + 7 =7

9

......... Ll ieiacesmiaan.s b 8
17

........ 2 33 8
25

......... 3 ... ...... 58 8
33

......... P 8
41

...... S oo 182 8
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jusqu'a ce qu'on arrive a un carré. Ou bien on circonscrira
les régions des nombres 4 essayer, en écartant de prime
abord les valeurs inacceptables, a cause de leur forme
linéaire, et essayant ensuite les nombres non exclus.

Ainsi les expressions 1522 4 30x + 17 et 15x* + 30 + 14
ne peuvent représenter un carré: la premiere, parce qu'elle
est de la forme 3 — 1; la deuxiéme, parce que, d’une part,
une valeur paire de x la rendrait de la forme 4 + 2, et
qu’en posant & = 2y 4+ 1, elle deviendrait 60y* -+ 120y 4 59,
formule qui ne peut représenter un carré, que y soit pair
ou qu’il soit impair, car elle ne donne que des résultais de
forme 4 — 1, ou, plus simplement, parce qu'elle est de la
forme 3x? + 2, qui ne convienl point & un carré,

On peut utiliser la remarque suivante : posons x=fy + g,
1l viendra :

ax? 4 bx + ¢ = ag® + bg + ¢ . (mod f)

Par exemple, pour x =8 40,1, 2, 3,4, 5,6, 7% ona:

bx? +5x +7=8+4+7,0,1,2,7,4,5,6:

ilyadonclieu d’essayer seulementles valeurs x =8+ 1, 2, 5,
c’est-a-dire les nombres 9, 10, 13, 17, 18, 21,

Soit 15x% + 132 + 11. Le module 2 n’apprend rien, mais
I'emploi du module 3 fait voir que cette expression ne peut
représenter un carré si x est 3 ou 3 — 1. Posons donc
x =3y + 1; on trouve 135y2 + 129y 4 39, formule qui ne
peut donner un carré que si ¥y =5, ou 5—1, ou 5 —2,
c’est-a-dire si x = 2y + 1 est de la forme 15 + 1, ou 15 — 2
ou 15 — 5. On essaiera donc les nombres 10, 13, 16, 25, 28,
31, 40, 43, 46, 55, 58, 59, ... en écartant, sans autre examen,
les valeurs de la forme non terminées par 'un des groupes
suivants :

00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64,
69, 76, 81, 8%, 89, 96,

par lesquels se terminent les carrés numériques.
On pourrait du reste examiner encore ce que produisent

1 Abréviation de 8 + 0, 8 41, 8 + 2, etec.
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les suppdsitions y="TT+1,T7T+2 ... 11,11 +1, .. etc.,

ce qui donnerait d’autres conditions réduisant encore le
nombre des essais. Ainsi, avec les valeurs x == T+ 2, 3, 5, 6,
Iexpression proposée ne peut étre un carré: il n’y a donc
pas lieu de faire les substitutions «x =9, 10, 12, 13, 16, 17,
19, 20, 30, 31, 33, 34, 36, 37, 39, 40, 44, 45, 47, ...; on sub-
stituera seulement les valeurs x — 25, 28, 43, 46, 70, 85, 88,
91, 106, ... pouvant conduire a des carrés. S'il y a des solu-
tions?', on les trouvera ainsi avec beaucoup moins de peine.
(Voir les exercices n® 24 et suivants.)

6. Identites. Bien que les relations indiquées par des iden-
tités algébriques s’appliquent aussi bien aux nombres non
entiers qu'aux nombres entiers, elles n’en sont pas moins
importantes en. arithmétique, comme fournissant souvent
des conditions permettant d’éliminer de nombreuses classes
de nombres dans cerlaines recherches, et par suite de les
rendre plus accessibles, et les tatonnements moins nombreux
et mieux ordonnés. A ce titre, il convient de rappeler plu-
sieurs identités, qu'on démontrera en les considérant comme
résultant de transformations d’identités connues ou évi-
dentes.

Ainsi la suivante

A—C=({A—B)+ (B—C

donne, en faisant

| 1 1
A: L) B: y C: N
a — [ o — Y o — 0
puis
a a b ¢ - d
U:-a—,, ‘J_Z‘/—, 'Y_—?, Ozd, y

Videntité de Fontaine?

(7) (ac” — a’c) (bd” — b'd)
= (ad’ — a’d)(bc" — b'c) 4 (ab’ — a'b) (cd’ — c'd) ,

1 En rdalité, il n’y 2n a pas. Voir l'exercice 24, 6°.
2 Traité de calcul différentiel et intégral (Pavis, 1770). Cette identité lui sert a 'intégration
de nombreuses classes de différenticlles rationnelles.
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laquelle, pour d'=10, V'=—d, ==+ a, a°=7F¢, se
transforme en 1'identité de Fibonacct

(8) (a® + ) (b? + d?) = (ab == cd)? 4 (be = ad)?

qui montre que le produit de deux sommes de dewx carrés
est tsomorphe, et cela de deux maniéres différentes, a moins
guwon ait ad = be. De la, en conséquence, le moyen de ré-
soudre, d’une infinité de manieres, 'équation indéterminée
x? + y? =z +

7. L’identité

(9) (04 B) (e — f) = o — {7

est fréquemment utilisée. Ainsi: 1° faisant « = a® + 0? et
= a® — b%, on trouve celle-ci

(10) (a? + b)? = (a® — D?? -+ (2ab)?

entrevue par Pythagore et Platon et qui fournit une infinité
de solutions de l'équation x? 4 y?=—=2z21. (Voir exercices
n® 6 et 58.) |

2° Faisant « — «* + 02, 8 =\/2ab, on trouve cette iden-
tité de Leibniz

(11) at + bt = (a? 4+ /2 ab + b?) (a®> — /2 ab + b3,
laquelle devient, en changeant b en /20, cette autre d’Euler
| (12) a* + 40* = (a® 4 2ab + 20%) (a® — 2ab 4 20?)

qui démontre ces trois propositions de Goldbach, de Sophie
Germain et d Aurifeuille: aucun nombre 4x*+ 1, x*+ 4
ou 2 4 1 west premier, sauf le nombre 5% On n’a qu’a
fairea =1, b=x; a=ux, b=1;: a =1, b = 2°.

8. Cette identité d’'Euler

(18) (14 aj(t +b)(14+¢).. =1+ a+ b(l4a)Fc(l4+a)(l+bj+ ...

! Les nombres x, y, z sont dits alors former un triangle (rectangle), dont 5 est Phypote-
nuse, et y, 3, les cathétes. Les nombres a et & sont les générateurs du triangle.

? Landry n’avait pu arviver 2 décomposer en ses facteurs le nombre 258 L 1 qu’au prix de
caleuls des plus laboricux, et il pensait que si cette décomposition venait a se perdre, bien
des siceles se passeraient avant qu’on la retrouvat. Or on voit immédiatement que ce nombre
est le produit de deux facteurs 229 4- 215 L 1 e} 229 — 215 f |,
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“en fournit beaucoup d’autres, la plupart fort intéressantes.
Il suffira de mentionner les cas particuliers suivants.

1° Pour «a = b=c= ... = x — 1, on a celle-ci d’Eudoxe
1 xn L 1
(14) ’1—{—x—{—x2—|—...—|—x""“:——~_~1--,
T
qui donne cette autre démonstration de (D) : posons x = %

b= a -+ hn; le nombre (a + hn)¥ — a* est divisible par
(@ + hn) — a, donc, de b = a (mod n), on déduit OF = a*
(mod n). ’

Ainsi a* — bk est divistble par a — b; donc, en mettant
— b, au lieu de b, ak — (— b)¥ est divisible par a 4+ b, ce
qui revient a dive que selon que k est pair ou impazir, a* 5= bk
est divisible par a + b.

2° Pour a = ’—i— , b == % y CTE g (13) donne la somma-

tion de certaines expressions trées importantes appelées
nombres figurés, nombres combinaloires ou coefficients bi-
nomiaux, et qu’on représente par la notation

C _nn—1"1{n—2) ... (n—a-+41)

n, a _ a

L’identité ainsi obtenue

C _n+1)(n+2) ... (n+k)
‘n+-k, k bt

=1 -+ Cn,l + Cn—{—l,? + et Cn-{—/f—{—l,k g

(15)

mise implicitement pour la premiére fois sous cette forme
par Briggs, a été démontrée par Pascal, a I'aide de sa mé-
thode de proche en proche?. Elle peut servir a faire voir que
le produit (n + 1) ... (n + k) est divisible par le produit k!
Mais on démontre plus aisément cette proposition, due éga-
lement a Pascal, en changeant successivement n en n — 1,
n—2, ... dans la relation suivante, aisée a établir

(16) Cor =Chri i+ Cog it o

1 Cette méthode, fréquemment employée, et dont on trouvera plus loin plusieurs exemples,
consiste & s’assurer qu’'une propriété supposée vraie pour le cas d’'une expression F (n), 'est
encore pour F (n 4 1), d’ou on conclut sa généralité, si elle se vérifie pour F(1); car elle
I'est par suite pour F (2); ’étant pour F(2), elle l’est pour F(3); et ainsi de suite a l'infini.
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ce qui conduit, de proche en proche, a des identités évi-
dentes de la forme Cj , = 1.

L’expression G, jouit d’ailleurs d’un grand nombre d'in-
téressantes propriétés, qui sont plutot du domaine de I'ana-
lyse algébrique. 1l suffira de faire remarquer, en premier
lieu, qu'elle n’a de signification arithmétique que si n et &
sont des entiers positifs, avec n > A, mais que cependant
on admet par définition quon a:

(17) Cop=1, C=1.

b

En second lieu, que si p désigne un nombre premier > Kk,
Cyp,x est divisible par p (Euler), ou bien qu'on a :

(18) C

e (mod p)

car on peut écrire

/"Qp,k — pCp-l,k——l '

et p étant premier avec £, il divise Cp 4.

9. Utilisation des irrationnelles. Un grand nombre de for-
mules se généralisent aisément par une substlitution d’irra-
tionnelles &4 des indéterminées rationnelles. Ainsi changeant
dans (10) 6 en b V' k., cette formule devient (voir exercice
n°7

(19) (a4 kb= (a® — KD 4 k(2ab)? .

Mais on arrive de la maniére suivante a des résultats beau-
coup plus intéressants.

Euler, le premier, a remarqué que deux expressions telles
que a + bV 'k (ot k est positil ou négatif) ne peuvent éire
égales que si les parlies rationnelles le sont elles-mémes,
ainst que les coefficients des parties irrationnelles. 1l en dé-
duit, a l'aide de la formule du binome?, cet important théo-

1 On y arrive plus simplement ainsi: Soit (a - \/—1)—)2 = A+ BY 5, doilt A= a?+ b,
B == 2¢; il viendra (¢ — \/3)2 —=A—BYb.Orsiona:

ax=VoF=ax/7,

on aura aussi :
(a = VI == BV o) e+ Vb)) = lae + 60) £ @b + af)y 7 .

La proposition est donc vraie en général.
Autrement. Soient les relations

@+ VTE =a+ 85, @ VT =BT .
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réme: la relation F(a +\/b) = A + BV b entraine cette
autre F(a —\/b)=A — BV/b, F désignant une fonction
entiere.
Cor. 1. Posons (a + 0VE)(x +yV'E) =A + BV'k; on
en tirera
ax 4 kby = A ay + bx = B, d’ou x et y.

II. Trouver un cube qui sott en méme temps de la forme
u? + kv (Voir exercice 51.)

1. Si (« + Uk = A + BV/%, on aura aussi (@ — b\/k)
= A — BV'k, d’ou, en multipliant,

[@® —- EbP* — A% — EB* .
Done, si I désigne une fonction entiére, les égalités
Fla + 0y k)=a -+ By k el Fla?2 4+ kb%) = 2* + kZ*

sont équivalentes. (Voir exercice n° 41.)
IV. Soit
(o] (@ + by F) (e 4+ By k) = A + BY &
on aura aussi
(@ — by F)(e— 8y k) =A—By &,
d'onr, en multipliant,

(20) (a? — kb?) (o — kE¥) — A? — kB2 .

Donc le produtt des expressions de la forme x* 4 ky? est iso-
morphe (Goldbach). Tenant compte de («), (20) donne cette
importante identité, due & Euler (voir exercice n° 46)

(21) (a? + kb?) (a® 4 k() = (aa — kOR)? + k{aB + ba)® .

C'est une généralisation de (8), laquelle la comprend en
méme lemps, comme cas particulier, en y changeant ¢ en

-k -k . o 5 3 N =
L’expression (¢ 4 V by — (e — &/b) est algébriquement divisible par (¢ + y b) — (a — \/b)
= 2\/77, c’est-a-dire qu’elle contient V% dans tous ses termes, ce qui demande qu’on ait
A — A’ = 0. D’ailleurs le produit

(A 4+ BYB) (A + BV B) = (a2 — Bt

est rationnel, ce qui conduit a écrire

(AB’ + BA"WE = 0 , d’oi B'=—B.
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b\ F., ben o et den B/ k. Comme le premier membre ne
varie pas en y changeant & en — b, il en est de méme du
second membre, et on a par suite:

(22)  (ax — kbR 4 k(aB + ba)? = (ax + kbB)® + k(af — bo)? .

10. Emploi des imaginaires. La considération des imagi-
naires conduit 4 des résultats analogues. Une transformation
trés usitée consiste a remplacer a* -+ 6% par le produit
(@ + bi)(a — bi) el combiner plusieurs expressions de ce
genre. Ainsi on a:

(@® + b = la + bi)2 (e — Di)* = (a® + 2abi — V?) (@* — 2abi — b?)
= (a® — 0¥)? — (2abi)?
d’ou l'identité (10) (Euler).
Celle de Fibonacci (8) s'obtient de méme, en remarquant
que le premier membre peut s'écrire
(@ 4 bi) (¢ = di) (a — bi)(c ¢ di)
= (ac ¢ bd £ adi 4+ cbi)({ac I= bd — cbi - adi)
= (ac ¢ bd)? — (ab = cd)*i® . (Euler)
Enfin, si, avec Mathews Collins, on a fait dans (7)

a=o+ 5, a=vy-+3, c=— v+ 3, ¢ = a — [,

b= + 8, Ve=vy ¥, d=—y +0i, d=o —Fi,

on trouve cette identité d'Euler

S (@24 B2+ y2+ ¥ (o2 B2 - ¢ - 8%) = (a0 + 35" 4 vy’ 4 080)°
+ (af” — Pa’ — y8" +- 8Y')* + (ay’ + B — 0" — BE')?

| - (ad — By — )’

(23]

qui montre que le produil de deux sommes de quatre carrés
est isomorphe. [Noir exercice n°15.) :

11. Figurations arithmétiques. La méthode arithmo-gra-
phique a, — comme la méthode arithmo-algébrique, — cet
inconvénient d’étre indirecte et de se préler encore moins
que celle-ci, a la représentation des conditions arithmé-
tiques. De plus elle utilise des figures dont on ne sait pas
toujours lire les propriétés et dont il est souvent difficile
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d’affirmer la généralité ou les limiles d’emploi. Mais elle a
cet avantage de représenter synoptiquement un ensemble
de propriétés qui la rend
quelquefois aussi suggestive
dans bkes recherches que com-
mode dans les exposés et dans
les démonstrations. On com-
prend que les premiers arith-
méticiens l'aient employée
dans ce but, préférablement
a l'algebre.
D J' r P On traitera seulement ici
du quadrilatére de Brahma-

gupta : on appelle ainsi celui qui est a la fois inscriptible et
orthodiagonal. (Voir exercices n” 1, 2 et 3.)

L° Soit O l'intersection des diagonales AC, BD d’un tel
quadrilatere. Les cdtés seront entiers si 'on prend :

AO — aa , BO — ab | CO =03, DO =« ,

a, b et o, B désignant les cathetes de deux triangles rec-
tangles® dont les hypoténnses sont ¢ et y. On aura en effet

AB = =c¢ | BC = by , DC = j¢ , AD = ay .

De plus, on aura, en abaissant les perpendiculaires OJ,
BE sur DC,

DO.OC abB s s b . )
0J = —pc— — —c—‘- , dou CE :z(b@ — aa) , BE = E(a(ﬁ + ba)

2° La relation évidente OB?% 4 OC%? = BE? 4+ CE? conduit
immédiatement a l'identité de Fibonacci qui, tres probable-
ment, y est arrivé ainsi, si toutefois elle n'est pas de Brah-
magupta lul-méme.

3° Supposons que y soit, non plus un entier, mais une
irrationnelle V'C; on tirera ainsi de ce qui précede, une
nouvelle solution de l'équation x® 4 y* — (, connaissant

. 1 Brahmagupta opére sur le quadrilatére correspondant aux donnédes ¢ =3, b =4, o =35,
(8 =12, ou bien
0OA =15, OB =20, O0C =48, OD =136, AB =25 BC =252, CD=230, AD =139 .
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une premiére solution «? 4+ %= C: construire le triangle
af‘

OB=4«, OC=p. BC=y; prolonger OB, de OD =+,
a et b désignant les cathetes d’un triangle d’hypoténuse c;
on n’aura plus qu’a joindre DC et abaisser la perpendiculaire
BE, ce qui donnera'

b_____(j——aa '*.':"BE'::aB_l'[LOC .

g = B == c , i C

4° Supposons a? — kb? =1, a® — k{3* = C; on aura, avec
Brahmagupta,
(k0B — aa)? — k(al + ab)® = C .
Changeons en effet dans 3°, @, b, 8 et y en aC, bC\V — k.,
BV — k et y\/— k; il viendra:

x = kO — aa , y=aB + ba ,

ce qui donne une autre solution de x? — Ay? =

5° Voici une maniére d’arriver plus
aisément a l'identité de Fibonacci que
par 2°. Soit 'angle droit ABC; menons,
par le sommet, la droite quelconque DE,
sur laquelle on abaissera les perpendi-

culaires AD, CE. On a,
rapport de AD a DB,

désignant le
|4

go |~

(AD? + DB? -+ (BE? - ECY
— BD + BE)® + (EC — AD)2

3 c

ou bhien
(G e (8= (5
5 5 8 g

12. Descente. On appelle ainsi, d’apres Fermat, une mé-
thode de démonstration de l'impossibilité de certaines pro-
positions, consistant a faire voir que ces propositions sup-
posées vraies pour des nombres donnés, demandent, par
cela méme, qu’elles le soient pour des nombres plus petits;
ce qui fait que de ceux-ci on tirerait d’aulres nombres encore

1 Voir Chasles, 4p. Hist., p. 441 et J. L. (1837), p. 37.
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plus petils et jouissanl des mémes propriétés; et ainsi de
suite, ce qui implique conlradiction avec le nombre limité
des enliers inférieurs & ceux donnés d’abord.

Exemple. L'aire d’un triangle ne saurait étre un carré
(Fermat). Démonstration rétablie par Euler. Les trois cotés
étant /2 4 g2, 2fg et f2— g? laire A est fo(f*— g% ; fetg
sont premiers entre eux avec 2 — g% Pour que A soit un
carré, il faut que f, get /2 — g* sment eoalement des carrés;
posons en conséquence [=— 1% g=p?; [?— g =}*—p*
doit étre un carré. Or 1 el p sont premlers entle eux, de
méme que A% 4 p? et A2 — p*; ces deux derniers sont donc
des carrés. Ecrivons donc

W pi=r?, NP —pZ=s, dou prA4 =21, ¥ 2u2=1?

La derniére égalité donne, a cause de (19)

s=1—2u?, p=2tw, r—1>+2¢>, dou IM—p?fs?=1"+ hut,

¢’est-a-dire un triangle ¢2, 242, % dont l'aire A’ = (*u? serail
également un carré et qui serait beaucoup plus petit que le
premier, car on a:

A = W22 (0% — ot = 4w (1t 4 Lut) (2 o 207 (07— 20 > AT

\

On aurait ainsi la possibilité de trouver une suite indéfinie
de triangles dans ce cas, ce qui est impossible puisqu’il
s'agit de nombres entiers, qui ne peuvent indéfiniment dé-
croitre. (Voir Llns. Math., 1909, p. 331, pour un autre exemple.)

Exercices.

1. Trouver graphiquement les développements de (a + b)

(c+d), de (a == b)%, de (a+ b)(a— b), de <_+._.}?> (L;_b>“
(Euclide), ainst que la sommation d’une progression arith-

métigue (Archimede).
2. La somme des n premaiers impairs successtfs est un carré.

1 C’est de cette dernicre figuration qu’'on a tiré I'idée de remplacer les multiplications par
des soustractions, a l'aide de tables de quarts de carrés.
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Ilen est e méme de deux triangulaires successifs*. Toul carré
unpair est la différence de dewr triangulaires, et en méme
temps, Loctuple d’un triangulaire augmenté de Uunité (Pytha-
goriciens). Se démontrent par des configurations géomé-
triques de points.

3. Démontrer géométriquement que si (a, b) est une solution
de x? —2y2=—n, 2b+a, a4+ b) enestune de x* —2y*—= —n.
Construisons le triangle rectangle isoscéle ABC; abaissons
sur 'hypoténuse AC, la hauteur BD et d'un point E de BC,
la perpendiculaire EF. On aura:

AF? 4 EF? = AB? + BE? ou (20 + a)® +a® = 2(a + 0} + 207,

en posant DF = 0, FG-= a. Cette proposition semble due

aux Platoniciens, qui s’en servaient pour trouver des appro-

ximations de plus en plus serrées de U'irrationnelle /2. en

partant des solulions @« =3, 6 =2, de I'équation 2% —2y%2—1.
4, Résoudre les équations

lo Ax = By ; 20 xy = Az ; 3o xy = uv ; o x? — yz

90 x* — ay-; 60 ayz = tuy ; 70 x% = tuv ; 8o a2y = u?v .

1 Si A el B sont premiers entre eux, on pose x =— Bua,
y = Aa, o entier quelconque.

Si A et B ont 2 comme p. g.c.d., on écrit: /= Ba,
]Z:L/ = Ao

2° Soit A = ab; on écrira z = yd, x = ay, y =">0y; yeld
quelconques. Il y a autant de solutions que de maniéres de
décomposer A en deux facteurs.

3° On fera x —=aff, y =90, u=oay, v =703, «, B, ¥, 0,
quelconques.

4° On fera x = afy, y = a’f3, 2 = fBy°

5% Soit a = b®*c; on fera x = bca, y — ca®.

6° On écrira: x = aff, y = v0, Zz==¢p, I =ay, u=— f3,
R 599.

70 On écriva: x = affy, | = o*@3, u= [Py, 0 = y2a.

. . . x{x 41
1 On appelle triangulaire un nombre de la forme —%l .

L’Enseignement mathém.. 17¢ année; 1915.
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8 On écrira: x=aff, y = y%0%, u =ay, v = 32071
5. Résoudre xy + Ax 4+ By = C. On a:

B :
1‘-—A _I_C—A

 x -+ B

Soit AB 4- C = ab; on posera: x=—a—B ou 0 — B,
d’ou deux solutions pour chaque décomposition de AB + C
en deux facteurs (Euler).

6. Résoudre x? - v? = 22 Posons z =y + z’, ce qui nous
fera éliminer un carré? Il viendra x? = z'(2y + z'), ce qui
conduit a poser:

x—=tu, F=0u, 2y+z=w?, doun yr=u(v?—1?, 2z=u(v*41* .

On retrouve la formule (10) présentée un peu plus généra-
lement, telle qu’Euclide 'a donnée.
1. Résoudre x* — y? — az®. Soit a — fg; on peut écrire:

3 s 42 3 2 P g e £ 2 2 ¢ o 2 2 T
x+ry—=fr, x—y=—gu? dot 2x=fN4gu?, 2y=f\N—gp?, z==0p. .

Il v a autant de solutions que de manieres de décomposer «
en deux facteurs (Lagrange).

8. Tout cube est €gal a la différence de deux triangulatres
successefs (Ibn Almadjdi).

9. Tout nombre de la forme x* &= x + 1 est la somme de
dewx triangulaires (de Roquigny). En général, tout nombre
X2 xy + y?est en méme temps de la forme z* + 3w? (Euler).
Voir Ens. Math., 1907, p. 441. .

10. Awcun nombre 2(x* + y? 4 xy) ne peut élre un carré
(Fermat), ntaucun des sutvants 2x% + 3y2, 2w? 4 y?, 3x? 4 7Ty?2,
bx* 4 Ty?, 6x% + Ty?, ni le nombre 2x* 4+ 2 (Euler).

St a et b ne sont pas tous les deux divisibies par 3, ou 7,
ou 11, ou 19, ou 23, ... il en est de méme de a% 4- b2

1 On multiplierait aisément ces exercices, et d’autres de genre analogue. En voici, par
exemple, un da a Cauchy : les nombres a, b, ¢ étant premiers entre eux, la solution générale
de ax 4+ by = cz est donnée par les formules

x=ba—cf , y=cy—aa , z=by—af} .

2 Ce procédé d’élimination d’un carré de I'’énoncé est dtt a Diophante, qui pour résoudre

oy -

x® 4+ ax + b = y?, égale le premier membre a (x 4 2)%, ce qui lui donne x = ;_,- 52 d’on

une iufinité de valeurs fractionnairves de x, en faisant z =1, 2, 3, ...
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11. Tout nombre 2a? — b? est en méme temps de la forme
x*— 2v% Tout nombre 5a® — he est en méme temps de la
forme x* — 5y% (Lagrange). En général, on a cette identilé
de MHathews Collins

§a) — (FF + g0 = ( + g% (ga & fU)2 — [(f* + )b = fgal?

12. Le double d’un nombre de la forme x* -4 y? 4 xyv est
wne somme de trois carrés, et le double de son carré, la somme
de trois bicarrés (Catalan). Il en est de méme du nombre
X2+ vZ+ 27 — xy — yz — zx (Ed. Lucas).

o/ J o/

13. a+! + 1 n'est jamars divisible par a® — 1. En effet,

le quotient de @* 4= 1 par « 4= | peut s’écrire

ala T4 TR ) L
14. Posons F—ax®++2bxy-y? x = x4V, vy = X 40y,

on irouvera, en substituant, une nouwvelle forme F' — o'x'?
+ 20Xy + ¢'y'® telle que b'®—a'c’ = (b? — ac)(ad — Fy)%
Tout nombre représentable par la forme ¥ lest par la forme
F', et la réciprogue a liew également si o0 — By = =+ |
(Lagrange).

15. 1° Faisant dans (23) d = ¢ = 0, on arrive a cette con-
clusion que le produit de deur sommes de trois carres est
une somme de quatre carrées* (Euler).

2° Chercher U'expression du produit de la somme de quatre
carrés par 3 = 12 4 12 4+ 12 4- 0, par 4 = 1% + 12 + 12 + 12,
par 4 —(— 12+ 12412+ 1% par b=4+ | + O+O par

=4+ 14+140,par 7=4+1+14+1, parl0=4+44
+ 1+ 1, ete.; on obtiendra ainsi diverses formules, dont
les trois premieres sont dues a4 Euler, Cauchy et Jacobi.

3° On trowvera une généralisation de (23), due a Lagrange,
en y changeant 8,v, d, 3 v 0 en g\ i , Vol VR, GV k
N T. VT

16. Soit A le produit de nombres impairs a, a', a”, ... les
deuwx nombres

A—1 . a — 1 (L’—’ll
2 ¢ 2 7

! Cauchy a fait voir que ce théoréme résulte de la considération d’un triangle projeté sur
trois plans rectangulaires.
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sont respectivement de méme parilé que les suivants

A? — 1 a®—1 a’* — 1

5 A et —g -+ g + (Gauss)

17. Toute sixiéme puissance est de l'une ces formes T+ 0, 1;
toute dixieme puissance, de l'une des formes 11 4 0, 1; toute
douziéme, de Uune des formes 13 + 0, 1 toute seiziéme, de
Uune des formes 4T+ 0, 1; ete. Par exemple, on a, pour les
carrés, les formes T+ 0, 1, 4, 2; d'ou, pour celles des bi-
carrés, T4 0, 1, 2, 4; et pour les sixiémes puissances,
T4-0, 1,1, 1.

18. Divers problemes de Goldbach et d’'Euler. Voir Ens.
Math., 1909, pp. 354 et 355.

19. Le quadruple d’un triangulaire ne peut étre un trian-
gulaire (de Rocquigny). On devrait avoir ? 4+ x = 4y2 + 492,
égalité qui revient a 'une quelconque des suivantes:

2t + x4 1= (2y + 1)%, 22 4+ 1 =+ V/4(2y + 1) — 3,
(4 + 22 — 3)(4y — 2x + 1) = 3 , (¢ 4+ 2y 4+ 2)(x — 2y) = x ,

dont l'impossibilité est aisée a démontrer, car le premier
membre de la premiere ne peut étre un carré; 3 ne peut étre
la différence d'autres carrés que 4 et 1; enfin les deux der-
nieéres ne peuvent avoir lieu que pour x —y = 0. (/. M.,
1894, pp. 303 et 394.)

20. St a est premeer avec b, les congruences n — h (mod a)
et n —= h (mod bh) entrainent la suivante n = h (mod ab). En
effet le nombre n — A étant divisible par a et b, l'est par «b.
Cette question s’étend a un nombre quelconque d'entiers
premiers entre eux: ¢’est un cas particulier de la suivante,
qui remonte a 'antiquité : trouver un nombre qui, divisé par
a, b, c, ... donne les restes a, f3, y, ...

21. Tout nombre impair est 8 + 1 si ses facteurs de forme
8 + 3,5, 7 sont tous en nombre pair ou tous en nombre im-
pair. Zéro est compté pour un nombre pair.

22. a et b élant premiers entre eux, st ax — by =1, les
nombres

x = ac + A, y = [fc + a

salisfont a Uéquation ax — by = c.
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23. Des solutions des équations

"o__
= C , ...

11
ax — by = ¢ , ax’ — by = ¢, ax' — b"y

déduire celles de ax — bb'b”"... y = ¢ (Gauss).
24. SoitI'équation a?1?+ bxr 4 c=y* Posons y ==a.xr -+ i ,

on en tirera une expression de x, en z et « qui donnera les
valeurs positives de x# en donnant & z et « des valeurs telles

2° Soit ax® + bx + ¢®* = y®%. On posera y = ¢ + —x, ce qui
donnera pour x une formule analogue. On s’occupera seu-
z . — b
lement des valeurs de — comprises entre Va et 5

3° Le cas général ax? 4+ bx + ¢ = y* est bien moins aisé a
résoudre ; aussiil faut tout d’abord tacher de voir s'il n’y a pas
impossibilité, comme c’est le cas pour 13x? + Hbx + 69 = y?,
puisque le premiernombre peut s’écrire 7(x + 3)% 4+ 6(r 4 1)=.

4° On sait que si 07 — 4ac est un carré, le trinome
ax® 4 bx + ¢ peut se décomposer en deux facteurs linéaires.
On peut donc le supposer égal a (ax + [f)(x + g) ou a

1w . ' . . . .
— (@ + g)?, dou on tire x, qui sera entier si on fait

p?
v?a — u® = == 1 (Euler).

Si ax®4- bx + ¢ peut se metire sous la forme (fr + g)*
+ (b 4 j) (kx 4 [), on égalera sa racine carrée a (fr + g)

12 . .
+ - (x + j), ce qui donnera une valeur de x en « et ¢ dont

o “ P i e iy | .2 — 2 e _
6° Résolvons algébriquement ax® 4 bx 4 ¢ = y*® par rap
port a x; on est ramené, en posant X = 2y, 0* — 4ac — B,
a résoudre aX? 4 B = Y? ce qu'on fait en donnant des va-

leurs convenables & Y. Inutile d’ailleurs de prendre Y > 3

puisque (Y == ka)® — B est divisible par @, en méme temps

on essaiera d’égaler le dénominateur a + 1 (Euler).

; . ya - a
que Y®—B. Si jusqu'a Y = 5 on ne trouve aucune solu-

tion, I’équation est insoluble (Lagrange).
> ;2 3 2 ___ 2 ; .
25. Soit ax® + 2bex + ¢ = y? el supposons x > bhet > ¢;
la valeur de y est de la forme zx* — bx + c. .
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26. Déterminer les valeurs de x supérieures a b et a ¢ don-
nées par léquation a®x* + bx + ¢ —=y% On a:

/}—}—1 b
>y = aoc>2a+1.

Y est de la forme ax 4+ d avec d < x, car x > 0> ['_,‘L% > d.

En écrivant a?x® + bx + ¢ — (ax + d)?, il vient (b — 2ad)x
+ ¢ — d* = 0. On essaie, dans cette expression, les valeurs
de d — vy — ax comprises entre les limites données plus
haut (§. 2., 1910, p. 146). |

271. On peut toujours former une puissance entiére quel-
congue par Uaddilion de termes d’une progresston arithmé-
tigue (Rallier des Ourmes). Application a I'étude des suites
formées : 1

1° par le premier entier 1; la somme, 2 + 3, des deux sui-
vants; celle, 4 + 5 -+ 6, des trois suivants; etc.

2° par le premier entier 1; la somme, 2 4+ 3 + 4, des trois
suivants; celle des cing suivants ; ete.

3° par le premier impair; la somme des deux suivants; etc.

4° par la somme des deux premiers impairs; celle des
quatre suivants; etc.

5° par le premier impair; la somme des qualre premiers;
celle des neuf premiers; ete.

6° par le premier impair; la somme des (1 4 4) suivants;
celle des (1 4+ 4 + 9) suivanls; etc.

7° par le premier impair; la somme des (1 4 8) suivants;
celle des (1 + 8 4 27) suivants; etc. (de Rocquigny).

28. Combien de zéros dans les n premiers entiers ? (Ed. Lu-
cas).

29. Le nombre 1000! se termine a droite par 249 zéros
(de Rocquigny).

30. Quels sont les derniers chiffres a droite de 21°°° de
310009 (1d.)

31. Il y @ quinze nomores dans les 10001 premiers entiers
qut sont a la fois carrés, cubes, bicarrés, ... dixiémes puis-
sances (de Laplanche) ™.

1 On peut rappelerici le probleme de Comiers, jadis célébre : quel est le produit des deux
nombres formés respectivement de 666 chiffres 9 et de 666 chiffres 6°?
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32. Dans quatre cents ans, combien de mois de féorier de
cing dimanches? (N. A.) Combien de vendredis 137 (Buray)
Il y a au plus trois de ces derniers et aw moins un annuelle-
ment (G. Tarry).

33. La série de Fibonacci 1, 2, 3, 5, 8, 13, 21. 34,
Upp1 = Uy + Uy ne peut avoir que qualre ou cing termes
d’un nombre donné de chiffres (Lamé). Cela vient de ce que si

u, < 10w, , < u’k_H et Uty < 10w, __4 << Upys >

il s’ensuit upyps < 10up—s < Upgs .

34. Disposer les douze premiers entiers sur trois lignes, qui
donnent des sommes égales, el de telle maniére que, dans cha-
cune des quatre colonnes, le plus grand des trois nombres
soit égal a la somme des deux autres.

35. Placer les neuf premiers nombres aux sommets et sur
les cotes d’un triangle, de maniére que la somme des nombres
d’un cote quelconque soit constante, ainst que celle de leurs
carrés (Proth). Appelons x, v, z les trois sommels; les va-
leurs des deux expressions « + v + z et 2% + y* + 2% sont
toutes deux des multiples de 3, ce qui demande que .z, v,
et z soient ensemble 3 ou 3 + 1 ou 3 — 1. De la trois solu-
tions, dont la seconde seule 2, 5, 8 est a conserver. Le reste
s’acheve facilement.

36. Le carré d’un polynome de 2% termes ayant autant de
termes négatifs que de positifs contient 2% doubles produits
négatifs et 271 (2™ — 1) doubles produits positifs (Barbette).

Pour que le carré d’un polynome de n termes présente au-
tant de doubles produits positifs que de négatifs, il faut que n
n -+ ‘/IT

2

31. Quel est le signe du n*° terme du développement du

produtt

sout un carré, et alors il y a termes positifs (Id.)™

(1—a)(1—0{1—c¢)..7° (Catalan)

~.

Montrer l'identité de ce probléeme avec le suivant: considé-
rons les letires a, b, que nous ferons suivre du groupe ren-

1 A rapprocher de la question suivante : ¢rouver le produit de deux expressions dé la

forme Va + \/b + ... qui ne différent qu’en ce que, dans la deuxiéme, certains radicauzx
sont pris avec le signe —. Voir Fitz-Patrick, Exercices d’Arithmétique, p. 575,
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versé ha, d’ou le groupe abba, auquel nous accolerons le
groupe inverse, ce qui nous donnera abbabaab, et ainsi de
sutte. Quelle est la n*™ [etire ? (Laisant). Voir A. F., 1881.

38. Soit @« la base de numération; a® — 1 est divisible par
a — 1; il s’ensuit que tout nombre N =— A* + B*~' + ... four-
nit la relation N= A 4+ B + ... (mod a — 1) et que l'un des
nombres a® 4= 1 est divisible par a + 1 selon que n est pair
ou tmpatr. Donc si n est pair, on a: N=A — B 4+ C— ...
(mod a + 1) (Gauss). <

39. Soit d un diviseur de a10° == c. Un nombre est divisible
par d quand, ayant séparé b chiffres a la droite de ce nombre
et divisé le nombre restant a gauche par a, la somme ou la
différence entre c fois le quotient et le nombre formé en écri-
vant le nombre de droite a la droite du reste est divisible par d
(E. Gelin). Voir les Caract. de div. du méme auteur, et les
Ex. d’Arith. de Fitz-Patrick, pp. 24 et seq.

40. 1° L’expression (@ 4+ 1)* — a* est la somme des n
termes

(a + 'l)n'"1 , (@ + )" 2a , (a + 1)”—"3a2 Coadt

et par suite elle comprend visiblement n fois le terme a"—!,
plus des termes en a"?, en @"3, ... On peut donc écrire:

(o) (@ +1)" —a" =na" ' 4+ Ad"? 4+ ... f+ La+ 11,
2° Soit la suite de fonctions

Fy(x) : F(x + 1) — F(x)
Fo(x) = Fy(x + 1) — Fy(x)
Fo(x) = Faofxe + 1) — Fy(a)

les fonctions F,, F,, IF;, ... sont appelées la différence pre-
.y o ’ . , . Y

miére, la différence seconde, la différence troisieme, ... de la

fonction F. Posons maintenant

Fe) = Ax" + Ba" ' + Cx" 2 + ... + La + M ;

sa différence premiere F(r 4+ 1) — F(r) == F,(x) contiendra

1 Voir Ens. Math., 1907, p. 297.
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le terme nA.x"~!, plus des termes en 272, ... On peut donc
écrire F (x) = nAx*—' + B'.x*—* 4 ... La différence seconde

est done de la forme

nin — ’l)Ayc"_2 + Bl "3 4 .,

La différence troisieme est de la forme n(n —1)(n —2)Ax"—
4+ B”xr—% 4+ ... On voit qu'on a:

F (x4 1)+ F (2) =n(n—1) ... 2. 1A,

Ainsi la différence n* du polynome Ax® + ... est égale
An! proposition connue des Anciens, mais laissée sans de-
monstration jusqu’a Mercator.

3° La fonction

Fle, ) =a — C¥z —1)" +C ,(x — 2)" — ...

est du degré n, et par snite sa différence n*" a pour valeur n!
Or, a cause de (16), on trouve, pour I'expression de ses dif-
férences premiére, seconde, ... n**

Fle -1,k —F(x, ) =Fx+1, %4+ 1),
Fla+2, 4 +1)—Fla+1, +1)=Fx+3, 4+ 2,
..... Flxa+n, k4 n =n!

Faisant @ + n=a, &k =0, il vient cette identité de Mer-
cator

a* C ,(a—1)" 4 C

(@ —2)"— ... F=1=n! (a > a) .

n,1 n,2

4° Si a et b sont premiers entre eux, tout diviseur commun

n n

a

@ a—D>bet a ———
a—>b

divise également n (Lebesgue). Il suffit
de changer dans («) @ en a_—b——/)'

Lebesgue démontre ce théoreme a l'aide de la formule du
binome. Malebranche, qui l'avait aussi rencontré (voir
Ch. Henry, Rech. sur les man. de Fermat, p. 92), en donne
une démonstration dont le principe pourrait étre utilisé ail-
leurs : tout diviseur commun & a — b et a a*!' + ba"—?
+ 0%a"=? + ... divise a"?(a — b) = a"!' — ba""?, et par
suite — 20a"—? — b?a"—* — ...; or il divise 20a"—3(a — b)
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= 2ba"—* — 20%a"—3, il s’ensuit qu’il divise aussi — 3b%a"
— bPa** — ... on voit qu'on arrivera a prouver qu’il di-
vise no". ‘

41. Les nombres Ay et By de la formule (a + /b = Ay
+ BxV'b se calculent, de proche en proche, d’aprés les for-
mules suivantes d’Fuler

An—{—-l — a’An =+ bB/z . Bn+1 = An + aBll ’

App, = 2¢A, — (a®> — b)A, |, B,y = 2aB, — (¢* — I)B

n—1 °

42. Les nombres y* — 3z% et 3y? — z® ne peuvent étre pre-
miers qu’autant qu'ils sont respectivement des formes 12 + 1,
et 12 —1. ' |

St le nombre y* — 522 est premier, il ne peut étre que de
lune des quatre formes 20 4= 1, + 9.

43. Tout nombre a® + 1 en divise une infiniteé d’autres iso-
morphes. En effet |

(a® + 1) [(ax + 1) 4+ 2% = (¢®x + x + ) + 1 .

Plus généralement, le nombre n — ka®? ++ 1b? divise une
infinité de nombres de la forme x* 4 kly?, qui sont en méme
temps de la forme kx® + ly? (Euler). En effet, on a:

n(4 + k) = (ka == 1b)? + kl(a I b)* = k{a == W0)* + L(b = ha)? .

44, Tout diviseur commun aux nombres a®—kb?, ¢2—1d?, ...
divise également un nombre de la forme x* — kl ... y%. En
effet, 11 divise

a®(ct — ld?) + ld?(a® — kb*) = (ac)? — ki (bd)? . (Lagrange)
45. Posons X = xax’ — Quy', Y = ay’ + yx' + Pyy’, il
viendra, si@ et bsontles racines de I’équation z2— Pz + Q =0,
(x + ay) (&' + ay’) =X + aY .

Orona: (x + ay)(x + by) = x* + P;}cy.—l— Qy?; donc le pro-
duit de deux nombres de la forme x* + Pxy 4 Qy? est iso-
morphe (Lagrange).

46. Dans (21) changeons % en /_l , puis dans (8), a, ¢, b, d,
respectivement en a\ 'k, 6\ ( , a, BV kl; il viendra deux
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nouvelles formules, dues a Euler, lesquelles, avec (3),
montrent que le produit d’entiers des deux formes ax® 4 by?®
et x% + aby? est de la premiére ou de (a seconde forme, selon
que le nombre de ceux de la seconde est pair ouimpair (Euler).
47. 1° Faisant dans (9) « = a? 4 b2, 8 = c?, on obtiendra
une formule d'Euler permettant de décomposer le carré
d’une somme de trois carrés en une somme de trois carrés.
2° Faisant o -—=a®+ 1, 8= a, on trouvera une identité
dont Euler s’est servi pour I'étude du produit (1 + a + a¥)
I+a*+ar(l 4+ a* + ab) ... |
3° Faisant o ==a?+4+ Q, B8 —=V"2(Q — P)x, on aura une
extension de (11), qui en donne une de l'identité d’Auri-

2n4-1
feuille, en posant Q — P = @, x = (2¢) 2 . On peul lrouver
d’autres cas intéressants, par exemple en faisant Q =1,
2n--1
P T s i r — 3 2 . N
27 " : ces extensions sont dues a Catalan.

4° Faisant o = a®* + 0?4+ c* + d? et B = a® + b? + c® + d2,
on aura un moyen, di a Ed. Lucas, de décomposer le carré
d’une somme de quatre carrés en une somme de quatre carrés.

5° Faisant o =— Ax® + Cx et f=Bx®+ D, il vienl, en
identifiant & 2% — 1,

\ =D =1 2C — B> =10 , C2—2B =10, B=C=2,

)

d’ott une remarquable identité, due a A. Boulin.

6 Faisant, de deux maniéres différentes, le produit de
2(a + b)(c — d) par 2(a — b)(c + d), a I'aide de cette trans-
formation de (9) _

2f.sg =+ 88— (f—g)?,
ou on fait f'= a® -— b2, g = ¢ — (2, on obtiendra une iden-
tité de forme x® + y? + 22 — &2 + y'? 4 2’2, trouvée par
B. af Genis.

48. Si ax — by =1, les valeurs X = y2(3ax — by) et
Y = x*3by — ax) satisfont a Uéquation b*X — a®Y — -
(Bouniakowsky)*. On n’a qu’a changer « et 8 en % et f dans

Pidentité (« — B)® = (3« — )82 — (38 — a}a?.

! Le savant russe est arrivé a cette coneclusion, ainsi qu'a d’autres plus générales, a l'aide
de la formule d’intégration par parties.
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49. Soit {® -+ ag®==Dbh®; on aura une autre solution de
x3 + ay® = bz® en faisant

x=flf* + 208", y = —g(2f* 4 ag’) , 5= hif* — ag’) . (Fuler)

Prestet avait trouvé, avant Euler, le cas particulier de
a—=>0=—1.
50. Effectuant, de deux maniéres différentes, le produit

(f + g/ — K*(f— g/ — k)*,
on aura une identité de A. Boutin donnant une solution de
xt = y? 4 kz2
5. Posant AV a + IN'— b6 = (x\V "« + y\/'— 02, puis

égalant les coeflicients de V'@ et ceux de /' —0, il vient

k = ax® — 3bxy* , [ = 3axty — by* ,
d’ou
ak® + bIF = (ax® + by?® o (Euler)

52. Développant 'expression (@ + bi)%(a — 0t)® et l'iden-
tifiant a («® + 0%?3, on trouvera un cas particulier de l'iden-
tité précédente, qui montre a délerminer un cube qui soit la
somme de deux carrés (Euler).

53. Théoréme de Binet. Voir Ens. Math., 1907, p. 303, ex. 11.

b4. Egalités multiples. Voir Ens. Math., 1914, p. 18.

55. Factorisation. Voir Ens. Math., 1913, p. 202 et seq. |

passim.

56. Fractions continues. Noir Ens. Math., 1912, p. 184 et
se(. passim.

57. Carrelages. On obtient de remarquables carrelages en
considérant comme axes de coordonnées deux droiles rec-
tangulaires d’une feuille quadrillée et metlant la case (x, y)
en gris ou en noir, selon que le reste de la division de
a(2® + y?) par n est de la forme 3 4 1 ou de la forme 3 — 1.
Voir §. (., 1912.

58. Triangles. 1° L’une des cathétes du triangle x® 4 y* = 72
est toujours paire (Frénicle). On la désignera par 2/g.

2° Tous les triangles sont donnés par la formule d’Euclide
(ex. n° 6). Conséquence de 1°. Les deux généfaleurs sont,
dans ce qui suit, désignés par /et g.

e ——"
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3° L’hypoténuse est de U'une des formee 12 + 1,5 (anonyme
arabe). Le triangle étant primitif, z = f* 4 g% est 1mpair,
et z2, de la forme 4 -+ 1.

Une cathéte est multiple de 3 et une autre, mulitple de 4

(Frénicle).

50 L'un des cdtés est multiple de 5 (I1d.). On examine les
formes linéaires de fet de g relativement au module 5.

6° La somme et la différence de deux catheétes sont de l'une
des formes 8 + 1 (Id.).

7° Le seul triangle 3, 4, 5 a ses cotés en progression arith-
métique. Il 0’y en a aucun les ayant en progression géomeé-
trigue (Ozanam),

8° St les générateurs I, g sont deux triangulaires conse-
cutifs, le coté * — g% est cube (1d.).

9 St = g+ 1, Lhypoténuse surpasse de 1 la cathete
paire (1d.).

10° 8¢ les deux cathétes (Zzﬁele/zi de 1, le triangle ayant
pour générateurs (20 + @) et { sera dans le méme cas (Ferwmal),

O
1o Se lon prend pour générateurs dewx termes successifs
de la série 1, 2,5, 12,29, 70, ... les deux calhétes différent

de 1 {Ozanam). C'est ie théoreme précédent de Fermat?.

12° Trouver un triangle dont la bissectrice soit rationnelle
(Diophante). Il faut rendve rationnelle 'expression 2/ /% g%,
ce qui se fait en posant /== k(e? — 9?), g == k(29y).

13° Trouver un triangle dont le périmélre soit un carré
(Id.). Il s’agit d’égaler a un carré le nombre 2/(f+ g), ce
qu'on fait en écrivant f= 2u? g = 02— 22,

14° Trouver un triangle dont la somme des cathétes soit un
carré (Teilhel). La question se rameéne a rendre carré le
nombre /r'z + 2/g — g%; ony arrive en faisant

[= u? — 2uy + ¢, g = 2uv ,

L5° Trouver trois carrés en progressioil arithmétique (Fibo-

1 En général si les deux premiers termes sont 1, @, les cathétes successives different de
a? — 2a — 1. On peut d’ailleurs continuer la série en remontant: ainsi, pour a=14%, on a_:
e — 19,8, — 3, 2,1, 4, 9, 22, ... C’est vraisemblablement ainsi qu’Ozanam a trouvé la liste
des triangles dont les cathétes différent de 7 (Dict. math.). On voit qu’il pratiquait virtuelle-
ment la théorie des sérics récurrentes.



190 A. AUBRY
nacci). Gomme on a:

fa + b)® -+ (a - b)* = 2(a® + b*) ,

2

5] - ‘o - A ; oy 11 — 2 ) 14 1
le probleme est ramené a faire @ — f? — g2, b — 2fz, ce qui
donne l'identité

1 — g — 2fgf + [ — &* + 25 =2 + &) .

Cette solution parait due aux Arabes?'. Fibonacci a fait remar-
quer que la raison 4fg(f* — g2 est divisible par 24; il en
déduit la solution du systeme x% 4+ y? — u?, x? — y — o2

On est ramené a ce méme probleme en cherchant un
treangle dont la seconde bissectrice soil rationnelle, ou en-
core, en cherchant avec A. Boutin trois triangulaires en
progression arithmétique.

L6° Trouver deuwx triangles tels que la différence des deuwx
plus grands cotés de chacun soit égale a celle des deux plus
petits de Uautre (Frénicle). Voir (Kuvres de Fermat, t. 1V,
p. 253.

17° Trowuver trois triangles dont les aires soient égales
(Diophante). Les valeurs

x =L —1, y=2k +1, 2=k K+ kF+1

satisfont a l'équation 2% + xy + y? — z%; de la la solution de
Diophante
 2xzlz? — %) = 2zy (2 — %) = 2z(x + y) [(x + y)? — 2] .

18° Il est impossible de trouver deux triangles tels que les
deux plus grands cotés difféerent également de méme que les
plus petits. .

19° Trouver un triangle dont U'hypoténuse soit un carre,
ainst que la somme de ses cathétes (Fermat). Ces derniéres
étanl & = u? — ¢? el y = 2uv, on pose u = }* — u? et
0 — 2. Il faut que x4+ y = A* + 423y — 62%p? — 4ap® + pt
soit un carré, qu'on supposera? égal a celut de A% — 2y 4 up?

! On Ia voit, pour la premiére fois, dans S’Gravesande, Math. univ. elem. (Leyde, 1727).

2 (ie procédé porte le nom de Fermat. Si ¢« = «?, ou si ¢ = 2, on résoudra a 4 bx - ca?
+ da? 4 ex* = 42 en Vassimilant au carré de o 4+ wx 4 va?, ou de w4 vx 4 gx?, et on dis-
posera de « et de v de manicre a obtenir une égalité de la forme Ax = B. Conpaissant nne
solution & = n, on cn aura une nouvelle en changeant z en &/ 4+ n, et ainsi de suite. Euler a
traité des cas analogues de Uéquation a 4 bx 4 cx? 4 dad = 52,
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. 3. " s o .

ce qui donnera A= el p=— 119, solution a rejeter.
, 3. Sy . o

Posons, en conséquence, A = — + v, il viendra une expres-

i
)

sionen y ety qu'on assimilera au carré de u? + 148py — 4v
on trouvera ainsi p — 84, vy = 1343, 1 = 1469, d'ou

x = 4565486027761 y == 106165229352 .

Lagrange a montré que ces nombres sont bien les plus petits
quirépondent & la question, ainsi que l'avait aflirmé Fermat.

20° Si(x,y,z) définit un triangle, les nombres (2x 4y + 2z,
X 4+ 2y 4 2z, 2x + 2y + 3z) en définissent un autre dont les
cathétes différent autant que celles du premier. De la, le
moven de (rouver une série infinie de triangles dont les
cathetes different de la méme quantité (Wilkinson). Les séries
ainst obtenues, en partant de 0, n, n, et faisant varier n,
donnent tous les triangles possibles (Monck). Voir M., 1906,
p. 113.

21° En outre du triangle possédant un angle droit, on
pourrait étudier le triangle possédant un angle de 60°. L«
formule qui relie les cotés d’un tel triangle est x* — xy+y? = 2%,
el les formules générales des cotés sont:*

x = 3f* — g — 2fg , y = 3f* — g* + 2fg , z = 3f* 4 g% .

59. St (a, b, ¢; d) désigne une solution de Uéquation
X2+ y? + 22 = w? donnant, en nombres entiers, les cotés et
la diagonale d'un parallélipipéde rectangle, lexpression

la+b4d, ad+c+d, bt+c+d; a+ b+ c+ 2d)

en désigne un autre dans le méme cas (Monck). De la une
infinité de semblables solides, en partant de (1, 2, 2; 3)2.

!t Elles se tirent des formules de Pexercice 7, en remarquant que (2z)2 = (x 4 )2 + 3(x — )%

Les triangles quelconques fournissent également d’intéressantes questions. Ainsi considé-
rons la série des triangles tels que les ctés de chacun soient les demi-sommes de ceux du précé-
dent, ces triangles tendront vers le triangle équilatéral isopérimetre (Mackay). Voir aussi
S. @&, 1913, p. 182.

2 On a étudié de méme, a la suite d’Euler, le parallélipipéde rectangle dont les cotés et les
diagonales superficielles sont des nombres cntiers, ainsi que le triédre tri-rectangle a edtés
entiers. Mais on ne conna't pas de solutions générales de ces deux problémes.
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60. 1° Désignons par Ew la partie entiére du nombre non
entier w, on a: ‘

() 0<ow-—Eo<1, (f) —1<<Bo—w<0
(Y) Eo<{w<14Eow, 8) Elw*xa)=FEow+ta

&) E(w+4o)—Elw+ o)=E(n —o (o) Ela—w)=a—1—Eo

2° Entre o et o il y a (Ew — Ew') entiers.

. ; . b .
3° Dans les b premiers entiers, il y a E— multiples de a.

. < prow : b
4° Le plus grand multiple de a inférieur a b est aE—. On

, . 5 ; . b
peut le désigner aussi par 'expression b6 — R—.
b° Déterminer x tel que le quotient ( de a divisé par b ne

change pas quand on ajoute x a chacun de ces deux nombres.

On a
0O=a+4+x+qb+2x)=b+x

d’ou deux limites de x.
: . 1 oo
6° Si » — Ew < —~, on a: E(ne) =nEa. On multiplie la
1

relation donnée par n et on lui ajoute, membre a membre,
la relation () aprés qu’on y a changé o en no.
7° On a: 0= E(nw) — nEw < n. On multiplie («) par n et
on ajoute la transformée de () du n® précédent.
8° On a:
a a a — . 1
= — < = ; ‘/w—‘/h‘m/ -
Ew ' 2 h 2|/E0)

. _ 1 .
Ew + /o — Eo — o < i aEw — E(wo) —E[la — o )o] =0 ou 1;

Eyale +-1) =Eyala + 2 ::Ei/a(a +1)(. F2)=a;
E‘/a(a+1“a—|—2)(a—|—3):a(a+3)‘;
E?/a(a + 1) ... (a + 5 = a® + Sa + 3 ; (Goulard)

n

E(ey/nl)=n-+1. (Ens. Math., 1906, p. 354)

a a

Fp M L a

P Ona:E— =E-—=E=. On fait o =+ dans (a) et
¢ b be b

1 On n’a ainsi d’ailleurs que des approximations assez grossic¢res, car, augmentant de 1 la
¢+ partie sous le radical, on obtient le carré de a(a 4 3).
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on divise par ¢; on ajoute ensuite, membre a membre, avec
a

la relation (8) ol on a fait o = e

. " a .
10° Faisons, dans la relation de 7°, n =2, o = 7, puis

2a -
dans (B8), o = - et additionnons ; on conclura que
‘ )

2 , \ < 2a .
EZ2 — 2B est égal a 0 ou & 1, selon que EX est pair ou
‘ b b 5 ’ b
impair (Catalan). Généraliser.

11° Pour a < b, on a:

a ch a/ ch L

Par exemple, pour la premiere relation, on fait d’abord

ch ch
0

. . a . a
t = 1 "o == + et
dans (), ® = — et on multiplie par ;; puis o= E -

b

on additionne, membre & membre.

12° Soit 3 +V 5 =a+ bV 5, ona: a=EbV 5 + 1.
Voir Fitz-Patrick, op. cit. 569. ‘

13° Voir Lns. Math., 1910, pp. 458 et 472, plusieurs utili-
sations et figurations de la fonction En.

14° De la relation E(w + 1) = 1 4 Ew, on conclut que, quel
que soit 'entier n,ily aunnombre non entier £ positif et plus
petit que n, tel que o + -’E{ — 1 + Ew; cequidonne £ =—=nEyp

— no + n, d'ou, a cause de (9)

Ef = nEBw — E(nw) 4+ n ;

a cause de 7°. On peut done dire, avec Hermite, que dans la
suite
1 . 2
Ew , Elow +—1, Elw + —) ,
n I

chacun des (nEw — E(nw) 4+ n) premiers termes est égal au
premzier.
15° Soit Ew = a, I'expression

n n—1 2 n—2 4
o 4 Gy, y0" T a + Gy, 40 a’ + ..

~ n—1 n—2 3 n—3 o
C?Il,'lto a -+ C2n,3w a4 C?n,5w a’ +

{’Enseignement mathém., 17¢ année; 1915 13
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tend vers la limite /" w, @ mesure que n augmente.
16° Le nombre de fois que le nombre premier p est facteur
dans n! s'exprime par

€

1 n n

E—-—+E—-5 +E— + ... (Legendre)
A A &

. b . A
17° St a < b, les <E — — a> premiers termes de la
a1
sere

bbb

a -1 a —+ 2

sont égaux au premier (Berger).
18° Demontrer les relations suivantes

E + E——— -+ E g t . =a, (Cesaro}
A +
e T — D a — cx ! L
X — — ¥ ———— (Hermite}
¢ b /
a4+ x . a a — bx a
*E — = X a— SE—m7m7m = ¥E ,  (Cesaro}
2x 2 — |1 2 b -+ x

19° On pourra s’exercer sur d’autres fonctions analogues.
Ainsi, appelons [(») = E(20) — E(») I'expression de l'entier

le plus voisin du nombre o, non entier ni moitié d'un entier;

on a:

w ) (1)
Q

I—i + 17}' —+ Irb + ... = Eo . (Cesaro)

61. Soit n un nombre non carré, et désignons respective-
ment par a, b, ¢, d, ... I'exceés de n, de na, de nb, de ne, ...
sur le plus grand carré inférieur au nombre considéré n,
na, nb, nc, ...; les nombres 1, a, b, ¢, d forment une suite
de Brocard. Une telle suite est périodique, et le nombre des

! Chacun des deux membres de cette égalité représente le nombre de solutions du pro-

- bléme figuré par la relation cy 4 bz < a (Cesaro).
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termes de la période est inférieur a 4n. Soient en effet k& et [
deux termes successifs, et kn —=r? + s; ona:

l=s, s = 2r bkn — 4r? + 4s = % + hs > s?

d’ot (2 < 4nk. Sih désigne une certaine puissance de 2, on a:

< bn) 2y V2 )V ) L Y a<tent e, don L= hn .

sin (2n — 1o sin o
( o+ s, pour

62. Posons kn=ng; lexpression T5 g

valeur n ou 0, selon que k est ou n’est pas multiple de n
(Libri).
Les fonctions 00" 00" " - es (1 — Oo—x) (1 — Ooaﬁx) ont la va-
leur 1 pour 0 = x < a, et la valeur O pour toute autre valewur
¥ de x (1d.).
| Libri tlire de la de curieuses formules sur le nombre des
solutions des congruences ax — bx = ¢ et ax®— by* = c,
sur la représentation des nombres premiers, la somme des
nombres premiers compris entre deux limites données, la
détermination d’un nombre premier supérieur a une limite
donnée, enfin la somme des diviseurs de divers groupes de
nombres. Ces formules n’ont du reste aucun intérét pratique.
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