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LE PREMIER CHAPITRE
DE LA THÉORIE ÉLÉMENTAIRE DES NOMBRES

PAR

A. Aubry (Dijon).

Avant-Propos. — Plusieurs jeunes correspondants m'ont si souvent

demandé des renseignements sur les tout premiers éléments
delà théorie élémentaire des nombres, que j'ai, pensé qu'il serait
utile d'en écrire un chapitre introductif faisant simplement
pressentir l'esprit et les méthodes de cette théorie.

J'ai donc écrit ce chapitre, — par lequel j'aurais du commencer
mes études, — en y définissant les idées et les procédés particuliers
à cette science. J'ai ainsi rassemblé des formules, des théories et
des problèmes èpcirs un peu partout et dont le rapprochement fait,
mieux et plus rapidement pénétrer le sujet, en même temps qu'il
suggère de nouveaux points de vue et de nouvelles démonstrations.
J'ai complété par des problèmes célèbres ou utiles, que j'ai traités
accessoirement et seulement à titre d'application : il est aisé de se

proposer autant qu'on voudra de problèmes indéterminés, et souvent

assez aisé d'en trouver une, plusieurs ou même une infinité
de solutions ; — mais les cas sont rares ou on peut trouver la solution

générale, et cependant c'est dans ce seul cas que le problème
peut être considéré comme résolu. —• Car peut-on se déclarer
entièrement satisfait de savoir uniquement que tel nombre répond à

telle question Ce nombre a-t-il une particularité qui le distingue P

Est-il seul P le plus grand P le plus petit P le plus facile ci découvrir P

Il semble d'ailleurs qu'il y aurait lieu de réagir contre cette
mârée montante des problèmes particuliers, menaçant de submersion

la science elle-même, et qu'il faudrait se borner à des recueils
dPexercices choisis : intéressants, comme énoncés ou démonstrations;

utiles, comme illustrations de théories ou sujets d'études;
enfin, et surtout, susceptibles d'une réponse complète et précise.

La théorie des nombres1 comporte trois degrés bien définis :

1 Ce mot, qui désigne si mal son objet, ne peut être remplacé par l'appellation exacte
<V arithmétique, détournée de son sens. On a proposé la dénomination d'arith/nologie, qui ne
vaut pas mieux et peut-être même moins que théorie des nombres; arithmonomie serait
mieux mais est trop long: l'abrégé arithno/nic me conviendrait assez, mais je n'ai "pas
voulu créer un néologisme.

L'Enseignement mathém., 17e année, 191 •>.
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/'arithmétique élémentaire, quipourraitporter le nom d'Euelide,
et dont le traite le plus récent est le recueil d'exercices, de Fitz-
Pa trick ;

la théorie élémentaire des nombres, ou arithmétique de Fermât,
mise en lumière par Euler et Lagrange, et pour la vulgarisation
de laquellefai écrit mes articles de /'Ens. Math. ;

enfin la théorie générale des nombres, ou arithmétique de Gauss,
que beaucoup ne peuvent ou ne veulent pas entreprendre : M. Cahen
vient de publier le premier volume de cette dernière.

Les domaines des deux premiers stades sont aujourd'hui bien
délimités ; aussi, là, on peut entrer en matière tout de suite. C'est
pourquoi j'estime suffisant le chapitre introductif tel que je l'ai
conçu, sans qu'il y soit besoin de préliminaires plus étendus.

A. Aubry (Dijon).

1. Définitions. La théorie élémentaire des nombres traite
des relations des nombres entiers entre eux, et particulièrement

des formes sous lesquelles ils peuvent être mis, ainsi
que leurs diviseurs et leurs multiples.

Dans tout ce qui suit, sau f indication contraire, toutes les
lettres représentent des nombres entiers.

Les coefficients a, b, c, désignant des entiers donnés, on
dit quhin nombre n est de la forme linéaire ax -f- b, ou de
la forme quadratique ax2-f- bxy + cy2, quand on peut
déterminer, — ou tout au moins prouver qu'il existe, — certaines
valeurs entières de x, ou de x et de y, qui rendent la valeur
de cette expression égale à n. On dit également qu'on peut,
dans les mêmes cas, écrire n ax -j- b ou n — ax2 +
bxy -f- cy2.

Ainsi 47 est des deux formes Fx + 3 et x2 + 3xy + 7y2r

car, faisant x — il dans la première, et x 5, y 1 dans
la seconde, on trouve 47.

Le plus souvent, les coefficients a, b, c n'ont pas de
facteur commun : la forme est alors dite primitive.

2. Rappel des théorèmes fondamentaux. Les recherches
de ce genre empruntent à l'algèbre l'art du calcul littéral et
celui de la transformation des formules; elles s'appuient en
outre sur quelques propositions arithmétiques élémentaires,
qu'il suffira de rappeler et qu'on trouve déjà, au moins
implicitement, chez Euclide.
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Tout diviseur de a et de b divise ka -f 1b et en particulier
a 4* b et a — b. Réciproquement, si c divise a et non b, il
ne divise pas a ± b.

Tout nombre divisible par plusieurs entiers premiers entre

eux, l'est par leur produit.
Si un nombre divise un produit cle deux facteurs et qu'il

soit premier avec l'un de ces facteurs, il divise Vautre.
Tout nombre premier qui divise un produit divise au moins

un des facteurs cle ce produit.
Un nombre premier avec plusieurs autres l'est avec leur

produit. En particulier, le produit de plusieurs entiers
inférieurs à un nombre premier donné, ne peut être divisible par
celui-ci.

Un nombre est une puissance nième si les exposants de ses

facteurs sont tous des multiples de n.
Si deux nombres sont premiers entre eux, il en est cle même

cle leurs puissances.
Si un nombre premier divise an, il divise également a.
3. Congruences. Deux entiers a et 6, qui ne diffèrent que

d'un multiple de l'entier ra, sont dits, d'après Gauss, congrus
par rapport au module n 1, et cette relation s'indique par la

notation
(a) ci — b (mod n)

Par exemple, on a :

(1) (nx -(- a) (nxf -j- a') aa' (id.)

De (a), on tire :

(2) a -j- c EE b -f- e ka kb (id.)

Si A ^ a, B b, G c, (mod n), on peut écrire :

A -f- B ee ci -j- b
(3) > (mod /I)

fÉ + £'B -f- hC H- ~ fa gb Im + r«. I

(4) ABC abc (id.)
d'où

(5) kk ak (id.)

1 Le plus souvent, b représente le reste de La division de a par n; on écrit alors b R -
n
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Si ka — kb (mod n) et que cl soit le p. g. c. d. de k et de n%

on a :

On appelle congruence une expression algébrique de la

forme Axnl + Bœm~1 + C+~2 -j- Lx + M 0 (mod n), où
les coefficients A, B, L, M sont entiers ou nuls, et les
valeurs de x astreintes à être également des nombres entiers.

Les valeurs de x inférieures à n qui satisfont à cette
congruence sont les racines de celle-ci; les autres sont ses
non-racines. Ainsi les nombres 1, 3, 4 sont les racines de

x3 — 3x2 — x + 3 0 (mod 5) et 0, 2, ses non-racines. La

congruence x2 + 2x + 5 0 (mod 7) n'a aucune racine :

elle a donc les non-racines 0, 1, 2, 3, 4, 5, 6.
4. De quelques formes particulières. Les formes linéaires

s'indiquent d'une manière plus expressive au moyen de caractères

gras: ainsi l'expression 4.r + 1, qui désigne un multiple

de 4 augmenté de 1, s'écrira 4 + 1. On remarquera que
les formules 4 + 3, 6 + 4, par exemple, peuvent s'écrire
aussi 4 — 1, 6 — 2; on peut souvent de la sorte condenser
deux formules en une seule : ainsi on écrira « les formules
8 Hz 3 » au lieu de « la formule 8 + 3 ou la formule 8 + 5 ».

Voici maintenant quelques propositions très simples, la

plupart assez connues, et qu'on pourrait étendre indéfiniment.
Le produit de plusieurs entiers est pair si C un d'eux est

pair, et il est impair si tous sont impairs.
Tout entier est cle rune cles deux' formes 2, 2 + t ; ou de

Tune des trois formes 3, 3 ± 1 ; ou de Tune des quatre formes
4, 4+1, 4 + 2 ; etc.

Tout nombre premier, sauf 2, est de Tune des formes 4+1.
Tout nombre premier, sauf 2 et 3, est de Tune cles formes

De même, tout nombre premier est cle Tune cles quatre
formes 10+1, 10 + 3; ou cle Tune cles quatre suivantes
12+1, 12 + 5; etc.

Le produit cle nombres cle let forme ax + 1 est isomorphe
(de la même forme). Ainsi (6.5+ 1) (6 9 + 1) — 6 284

+ 1 —-: 6 + 1. Conséquence de (1),

s EE b

6 ± 1.
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Tout nombre impair est cle L'une des formes 4 ± 1, selon

que le nombre de ses facteurs 4 — 1 est pair ou impair. Car

le produit cle deux nombres 4+1 donne un produit 4 + 1,

ainsi que celui de deux nombres 4 — 1 tandis que
(4f + 1) (4g-— 1) 4 — 1. On conclut de là que tout nombre
4 — la quelque diviseur isomorphe. Id.

Tout nombre impair et non multiple de 3 est de l'une des

formes 6 ± I, selon que le nombre de ses facteurs 6 — 1 est

pair ou impair. Ici.
Le carré d'un nombre entier est pair ou impair, selon que

ce nombre est lui-même pair ou impair. Id.
Le carré cle 2a + b est de la forme 4ax + b2. Si a et b sont

impairs, ce carré est de la forme 8ax -+ b2. Ainsi les carrés
cle nombres des formes 2, 2 + 1, 6 + 1, 6 + 2 sont
respectivement cles formes 4, 8 + 1, 24 + 1. 12 + 4.

Aucun nombre 8 + 2, 8 + 3, ou 8 — 1 ne peut être un
carré. Ainsi x2 + ky + 2 ne peut représenter un carré, car,
selon que x est pair ou impair, cette expression prend la
forme 4 + 2 ou la forme 4 + 3, qui ne peuvent convenir à

un carré. De même, pour x différent cle zéro, aucune des

expressions x2 + 1, + x + 1, x2 + 2x, ne peut représenter

un carré; de même x2 + Sx + 5, puisque cette
expression peut s'écrire (,x + 2)2 + 1.

Tout carré est cle l'une des formes 9 ou 3 + 1 ; ou cle l'une
cles suivantes 25 ou 5 + 1 ; etc. Tout bicarré est cle Vune cles

formes 625 ou 5 + 1 ; etc. (Voir exercice n° 10.)
Soit k impair, le nombre y2 + kz2 ne peut être premier si y

et z sont cle parités différentes. 1° En particulier, soit k — 1 ;

le nombre impair y2 + z2 n'est pas premier s'il n'est pas de
la forme 4 + 1.

2° Soit k + 2 ; y2 + 2s2 n'est impair que si y est impair,
et alors la formule linéaire cle y2 + 2+ est 8 + 1 ou 8 + 3;
celle de y2 — 2z2 est 8 + 1 ou 8 — 1.

3° Soit k — 3; si y est impair et z pair, y ne peut être
que 6 zrz'l, son carré 24 + 1 et celui cle z, 4, de sorte que
y2 + 3z2 12 + 1. Si y est pair et z impair, on a les deux
cas

y — 6 + 2 et ' 6 + 1 ou 6 + 3
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d'où y2 + 3z2 12 + 7. Ainsi si le nombre y2 + 3z2 est
premier, il est de la forme 6 + 1.

5. Analyse indéterminée. On appelle équations indéterminées

un système d'équations en nombre inférieur à celui
des inconnues, lesquelles sont supposées entières; et analyse

indéterminée l'art de les résoudre ou de démontrer
leur insolubilité. On connaît seulement la résolution des

équations indéterminées des deux premiers degrés; et
encore les calculs qu'elles nécessitent la rendent-elle à peu
près illusoire, tout au moins pour le second; aussi, le plus
souvent, les résout-on par des tâtonnements méthodiques,
qu'on cherche à rendre aussi rapides que possible.

Occupons-nous de l'importante équation a.x2 + bx + c y2.
Gomme il ne s'agit que de nombres entiers, la première idée
qui se présente est d'essayer pour x, successivement les
nombres 1, 2, 3, soit directement, ou mieux à l'aide de
la méthode des différences. Mais comme le plus souvent, le
nombre des solutions, c'est-à-dire des valeurs satisfaisant
au système, est peu considérable, il est préférable d'essayer
de déterminer les régions où peuvent se trouver des solutions

: par exemple, on localisera notablement les recherches
si on arrive à fixer des limites inférieures ou supérieures
des solutions. Ou bien, — ce qui sera à la fois plus facile et

plus avantageux, — on essaiera de déterminer les régions,
— en général bien plus vastes, — où il ne peut se trouver
aucune solution; l'idée de ce procédé est due à Frénicle,
qui lui a donné le nom dé exclusion.

Applications. Soit à résoudre kx2 + bx + 7 y2. On
écrira :

pour x — 0 ia2 + 5.x -j- 7 m 7

9
1 16

17
8

2 33
25

8

3 58
33

8

4 91
41

8

5 132
49

8



THÉORIE ÉLÉMENTAIRE DES NOMBRES 167

jusqu'à ce qu'on arrive à un carré« Ou bien on circonscrira
les régions des nombres à essayer, en écartant de prime
abord les valeurs inacceptables, à cause de leur forme
linéaire, et essayant ensuite les nombres non exclus.

Ainsi les expressions 15x2 + 30x + 17 et I5x2 + 30,v + 14

ne peuvent représenter un carré : la première, parce qu'elle
est de la forme 3 — 1 ; la deuxième, parce que, d'une part,
une valeur paire de x la rendrait de la forme 4 + 2, et
qu'en posant x 2y + 1, elle deviendrait 6(h/2+ 120y + 59,
formule qui ne peut représenter un carré, que y soit pair
ou qu'il soit impair, car elle ne donne que des résultats de

forme 4—1, ou, plus simplement, parce qu'elle est de la
forme 3x2 + 2, qui ne convient point à un carré.

On peut utiliser la remarque suivante : posons m fy +gé
il viendra :

ax2 -f- bx -j- c EE ctg2 + bg -j- c (mod f\

Par exemple, pour x 8 + 0, 1, 2, 3, 4, 5, 6, 7 \ on a :

4^2 -f 5x + 7 8 + 7, 0, 1, 2, 7, 4, 5, 6 :

il y a donc lieu d'essayer seulement les valeurs x — 8 + 1, 2, 5,
c'est-à-dire les nombres 9, 10, 13, 17, 18, 21,

Soit 15x2 + I3x + 11. Le module 2 n'apprend rien, mais
l'emploi du module 3 fait voir que cette expression ne peut
représenter un carré si x est 3 ou 3 — 1. Posons donc
x — 3y + 1 ; on trouve 135y2 + 129y + 39, formule qui ne
peut donner un carré que si y 5, ou 5 — 1, ou 5 — 2,
c'est-à-dire si x ~ 2y + 1 est de la forme 15 + 1, ou 15 — 2

ou 15 — 5. On essaiera donc les nombres 10, 13, 16, 25, 28,
31, 40, 43, 46, 55, 58, 59, en écartant, sans autre examen,
les valeurs de la forme non terminées par l'un des groupes
suivants :

00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 44, 49, 56, 61, 64,

69, 76, 81, 84, 89, 96,

par lesquels se terminent les carrés numériques.
On pourrait du reste examiner encore ce que produisent

1 Abréviation de 8 0, 8 4* 8 -f- 2, etc.
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les suppositions y — 7, 7 + t, 7 +2, 11, 11 + 1, etc.,
ce qui donnerait d'autres conditions réduisant encore le
nombre des essais. Ainsi, avec les valeurs x — 7 + 2, 3, 5, 6,

l'expression proposée ne peut être un carré : il n'y a donc

pas lieu de faire les substitutions x 9, 10, 12, 13, 16, 17,
19, 20, 30, 31, 33, 34, 36, 37, 39, 40, 44, 45, 47, ; on
substituera seulement les valeurs x~ 25, 28, 43, 46, 70, 85, 88,
91, 106, pouvant conduire à des carrés. S'il y a des
solutions1, on les trouvera ainsi avec beaucoup moins de peine.
(Voir les exercices nos 24 et suivants.)

6. Identités. Bien que les relations indiquées par des identités

algébriques s'appliquent aussi bien aux nombres non
entiers qu'aux nombres entiers, elles n'en sont pas moins
importantes en- arithmétique, comme fournissant souvent
des conditions permettant d'éliminer de nombreuses classes
de nombres dans certaines recherches, et par suite de les
rendre plus accessibles, et les tâtonnements moins nombreux
et mieux ordonnés. A ce titre, il convient de rappeler
plusieurs identités, qu'on démontrera en les considérant comme
résultant de transformations d'identités connues ou
évidentes.

Ainsi la suivante

A — C (A — B) + (B - C)

donne, en faisant

Yidentité de Fontaine21

(7) (ac' — a'c) (bd'— b'd)

— (ad' — a'd) (bc' — b'c) + (ab' — a'b) (cd' — c'd) r

1 En réalité, il n'y en a pas. Voir l'exercice 24, 6°.
2 Traité de calcul différentiel et intégral (Paris, 1770). Cette identité lui sert à l'intégration

de nombreuses classes de différentielles rationnelles.
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laquelle, pour cl' ~ b, V — d, c' — ± a, ci c% se

transforme en l'identité cle Fibonacci

(8) (a2 -f- c2) {b2 +' d2) — (ab + cd)2 -j- (be ZjZ ad)2

qui montre que le produit cle deux sommes de deux carrés
est isomorphe, et cela de deux manières différentes? à moins
qu'on ait ad be. De là, en conséquence, le moyen de

résoudre, d'une infinité de manières, l'équation indéterminée
x2 + y2 z2 + m2.

7. L'identité
(9) (a+ß)(a_ß) a2_ß*

est fréquemment utilisée. Ainsi : 1° faisant a a2 + b2 et
ß a2 — b2, on trouve celle-ci

(10) (a2 -{- b2)2 (a2 — b2)2 -f- (2ab)2

entrevue par Pythagore et Platon et qui fournit une infinité
de solutions de l'équation x2 + y2 —- z2 1. (Voir exercices
nos 6 et 58.)

2° Faisant a ci2 + è2, ß \/2 ab, on trouve cette identité

de Leibniz

(11) a4 -f- IA — (a2 -J- [/ 2 ab -j- b2) (a2 — {/ 2 ab -f- b2)

laquelle devient, en changeant b en \/2b, cette autre d'Euler

(12) aA -f 4à4 (a2 + 2ab -f 2b2) (a2 — 2ab -f 2b2)

qui démontre ces trois propositions de Goldbach, de Sophie
Germain et d'Aurifeuille : aucun nombre 4x4 + i, x4 + 4

ou 2'i0C+2 + i n'est premier, sauf le nombre 5 2. On n'a qu'à
faire a 1, b — x ; a x, b 1 ; a 1, b 2X.

8. Cette identité d'Euler

(13) + «)(! +6)('l + c) 1 + a + b(l+a) + c(l + a)li + b) +

1 Les nombres x, y, 2 sont dits alors former an triangle (rectangle), dont # est Y hypoténuse,
et y, z, les cathètes. Les nombres a et b sont les générateurs du triangle.

2 Landry n'avait pu arriver à décomposer en ses facteurs le nombre 258 ~\~ 1 qu'au prix de
calculs des plus laborieux, etil pensait que si cette décomposition venait à se perdre, bien
des siècles se passeraient avant qu'on la retrouvât. Or on voit immédiatement que ce nombre
est le prqduit de deux facteurs 229 -f- 215 -}- 1 et 229 — 215 -j- 1.
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en fournit beaucoup cbautres, la plupart fort intéressantes.
Il suffira de mentionner les cas particuliers suivants.

1° Pour a — b — c — x — 1, on a celle-ci d'Eudoxe

(14) + x"-1 Zli.
X 1

qui donne cette autre démonstration de (5) : posons x ^
b — a -\- hn ; le nombre (a + hn)k — ak est divisible par
(a + hn) — a, donc, de b a (mod n), on déduit bk ak

(mod ri).
Ainsi ak — bk est divisible par a — b ; donc, en mettant

— ô, au lieu de ô, ak — (— b)k est divisible par a + b, ce

qui revient à dire que selon que k est pair ou impair, ak =F bk

est divisible par a + b.

2° Pour a ~ b ^ c | (13) donne la sommation

de certaines expressions très importantes appelées
nombres figurés, nombres combinatoires ou coefficients bi-
nomiciux, et qu'on représente par la notation

_ n(n — 1) {n — 2) (n — a + 1)
« — a i

L'identité ainsi obtenue

I n ~f~ 1) (n ~f~ (/z 4"
\ ^l-j-k, k yf.

(15)

— 1 + Cn, 1 + c/i+1,2 + + ^n+k+Vk '

mise implicitement pour la première fois sous cette forme

par Briggs, a été démontrée par Pascal, à l'aide de sa
méthode de proche en proche1. Elle peut servir à faire voir que
le produit («n + 1) (n + k) est divisible par le produit k
Mais on démontre plus aisément cette proposition, due
également à Pascal, en changeant successivement n en n — 1,

n — 2, dans la relation suivante, aisée à établir

(16) C?i,k — Cn—\,k + '

1 Cette méthode, fréquemment employée, et dont on trouvera plus loin plusieurs exemples,
consiste à s'assurer qu'une propriété supposée vraie pour le cas d'une expression F(«), l'est
encore pour F (n -f- 1), d'où on conclut sa généralité, si elle se vérifie pour F(l); car elle
l'est par suite pour F (2) ; l'étant pour F (2), elle l'est pour F (3); et ainsi de suite à l'infini.
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ce qui conduit, de proche en proche, à des identités
évidentes de la forme Ch,h — 1-

L'expression G^p jouit d'ailleurs d'un grand nombre d

intéressantes propriétés, qui sont plutôt du domaine de l'analyse

algébrique. Il suffira de faire remarquer, en premier
lieu, qu'elle n'a de signification arithmétique que si n et k
sont des entiers positifs, avec a > k, mais que cependant
on admet par définition qu'on a :

(17) c0ï, if CÄ>t=l.
En second lieu, que si p désigne un nombre premier > k,

Cp,k est divisible par p (Euler), ou bien qu'on a :

(18) Cp,k — 0 (mod p)

car on peut écrire
kÇp,k — P^p—l,k—\ '

et p étant premier avec k, il divise Clh /,

9. Utilisation des irrationnelles. Un grand nombre de
formules se généralisent aisément par une substitution
d'irrationnelles à des indéterminées rationnelles. Ainsi changeant
dans (10) b en b \/k, cette formule devient (voir exercice
n° 7)

(19) (a2 -f- kb2)2 z=i (a2 — kb2)2 + k(2ab)2

Mais on arrive de la manière suivante à des résultats beaucoup

plus intéressants.
Euler, le premier, a remarqué que deux expressions telles

que a -f- h\/k (où k est positif ou négatif) ne peuvent être

égales que si les parties rationnelles le sont elles-mêmes,
ainsi que les coefficients des parties irrationnelles. Il en
déduit, à l'aide de la formule du binôme1, cet important théo-

1 On y arrive plus simplement ainsi : Soit (a -f / b )2 — A + b d'où A «a -j- b,

B 2a-, il viendra (a — / b )2 A — BV b Or si on a :

{a±V~b)k — a± g/~b
on aura aussi :

(a rt {cf. ± ftyj){a + \/J) — (aa + &ß) ± (cf.b -f- a$)\/~b

La proposition est donc vraie en général.
Autrement. Soient les relations

(a -f \/~b f A + B/ b [a-- VJ> )A — A' + B'/7T



172 A A UBR Y

rème : la relation F (m + ]/ b) A + B[/ b en traîne cette
autre F (a —l/b) A — B\/b, F désignant une fonction
entière.

Cor. I. Posons [a + b\/k){x + y\/k) A + B\/k ; on
en tirera

ax-j- kby — A ay bxB d'où x et y.

II. "oucer un cube qui soit en même temps de let forme
u2 -J- kv2. (Voir exercice 51.)

III. Si [cl -f- b\/k)\—- A + B\/k on aura aussi (<a — b\/'k)
— A — Bl/A, d'où, en multipliant,

(a2 -• &&2p A2 — &B2

Donc, si F désigne une fonction entière, les égalités

F [a 4* h |/ k — a -f- ß [/ X: et F (a2 -j- £P] a2 -f- £32

sont équivalentes. (Voir exercice n°41.)
IV. Soit

(a) (« -{- b [/ k) (a 4- ß (/ ^ — A -p B j/ /i

on aura aussi
(a — b\fk) (a — ß|/T) A — B \/T

d'où, en multipliant,

(20) (a2 — £/;2) (a2 — kf) — A2 - £B2

Donc le produit des expressions de la forme x2 -f- ky2 est

isomorphe (Goldbach). Tenant compte de (a), (20) donne cette
importante identité, due à Eu 1er (voir exercice n° 46)

(21) (a2 + kb2) (a2 -f- k[i2) (fla — kb[i)2 + A-(aß + (m)2

G est une généralisation de (8), laquelle la comprend en
même temps, comme cas particulier, en y changeant c en

L'expression (a + F bf — (a — F bf est algébriquement divisible par (a -f F b) — (a— \/~b)

2\/b, c'est-à-dire qu'elle contient Fb dans tous ses termes, ce qui demande qu'on ait
A — A' 0. D'ailleurs le produit

(A + bFô)(A' + B 'F 6) («2 — b)k

est rationnel, ce qui conduit à écrire

(AB' -f- BA')F& 0 d'où B'= — B
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b\/~k, b en « et cl en ß\Zlt.Commele premier membre ne

varie pas en y changeant b en — è, il en est de mèmegu
second membre, et on a par suite :

(22) (aa — Ib$)2 + b(a[j + — iaa + Mß)2 + ^ (a fi — ^;a)2 *

10. Emploi cles imaginaires. La considération des imaginaires

conduit à des résultats analogues. Une transformation
très usitée consiste à remplacer a1 + b2 par le produit
{a + bi)(ci — bi) et combiner plusieurs expressions de ce

genre. Ainsi on a :

(#2 i/2}2 _ ia _j_ bi)2(a _ bi)2 (a2 4 2abi — b2) (a2 — 2abi — b2)

— (a2 __ b2)2 — (2abi)2

d'où l'identité (10) (Euler).
Celle de Fibonacci (8) s'obtient de même, en remarquant

que le premier membre peut s'écrire

(a 4- bi) (c + di) (a — bi) (c 4 di)

— (ac Ig bel zh (idi 4 cbi) (cic Ig bd. — ebi Ig adi)

— (ac Ig bd)2 — (ab Ig cd)2 i2 (Euler)

Enfin, si, avec Mathews Collins, on a fait dans (7)

a — a 4 [ji a' — y -g Si c - - y -|- Si cr — a — ßi

b — af 4- ß'l 1/ =z g 4- S'g — — "F 4- S'i d' — a/ — ß'i

on trouve cette identité d'Eu 1er

/ (a2 4- ß2 4 f -g S2) (a'2 + g2 4 y'2 4 (aa' 4" ßß' + lY +
(23) 4 - K - T/ + W 4- (a/ + ß3' - ï&' ~ 8ß7

4 (a/ — ßy' 4" Tß' §<%*)**'

qui montre que le produit de deux sommes de quatre carrés
est isomorphe. (Voir exercice n° 15.)

11. Figurations arithmétiques. La méthode arithmo-gra-
phique a, — comme la méthode arithmo-algébrique, — cet
inconvénient d'être indirecte et de se prêter encore moins

que celle-ci, à la représentation des conditions arithmétiques.

De plus elle utilise des figures dont on ne sait pas
toujours lire les propriétés et dont il est souvent difficile
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d'affirmer la généralité ou les limites d'emploi. Mais elle a

cet avantage de représenter synoptiquement un ensemble

gupta : on appelle ainsi celui qui est à la fois inscriptible et

orthodiagonal. (Voir exercices nos 1, 2 et 3.)
i° Soit 0 l'intersection des diagonales AG, BD d'un tel

quadrilatère. Les côtés seront entiers si l'on prend :

AO — «a BO a h CO b$ DO al

a, b et a, ß désignant les cathètes de deux triangles
rectangles1 dont les hypoténuses sont c et y. On aura en effet

AB Z= ae BC bj DC — ßc AD — ar

De plus, on aura, en abaissant les perpendiculaires OJ,
BE sur DC,

2° La relation évidente OB2 + OC2 BE2 + CE2 conduit
immédiatement à l'identité de Fibonacci qui, très probablement,

y est arrivé ainsi, si toutefois elle n'est pas de Brah-
magupta lui-même.

3° Supposons que y soit, non plus un entier, mais une
irrationnelle \/C ; on tirera ainsi de ce qui précède, une
nouvelle solution de l'équation .x:2 + y2 C, connaissant

de propriétés qui la rend
quelquefois aussi suggestive
dans tes recherches que
commode dans les exposés et dans
les démonstrations. On
comprend que les premiers
arithméticiens l'aient employée
dans ce but, prélerable ment
à l'algèbre.

On traitera seulement ici
du quadrilatère de Brahma-

abl b lr ^
b

r / x

—- d ou CE _ — [bi> — «a BE — — (aß + ba)
c c c

1 Brahmagupta opère sur le quadrilatère correspondant aux données a — 3, b 4, a 5,
ß 12, ou bien

OA 15, OB 20, OC 48, OD :>6, AB 25, BC 52, CD 30, AD 39
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une première solution a2 + ß2 G : construire le triangle

OB a, OC /3, BC y; prolonger OB, de OD=^J,
a et b désignant les cathètes d'un triangle d'hypoténuse c\
on n'aura plus qu'à joindre DG et abaisser la perpendiculaire
BE, ce qui donnera1

6ß — aa. _ aß -f ha
EC

4° Supposons a2

Bralunagupta,
(kb{j — aa

y ='BE -C

kb* 1, «2 - A-/33

A (aß -p a/q2

C ; on aura, avec

Changeons en effet dans 3°, a% ô, ß et y en c/C, bC\/— 4',
/3\/— k et 2/V/— k ; il viendra :

# — Aßß — aa y r= aß -f-

ce qui donne une autre solution de x2 — ky
5° Voici une manière d'arriver plus

aisément à l'identité de Fibonacci que
par 2°. Soit l'angle droit ABC; menons,
par le sommet, la droite quelconque DE,
sur laquelle on abaissera les perpendi-

-p

culaires AD, CE. On a, É désignant le
ê

l'apport de AD à DB,

(AD2 + DB2) + (BE2 + EC2)

G.

ou bien
=3 BD + BE)2 -f (EC — AD)2

+ fa + b' + ß U + fa + ('? —
12. Descente. On appelle ainsi, d'après Fermât, une

méthode de démonstration de l'impossibilité de certaines
propositions, consistant à faire voir que ces propositions
supposées vraies pour des nombres donnés, demandent, par
cela même, qu'elles le soient pour des nombres plus petits;
ce qui fait que de ceux-ci on tirerait d'autres nombres encore

1 Voir Chaslcs, Ap. Hist., p. 441 et J. L. (1837), p. 37.
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plus petits et jouissant des mêmes propriétés; et ainsi de

suite, ce qui implique contradiction avec le nombre limité
des entiers inférieurs à ceux donnés d'abôrd.

Exemple. L'aire d'un triangle ne saurait être un carré
(Fermât). Démonstration rétablie par Eu 1er. Les trois côtés
étant p + g2, 2fg et p — g2, Faire A est fg(p — g2) ; f et g
sont premiers entre eux avec f2—g2. Pour que A soit un
carré, il faut que /, g et p — g2 soient également des carrés;
posons en conséquence /= A2, g p ; /2 — g2 A4 — p
doit être un carré. Or A et y sont premiers entre eux, de

même que A2 + p et A2 — p ; ces deux derniers sont donc
des carrés. Ecrivons donc

X2 -\- u.2 r2 X2 — [j.2 — .s2 d'où [j.2 -f s3 — X2 s2 -f- 2a2 — rÀ *

La dernière égalité donne, à cause de (19)

s — t2 — 2a2 p. — 2tu r zz: t2 -j- 2u2 d'où X2 — a2 -{- s2 — -f- 4^4

c'est à-dire un triangle t2, 2w2, A dont l'aire A' t2a2 serait
également un carré et qui serait beaucoup plus petit que le

premier, car on a :

A — X2[j.2(X4 — u.4) zz: 4i2u£(t* -|- 4iA) (t2 + 2A2)2 (P — 2u1)2 A'

On aurait ainsi la possibilité de trouver une suite indéfinie
de triangles dans ce cas, ce qui est impossible puisqu'il
s'agit de nombres entiers, qui ne peuvent indéfiniment
décroître. (Voir Ens. Math., 1909, p. 331, pour un autre exemple.)

Exercices.

1. Trouver graphiquement les développements de (a -fi b)

(c + d), de(a ± b)3, de (a + b)(a — b), de (OA - (~A)
(Euelide), ainsi que Ici sommation cl'une progression
arithmétique (Archimède).

2. La somme des n premiers impairs successifs est un carré.

1 C'est de cette dernière figuration qu'on a tiré l'idée de remplacer les multiplications par
des soustractions, à l'aide de tables de quarts de carrés.
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Hen est tie même cle deux triangulaires successifs1. Tout carré
impair est la différence de deux triangulaires, et eu même

temps, Toctuple d'un triangulaire augmenté de l'unité
(Pythagoriciens). Se démontrent par des configurations géométriques

de points.
3. Démontrer géométriquement que si (a, b) est une solution

de x2 — 2y2=n, (2b-fi a, a fi-b) en est une de x2 — 2y2 =— n.
Construisons le triangle rectangle isoscèle ABC; abaissons
sur l'hypoténuse AC, la hauteur BD et d'un point E de BC,
la perpendiculaire EF. On aura :

AFa + EF2 — AB8 + BE2 ou (2b + ay2 fié' 2(a + bf + 2/fi

en posant DF b, FC-= a. Cette proposition semble due
aux Platoniciens, qui s'en servaient pour trouver des
approximations de plus en plus serrées de l'irrationnelle \/2 en

partant des soi niions a 3, 6 2, de l'équation x2 — 2y2 — i.
4. Résoudre les équations

1° Ax — By ; 2° xy r=r Az ; 3° my z=z uv ; 4° x2 — yz ;

5° x9' ay ; 6o xyz =z tuv ; 7° x* tuv ; 8° x2y z=z u2 v

i° Si A et B sont premiers entre eux, on pose x Ba,

y — A a, a entier quelconque.
Si A et B ont h comme p. g. c. d., on écrit: hx Ba,

hy r= Aa.
2° Soit A ctb ; on fierira z yd, x cty, y by ; y et <î

quelconques. Il y a autant de solutions que de manières de

décomposer A en deux facteurs.
3° On fera x — aß, y yd, u= ay, c ßd ; a, /3, y, <î,

quelconques.
4° On fera .r aßy, y a2/3, z /3y2.
5° Soit a 62c; on fera # 6ca, y Ca2.

6° On écrira: x aß, y yd, z e<p, t=ay, u ßs,
Ç $(p.

i

7° On écrira : X' «/3y, toe'ß, u /52y, c y2a.

1 On appelle triangulaire un nombre de la forme " —-

L'Enseignement mathém.. 17e année; 1915.
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8° On écrira : x aß, y y2$2, u ay, c /32$2 h
5. Résoudre xy + Ax + By G. On a :

Soit AB -j- G ab \ on posera : x — a — B ou b — BT

d'où deux solutions pour chaque décomposition de AB -f G

en deux facteurs (Euler).
6. Résoudre x2 -f y2 z2. Posons z y + A, ce qui nous

fera éliminer un carré2. Il viendra x2 — z fly -f z'), ce qui
conduit à poser :

x — iuv z'=zfu, 2yz'=z uv2 d'où 2y — u(v2 — t2) 2 z~u(A-\-i2)

On retrouve la formule (10) présentée un peu plus généralement,

telle qu'Euclide l'a donnée.
7. Résoudre x2 — y2 az2. Soit a fg ; on peut écrire :

# -f- y —f'X2 x—y — g g2 d'où 2x — fX1 g-gg 2y f\2— g\X z — X[j.

Il y a autant de solutions que de manières de décomposer a
en deux facteurs (Lagrange).

8. Tout cube est égal et la différence cle deux triangulaires
successifs (Ibn AI madjdi).

9. Tout nombre de let forme x2 ± x -f 1 est la somme de
deux triangulaires (de Roquigny). En général, tout nombre
x2 zL xy + y2 est en même temps de la forme z2 -|- 3w2 (Euler).
Voir Ens. Math., 1907, p. 441.

10. Aucun nombre 2(x2-f y2-f xy) ne peut être un carré
(Fermât), ni aucun cles suivants 2x2 -f 3y2. 2\v2 + v2, 3x2 + 7y2,
5x2 + 7y2, 6x2 + 7y2, ni le nombre 2x4 + 2 (Euler).

Si a et b ne sont pas tous les deux divisibles par 3, ou 7,

ou 11, ou 19, ou 23, il en est de même de a2 -f- b2.

1 On multiplierait aisément ces exercices, et d'autres de genre analogue. En voici, par
exemple, un dû à Cauchy : les nombres a, b, c étant premiers entre eux, la solution générale
de ax X by cz est donnée par les formules

x brj. — cß y cy — «a z by — a[I
2 Ce procédé d'élimination d'un carré de l'énoncé est dû à Diophante, qui pour résoudre

z* — b
xt X ax d~ ^ V2-, égale le premier membre à (# -f~ z)2, ce qui lui donne x

^
d'où

une infinité de valeurs fractionnaires de x, en faisant z 1, 2, 3,
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11. Tout nombre 2a2— b2 est en même temps de la forme
x2 — 2v2. Tout nombre 5a2 — b2 est en même temps de la
forme x2 — 5y2 (Lagrange). En général, on a cette identité
de Mathews Collins

igMcY - (/» 4 S"2) (>2 (f2 H- g*) iw ± fl)* - [(f* + S2)b ± M2
12. Le double d'un nombre de la forme x2 -+- y2 + xy est

une somme de trois carrés, et le double cle son carré, la somme
de trois bicarrés (Catalan), Il en est de même du nombre
x2 -f y2 + z2 — xy — yz — zx (Ed. Lucas).

13. a2n+' -Jz 1 n'est jamais divisible par a2 — i. En effet,
le quotient de a2n dz 1 par a zb 1 peut s'écrire

a [a _)_ 1) (a~u 1 4 C(~n 4 4 • • • H- 'L 1
•

14. Posons F =2fix?H-2bxy+ y2, x ax'+/3y\ y ^x' + J\/;
o/? trouvera, en substituant} une nouvelle forme F' — «'x'2

+ 2b'xy + c'y'8 telle que b'a ~ a'c/ (b2 — ac) (ai — ßy}2.
Tout nombre représentable par la forme F l'est par la forme
F', et la réciproque a lieu également si ad — ßy ± 1

(Ln grange).
15. 1° Faisant dans (23) d — S — 0, on arrive à cette

conclusion que le produit de deux sommes de trois carrés est

une somme de quatre carrés 1 (Euler).
2° Chercher l'expression du produit de la somme de quatre

carrés par 3 i2 + l2 -+- i2 -+- 0, par 4 — i2 -+- l2 -+- l2 +- i2,
par 4 (— i)2 -+- l2 -+- l2 4 l2, par 5 44 1 + 0 + 0, par
6 4+1 + 1 + 0, par 7 — 4-4 1- + 1 + 1, par 10 4 -+- 4

-+ 1 +- C etc- ; on obtiendra ainsi diverses formules, dont
les trois premières sont dues à Euler, Cauchy et Jacobi.

3° On trouvera une généralisation de (23), due à Lagrange,
en y changeant ß, y, d, ß' y d'en ß\/k y\/ l d\/kl, ß'\/k
yVT, d'V~kl-

16. Soit A le produit de nombres impairs a, a', a", les
deux nombres

À — 1 a — 1 (T — 1

O et Ö
1

Ö
u •••

1 Cauchy a fait voir que ce théorème résulte de la considération d'un triangle projeté sur
trois plans rectangulaires.
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sont respectivement de même parité que les suivants

A2 — 1 a2 — 1 a'2 — 1

et 1 + (Gauss)

17. Toute sixième puissance est de l'une ces formes 7 + 0, 1;

toute dixième puissance, cle Tune cles formes 11 + 0, 1 ; toute
douzième, de l'une des formes 13 + 0, 1 ; toute seizième, cle

l'une cles formes 17 +0, 1; etc. Pat' exemple, on a, pour les
carrés, les formes 7 + 0, i, 4, 2 ; d'où, pour celles des
bicarrés, 7 + 0, 1, 2, 4; et pour les sixièmes puissances,
7+0,1,1,1.

18. Divers problèmes de Goldbach et d'Eu 1er. Voir Ens.
Afath1909, pp. 354 et 355.

19. Le quadruple d'un triangulaire ne peut être un
triangulaire (de Rocquigny). On devrait avoir x2 + x — Sy2 + 4y2,
égalité qui revient à l'une quelconque des suivantes :

x2 -j- x -j- 1 (2y -j- l)2 2x -f- 1 — H- +4 (2j + l)2 — 3

(4y -j- 2x — 3) (4y — 2x -I- 1) 3 (a: + 2y -j- 2) (x — 2y) x

dont l'impossibilité est aisée à démontrer, car le premier
membre de la première ne peut être un carré; 3 ne peut être
la différence d'autres carrés que 4 et 1; enfin les deux
dernières ne peuvent avoir lieu que pour x y 0. (/. M.,
1894, pp. 303 et 394.)

20. Si a est premier avec b, les congruences n h (mocl a j

et n h (mocl h) entraînent la suivante n h (mod ab). En
effet le nombre n — h étant divisible par a et 4, l'est par ab.
Cette question s'étend, à un nombre quelconque d'entiers
premiers entre eux : c'est un cas particulier de la suivante,
qui remonte à l'antiquité : trouver un nombre qui, divisé par
a, b, c, donne les restes a, /3, y,

21. Tout nombre impair est 8 + 1 sises facteurs cle forme
8 + 3, 5, 7 sont tous en nombre pair ou tous en nombre
impair. Zéro est compté pour un nombre pair.

22. a et b étant premiers entre eux, si ax — by =1, les
nombres

x — olc + Xb y 55; fie -f- la

satisfont à l'équation ax — by c



THÉORIE ÉLÉMENTAIRE DES NOMBRES 181

23. Des solutions des équations

ax — by — c ax' — b'yf — c ax" — fJ''y" — c

déduire celles de ax — bb'b"... y c (Gauss).

24. Soit l'équation a2x2 -f- bx -j- c y2. Posons y ax + -
on en tirera une expression de x, en z et u qui donnera les

valeurs positives de x en donnant à % et u des valeurs telles

2° Soit ax2 + bx -f c2 y2. On posera y c -f* ^x% ce qui

donnera pour x une formule analogue. On s'occupera
seulement des valeurs de ~ comprises entre \/a et ^

3° Le cas général ax2 + bx + c= y2 est bien moins aisé à

résoudre ; aussi il faut tout d'abord tâcher de voir s'il n'y a pas
impossibilité, comme c'est le cas pour 13x2 + 54/r + 69 y2,

puisque le premier nombre peut s'écrire 7(.r + 3)2 + 6(.r + l)2.
4° On sait que si b2 — 4ac est un carré, le trinôme

ax2 + bx + c peut se décomposer en deux facteurs linéaires.
On peut donc le supposer égal à [ax -f- f) (x -f g) ou à

~y{x -b g-)2, d'où on tire x, qui sera entier si on fait
v2a — u2 dz 1 (Euler).

Si ax2 + bx -j- c peut se mettre sous la forme (fx + g)2

-f- (hx + j) (hx f- l), on égalera sa racine carrée à (fx + g)

+ U- (hx + y), ce qui donnera une valeur de x en u et c dont

on essaiera d'égaler le dénominateur à =fc 1 (Euler).
6° Résolvons algébriquement ax2 -f~ bx -f- c y2 par rapport

à m ; on est ramené, en posant X 2y, b2 — 4ac B,
à résoudre «X2 + B Y2, ce qu'on fait en donnant des

valeurs convenables à Y. Inutile d'ailleurs de prendre Y > ^
puisque (Y ~b ko)2 — B est divisible par a, en même temps

que Y2— B. Si jusqu'à Y on ne trouve aucune solution,

l'équation est insoluble (Lagrange).
25. Soit ax2 -f- 2bcx + c2 y2 et supposons x > b et > c ;

la valeur de y est de la forme zx2 — bx -f- c. «
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26. Déterminer les valeurs de x supérieures ci b et ci c données

par Véquation a2x2 + bx + c y2. On a :

b + 1 b

> y — ax >2 a ^ ^ 2a + 1
'

?/ est de la forme ax* + d avec cl <f ,r, car a? > b >
En écrivant c+r2 -|- + c (ô.:r -f- cZ)2, il vient (6 — 2ad)x
+ c— d2 0. On essaie, dans cette expression, les valeurs
de cl ~ y — comprises entre les limites données plus
haut (5. Œ., 1910, p. 146).

21. On peut toujours former une puissance entière
quelconque par l'addition cle termes d'une progression arithmétique

(Rallier des Ourmes). Application à l'étude des suites
formées :

1° par le premier entier 1 ; la somme, 2 + 3, des deux
suivants ; celle, 4 + 5 + 6, des trois suivants ; etc.

2° par le premier entier 1 ; la somme, 2+3 + 4, des trois
suivants; celle des cinq suivants ; etc.

3° par le premier impair; la somme des deux suivants; etc.
4° par la somme des deux premiers impairs; celle des

quatre suivants; etc.
5° par le premier impair; la somme des quatre premiers;

celle des neuf premiers ; etc.
6° par le premier impair ; la somme des (1 + 4) suivants;

celle des (1 + 4 + 9) suivants ; etc.
7° par le premier impair; la somme des (1 + 8) suivants;

celle des (1 + 8 + 27) suivants ; etc. (de Rocquigny).
28. Combien cle zéros dans les n premiers entiers (Ed.

Lucas).

29. Le nombre 1000 se termine à droite par 249 zéros
(de Rocquigny).

30. Quels sont les derniers chiffres ci droite de 21000, de
31000 (id.)

31. Il y a quinze nombres clans les 10001000premiers entiers
qui sont ci la fois carrés, cubes, bicarrés, dixièmes
puissances (de Laplanche)1.

1 On peut rappeler ici le problème de Comiers, jadis célèbre : quel est le produit des deux
nombres formés respectivement de 666 chiffres 9 et de 666 chiffres 6
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32. Dans quatre cents ans, combien cle mois cle février de

cinq dimanches? (N. A.) Combien de vendredis 13? (Buray)

Il y a au plus trois de ces derniers et au moins un annuellement

(G. Tarry).
33. La série cle Fibonacci 1, 2, 3, 5, 8, 13, 21, 34,

un+1 un + un__i ne peut avoir que quatre ou cinq termes
d'un nombre donné cle chiffres (Lamé). Cela vient de ce que si

uk < 10uk__k < uk+l et i < 10"*—3 < uk+2 '

il s'ensuit U&+.2 < 10^—2 < Uk+3 •

34. Disposer les douze premiers entiers sur trois lignes, qui
donnent des sommes égales, et cle telle manière que, clans
chacune cles quatre colonnes, le plus grand cles trois nombres
soit égal à la somme cles deux autres.

35. Placer les neuf premiers nombres aux sommets et sur
les côtés d'un triangle, cle manière que la somme cles nombres
d'un côté quelconque soit constante, ainsi que celle cle leurs
carrés (Proth). Appelons x, y, z les trois sommets; les
valeurs des deux expressions x -f- y + z et x2 + y2 + 32 sont
toutes deux des multiples de 3, ce qui demande que x, y,
et 3 soient ensemble 3 ou 3 + 1 ou 3 — 1. De là trois
solutions, dont la seconde seule 2, 5, 8 est à conserver. Le reste
s'achève facilement.

36. Le carré d'un polynome de 2k termes ayant autant cle

termes négatifs que de positifs contient 22k~2 doublesproduits
négatifs et 2k' 1

(2~k
1

— ]) doubles produits positifs (Barbette).
Pour que le carré cl'un polynome de n termes présente

autant de doubles produits positifs que cle négatifs, il faut que n
7 .7 n+l/llsoit un carre, et alors il y a — termes positifs (Id.)1.

37. Quel est le signe du nlème terme cht développement du
produit

(1 — a) (1 — b) (i — c) (Catalan)

Montrer l'identité de ce problème avec le suivant : considérons

les lettres a, b, que nous ferons suivre du groupe ren-

1 A rapprocher de la question suivante : trouver le. produit de deux expressions de la
forme /a -f- /b + qui ne diffèrent qu'en ce que, dans la deuxième, certains radicaux
sont pris avec le signe —. Voir Fitz-Patrick, Exercices d'Arithmétique, p. 575.
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versé ba, d'où le groupe abba, auquel nous accolerons le

groupe inverse, ce qui nous donnera abbabaab, et ainsi de
suite. Quelle est la nième lettre? (Laisant). Voir A. F1881.

38. Soit a la base de numération; aT1 — 1 est divisible par
a — 1 ; il s'ensuit que tout nombre N An + Bn—1 + fournit

la relation N S A B -f- (mocl a — l) et que l'un des
nombres an dz 1 est divisible par a + 1 selon que n est pair
ou impair. Donc si n est pair, on a : N A — B-f-C —
(mod a + 1) (Gauss).

39. Soit d un diviseur cle alOb ± c .Un nombre est divisible
par d quand, ayant séparé b chiffres à la droite cle ce nombre
et divisé le nombre restant et gauche par a, la somme ou la
différence entre c fois le quotient et le nombre formé en écrivant

le nombre cle droite à la droite clu reste est divisible par d

(E. Gelin). Voir les Caract. de cliv. du même auteur, et les
E.r. d?A rith. de Fitz-Patrick, pp. 24 et seq.

40. 1° L'expression [a + l)7i — a11 est la somme des n
termes

(a + l)*-1 (a + 1 )n-2a (a + 1 )n~V an~x

et par suite elle comprend visiblement n fois le terme an~1,
plus des termes en all~2, en an~~3, On peut donc écrire :

(a) (a + l)n — a11 nall~l + Aall~2 + + La + 1 1

2° Soit la suite de fonctions

Ft(x) F(x + 1) — F (x)

F2(x') zzz -pi) — Fi(^)

F3(x) F2f.r H- 1) — F2(.r)

les fonctions Fi, F2, F3, sont appelées la différence
première

y la différence seconde, la différence troisième, de la
fonction F. Posons maintenant

F (x) Axn + Bx"-1 + Cx"—2 + + Lx + M ;

sa différence première F (x +1) — F (.r) — 1;\ (,r) contiendra

1 Voir Eus. Math.. 1907, p. 297.
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le terme nkx7l~~1, plus des termes en xll~2, On peut donc

écrire F4(.r) nAx7l-{ + B'x"—- + La différence seconde

est donc de la forme

n{n — 1)àjc"—"2 -r
3 +

La différence troisième est de la forme n{n — i) (n — 2) Axn~:3

-f \Y'x1l~k + On voit qu'on a :

Vm(x + 1) + FJx) n(n - 1) 2 1A

Ainsi, la différence nième du polynôme Axn + est égale cc

An proposition connue des An ci ens, mais laissée sans
démonstration jusqu'à Mereator.

3° La fonction

F (x, k) — x — Ck(x - l)w -f CJh.2(x — 2)n —

est du degré /z, et par suite sa différence /zième a pour valeur n

Or, à cause de (16), on trouve, pour l'expression de ses
différences première, seconde, /zième,

F (x -f- 1, k) — F (x f k) ^ F (x -j- 1, k 1)

F (x + 2, k + 1) — F (x + 1, k -f 4] F (x + 3, A- + 2)

F [x -f- nk n) zzi n

Faisant x -f- n -= a, k 0, il vient cette identité de Mer-
cator

a1 Gn^(a — 1)" q- C„j2(a — 2)7i — + 1 — {a ^ a)

4° Si a et b sont premiers entre eux, tout diviseur commun
an bn

à a — b et à c— — divise également n (Lebesgue). Il suffit

de changer dans (a) a en —.0 v ' a — b

Lebesgue démontre ce théorème à l'aide de la formule du
binôme. Malebranche, qui l'avait aussi rencontré (voir
Ch. Henry, Rech, sur les man. de Fermât, p. 92), en donne
une démonstration dont le principe pourrait être utilisé
ailleurs : tout diviseur commun à a — b et à an~x + ban~-

+ b2an~3 -f- divise atl~'2(a — b) — a71"1 — bct,7~2, et par
suite — 2ban~2 — b2cin~3 — ; or il divise 2ban~3(a — b)
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2ball~- — 2b2an~3, il s'ensuit qu'il divise aussi — 3b2an~~3

— b3— ; on voit qu'on arrivera à prouver qu'il
divise nbtl.

41. Les nombres Ak et Bk de la formule (a + \/h Ak

+ Bk\/ b se calculenty de proche en proche, d'après les
formules suivantes d'Euler

A„+l — «A7i + bBn B/i+1 — An + aBn ;

An+1 ^ - b).kn__, B#l+1 2«B„ - (a2 - h) Bn__x

42. Les nombres y2 — 3z2 et 3y2 -— z2 ne peuvent être
premiers qu'autant qu'ils sont respectivement des formes 12 + 1,

et 12 — 1.

Si le nombre y2 — 5z2 est premier, il ne peut être que de
Vune des quatre formes 20 ± 1, dz 9.

43. Tout nombre a2 + 1 en divise une infinité d'autres
isomorphes. En effet

(a2 + J [(ax -f- l)2 + x2] (a2x + x -f- a)2 -J- 1

Plus généralement, le nombre n — ka2 -f- lb2 divise une
infinité de nombres de la forme x2 -f- kly2, qui sont en même

temps de la forme kx2 -f ly2 (Euler). En effet, on a :

iifl -f- kl) L- (kci ± lb)2 + kl(a 4= b)2 — k(a ± lb)2 + l(b zp ka)2

44. Tout diviseur commun aux nombres a2 — kb2, c2—ld2,...
divise également un nombre de la forme x2 — kl y2. En
effet, il divise

a2(c2 — ld2) + ld2(a2 — kb2) — (ac)2 — kl(bd)2 (Lagrange)

45. Posons X xxf — Qyyf Y xy' -|- yx + Pyy'-, il
viendra, si a et b sont les racines de l'équation z2— Pz + Q 0,

(x + ay) (x' + af) ~ X -f aX

Or on a : (x -f ay) + %) >%2 + Pxy + Qy2 ; donc le produit

de deux nombres cle la forme x2 -f- Pxy + Qy2 est

isomorphe (Lagrange).

46. Dans (21) changeons h en ^ puis dans (8), a, c, ô, d,

respectivement en a f/k b\/1 a, ß\/kl\ il viendra deux
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nouvelles formules, dues à Euler, lesquelles, avec (8),

montrent que le produit d'entiers des deux formes ax2 + by2
et x2 + aby2 est de la première ou de la seconde forme, selon

que le nombre de ceux de la seconde est pair ou impair (Euler).
47. 1° Faisant dans (9) a a2 + b2, ß c2, on obtiendra

une formule d'Euier permettant de décomposer le carré
d'une somme de trois carrés en une somme de trois carrés.

2° Faisant a a2 + 1, ß a, on trouvera une identité
dont Euler s'est servi pour l'étude du produit (t a + cd)

(i + at+a^il + at + a*)...
3° Faisant a — x2 + Q, ß \/2(Q — P)x, on aura une

extension de (11), qui en donne une de l'identité d'Auri-
2/z —1

feuille, en posant Q — P — a, x (2a) 2 On peut trouver
d'autres cas intéressants, par exemple en faisant Q 1,

2/1+1

P rJQ
Q 2

2' ; ces extensions sont dues à Catalan.
4° Faisant a ci2 + b2 + c2 + cl2 et ß cl2 + b2 -f c2 + cl2,

on aura un moyen, dû à Ed. Lucas, de décomposer le carré
d'une somme de quatre carrés en une somme de quatre carrés.

5° Faisant a Ax3 -f- Cx et ß Bx2 -f D, il vient, en
identifiant à x6 — i,

A — D 1 2C — B2 0 C2 — 2B 0 B G — 2

d'où une remarquable identité, due à A. Boutin.
6° Faisant, de deux manières différentes, le produit de

2(a + b) (c — d) par 2(a •— b) (c -F cl), à l'aide de cette
transformation de (9)

2f* szn (/' -+ g)2 (f o-)2

où on fait f a2 — b2, g — c2 — cl2, on obtiendra une identité

de forme x2 + y2 + z* x'2 + y'2 + z'2, trouvée par
B. af Genas.

48. Si ax — by 1, les valeurs X y2(3ax — by) et
Y x2(3by — ax) satisfont à l'équation b2X — a2Y — 1

(Bouniakowsky)1. On n'a qu'à changer a et ß en - et - dans
l'identité (« — ßf (3a — ß)ß2 — (3/3 — a)a2.

1 Le savant russe est arrivé à cette conclusion, ainsi qu'à d'autres plus générales, cà l'aide
de la formule d'intégration par parties.



A A UBR Y

49. Soit f3 + ag8 bh8; on aura une autre solution cle

x3 4- ay3 bz3 en faisant

X — t\r + 2tf#3) y — g(2/'8 + a g1) M h(f* — ag*) {Euler)

Prestet avait trouvé, avant Euler, le cas particulier de

a b JI..

50. Effectuant, de deux manières différentes, le produit

gv~w,
on aura une identité de A. Boutin donnant une solution de
x4 — y2 + hz2.

51. Posant k\/ a -f l\/—b (x\/ a + y\/—Of, puis
égalant les coefficients de \/a et ceux de \/—b, il vient

| — ax3 — 3bxy2 i — oax2y — byz

d'où
ak2 -\~ hi% — [ax2 -J- by2)3 (Euler)

52. Développant l'expression (a + bif(a — ùf)3 et l'identifiant

à (a2 -b b2f, on trouvera un cas particulier de l'identité

précédente, qui montre à déterminer un cube qui soit la

somme de deux carrés (Euler).
53. Théorème cle Binet* Voir Ens. Math., 1907, p. 303, ex. 11.

54. Egalités multiples. Voir Ens. Math., 1914, p. 18.

55. Eactorisation. Voir Ens. Math., 1913, p. 202 et seq.
passim.

56. Fractions continues. Voir Ens. Math., 1912, p. 184 et

seq. passim.
57. Carrelages. On obtient de remarquables carrelages en

considérant comme axes de coordonnées deux droites
rectangulaires d'une feuille quadrillée et mettant la case [x, y)
en gris ou en noir, selon que le reste de la division de
a(x2 y2) par n est de la forme 3 j- 1 ou de la forme 3 — 1.

Voir S. Œ., 1912.
58. Triangles. 1° L'une cles cathètes du triangle x2 + y2 — z2

est toujours paire (Pré nie le). On la désignera par 2fg.
2° Tous les triangles sont donnés par la formule d'Euelide

(ex. n° 6). Conséquence de 1°. Les deux générateurs sont,
dans ce qui suit, désignés par / et g.
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3° L'hypoténuse est de l'une des formes 12 + 1,5 (anonyme
arabe). Le triangle étant primitif, z f2 + g2 est impair,
et z2, cle la forme 4+1.

4° Une cathète est multiple de 3 et une autre, multiple de 4

(Frénicle).
5° L'un des côtés est multiple de 5 (Id.). On examine les

formes linéaires de f et de g relativement au module 5.

6° La somme et la différence de deux cathètes sont de l'une
clés formes 8 ± 1 (Id.).

7° Le seul triangle 3, 4, 5 a ses côtés en progression
arithmétique. Il n'y en et aucun les ayant en progression géométrique

(Ozanam).
8° Si les générateurs f, g sont deux triangulaires consécutifs,

le côté f2 — g2 est cube (Id.).
9° Si f g + 1, Thypoténuse surpasse cle t la cathète

paire (Id.).
10° Si les deux cathètes diffèrent de 1, le triangle ayant

pour générateurs (2f + g) et f sera dans le même cas (Fermai).
11° Si l'on prend pour générateurs deux termes successifs

de let série 1, 2, 5, 12, 29, 70, les deux cathètes diffèrent
de 1 (Ozanam). G est le théorème précédent de Fermât1.

12° Trouver un triangle dont let bissectrice soit rationnelle
(Diophante). Il faut rendre rationnelle F expression 2f\/f'*-\-g2,
ce qui se fait en posant f ~ 4(<p2 — y2), g k(2yy).

13° Trouver un triangle dont le périmètre soit un carré
(Id.). Il s'agit d'égaler à un carré le nombre 2/'(/'+g), ee

qu'on fait en écrivant f= 2a2, g — v2 — 2u2.
14° Trouver un triangle clout let somme des cathètes soit un

carré (Teilhel). La question se ramène à rendre carré le
nombre f2 + 2fg — g2 ; on y arrive en faisant

f — a2 — 2uv + v2 g — 2uv

15° Trouver trois carrés en progression arithmétique (Fibo-

1 En général si les deux premiers termes sont 1, a, les cathètes successives different de
<z2—— 1. On peut d'ailleurs continuer la série en remontant: ainsi, pour a 4, on a.:

— 19, 8, — 3, 2, 1, 4, 9, 22, C'est vraisemblablement ainsi qu'Ozanam a trouvé la liste
des triangles dont les cathètes diffèrent de 7 (Diet. math.). On voit qu'il pratiquait virtuellement

la théorie des séries récurrentes.
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nacci). Gomme on a :

(a + bf -j- (a - bf 2 (a2 + (A)

le problème est ramené à faire a f2 — g2. b 2fg\ ce qui
donne l'identité

(p - g> _ 2fof -I- (P _ f + 2fgf 2 (P +
Cette solution paraît due aux Arabes1. Fibonacci a fait remarquer

que la raison 4fgif2— g2) est divisible par 24; il en
déduit la solution du système x2 -j- y2 u2, x2 — y c2.

On est ramené à ce même problème en che rehaut un
triangle dont la seconde bissectrice soit rationnelle> ou
encore, en cherchant avec xA. Boutin trois triangulaires en

progression arithmétique.
16° Trouver deux triangles tels que la différence des deux

plus grands côtés de chacun soit égale à celle des deux plus
petits de Vautre (Frénicle). Voir Œuvres de Fermât, t. IV,
p. 253.

17° Trouver trois triangles dont les aires soient égales
(Diophante). Les valeurs

x — k2 — 1 y z=z 2k + 1 z k2 + k + i
satisfont à Féquation x2 -j- xy + y2 z2; de là la solution de

Diophante
2xz(z* — x2) 2zy(z* — y2) 2z[x + y) [(x 4- y)2 — z2]

18° Il est impossible de trouver deux triangles tels que les
deux plus grands côtés diffèrent également de même que les

plus petits.
19° Trouver un triangle dont l'hypoténuse soit un carré,

ainsi que la somme de ses cathèles (Fermât). Ces dernières
étanl x — u2 — v2 et y 2uv, on pose u l2— y2 et
v —: 2Ay. Il faut que x + y A4 + 4Py — 6X2y2 — 47g3 + yé
soit un carré, qu'on supposera

2 égal à celui de 72 — 2ly y2.

1 On la voit, pour la première fois, dans S'G-ravesande, Math. aniv. ele/n. (Leyde, 1727).
2 Ce procédé porte le nom de Fermât. Si a a2, ou si e s"2, on résoudra a -f- bx 4 ex2

4 dxz 4 ex4 y2 en l'assimilant au carré de a 4 ux -f- ex2, ou de u -f- ex 4 sx2, et on
disposera de il et de v de manière à obtenir une égalité de la forme Ax B. Connaissant une
solution x u, on en aura une nouvelle en changeant x en x' -f- n, et ainsi de suite. Eider a
traité des cas analogues de l'équation a -j- èx -f ex2 4 — V2-
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ce qui donnera A ~ et g — 119, solution à rejeter.

Posons, en conséquence, À — ^ + v, il viendra une expression

en p. et y qu'on assimilera au carré de p.2 + 148gy — 4v2;

on trouvera ainsi p 84, y 1343, X 1469, d'où

X 4565486027761 y — 106165229352

Lagrange a montré que ces nombres sont bien les plus petits
qui répondent à la question, ainsi que l avait affirmé Fermât.

20° Si (x, y, z)- définit un triangle, les nombres (2x + y + 2z,

x + 2y + 2z, 2x -f- 2y + 3z) en définissent un autre dont les

cathètes diffèrent autant que celles du premier. De là, le

moyen de trouver une série infinie de triangles dont les

cathètes diffèrent de la même quantité (Wilkinson). Les séries
ainsi obtenues, en partant cle 0, n, n, et faisant varier n,
donnent tous les triangles possibles (Monck). Voir M., 1906,

p. 113.
21° En outre du triangle possédant un angle droit, on

pourrait étudier le triangle possédant un angle de 60°. La
formule qui relie les côtés d'un tel triangle est x2 — xy + y2 z2,

et les formules générales clés côtés sont :
1

* sp - g2 - 2 fg r r= 3P - g2 + 2fg s 3^ + g

59. Si (a, b, c; cl) désigne une solution de l'équation
x2 + y2 + z2 — w2 donnant, en nombres entiers, les côtés et
la diagonale cVun parallélipipècle rectangle, l'expression

(a g- b g- d a g- c g- d b g- c g- d ; a g- b g- c g- 2d)

en désigne un autre dans le même cas (Monck). De là une
infinité de semblables solides, en partant de (1, 2, 2; 3)2.

1 Elles se tirent des formules de l'exercice 7, en remarquant que (2.s)2 (x -j- y)2 -f- %{x — y)2-
Les triangles quelconques lournissent également d'intéressantes questions. Ainsi considérons

la série des triangles tels que les côtés de chacun soient les demi-sommes de ceux du précèdent,

ces triangles tendront vers le triangle èquilatèral isopèrimètre (Mackay). Voir aussi
S. Œ., 1913, p. 182.

2 On a étudié de même, à la suite d'Euler, le parallélipipède rectangle dont les côtés et les
diagonales superficielles sont des nombres entiers, ainsi que le trièdre tri-rectangle à côtés
entiers. Mais on ne connaît pas de solutions générales de ces deux problèmes.
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60. 1° Désignons par E&> la partie entière du nombre non
entier go, on a :

(a) 0 <b w — Ecü</ 1 (|î) — 1 <C Eto — w </ 0

(y) Ew < w < 1 + Eto (8) E (to + ft) Eto + ft

<£) E (to + to7) — E (<o + to") E (to' — w") (ç) E (« — to) a — 1 — Eto

2° Entre go et &/ zï y a (Eco — Eco') entiers.

3° Dans les b premiers entiers, z7 y a E— multiples de a.

4° Le plus grand multiple de a inférieur à 1) est aE^-. On

peut le désigner aussi par l'expression b —

5° Déterminer x tel que le quotient q de a divisé par b ne

change pas quand on ajoute x à chacun de ces deux nombres.
On a

0 ^ a -j- oc + q (b + oc) ^ h x

d'où deux limites de x.
l6° Si 03 — Eco < - on a : E(n«) nEo>. On multiplie la

relation donnée par n et on lui ajoute, membre à membre,
la relation iß) après qu'on y a changé 03 en zzco.

7° On a : 0 ^ E(/2co) — /?Eco < n. On multiplie (oc) par n et

on ajoute la transformée de (ß) du n° précédent.
8° On a :

cl a a /— /— - ^
1

r; < r^—n ; V(° — V Ew < ——; ;

Eto to (i^to)2 2|/Eù3

1
Eto -|- |/(o — E03 — to <b - ; ccEto — E (too/) — E [(a — to7) to] ~ 0 ou 1 ;

3

E 0 ci il —]— 1 — E 0 ft ft "E ^ — E j// ci ci —j— 1 -|— 2 .— ci ;

E [/a (a + 1) (ft -j- 2) (a -J- 3) zn a {a -f- 3) 1
;

E\/a(a + 1) (a + 5) z= a2 + 5a + 3 ; (Goulard)

E (e')/n '.) n ß 1 (Ens. Math., 1906, p. 354)

Eïï E "
9° On a : E— E-r^-=E^-. On fait co 7 dans (oc) et

c b be b v ;

1 On n'a ainsi d'ailleurs que des approximations assez grossières, car, augmentant de 1 la
partie sous le radical, on obtient le carré de a(a -f- il*
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on divise par c\ on ajoute ensuite, membre à membre, avec

la relation (ß) où on a fait co ~

10° Faisons, dans la relation de 7°, n 2, w qr puis
2 adans (/S), w — y 1 et additionnons ; on conclura cfue

|ej — 2E^j est égal cl 0 ou à 1, selon que Ey est pair ou

impair (Catalan). Généraliser.
11° Pour a < b, on a :

E (4E—\c — 1 et
b a 2(. + E")]

Par exemple, pour la première relation, on fait d'abord
a a r^cb
C PLl,s w /7E«dans (a), co — et on multiplie par j ; puis &> ~ E— et

on additionne, membre à membre.
12° Soit (3 + V h)n a -f b\/ 5 o/7 a : a E(b\/ 5; + 1.

Voir Fitz-Patrick, op. cit. 563.
13° Voir Ens. Math., 1910, pp. 458 et 472, plusieurs

utilisations et figurations de la fonction Eco.

14° De la relation É(w + 1) 1 + Era, on conclut que, quel
que soit l'entier n, il y a un nombre non entier £ positif et plus

petit que 72, tel que co + -» 1 + E« ; ce qui donne £ nEoy

— nu + 77, d'où, à cause de ($)

EÇ 77 Eco — Epico) -j- n ;

à cause de 7°. On peut donc dire, avec Hermite, que dans la
suite

Ew / t \ [ 2 \(w 3_ — \ E CO -j- ~V n V 77/

chacun des (nEw — E(n«) + 11 premiers termes est égal au
premier.

15° Soit Ego a, l'expression

ri I n n—1 2 i t—^ n—2 4
CO + C2/^2co a 4- C2//>4co a +

^2/i, lw a d~ C2#l>3co' " a3 -j- C2/^5co"
3 cd -f

•L'Enseignement mathém., 17e année; 1915 13
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tend vers la limite \/ &>, à mesure que n augmente.
16° Le nombre de fois que le nombre premier p est facteur

dans n s exprime par

E — -f- E —^ —j— JE —5 -4- (Eegendre)
p /r p*

17° Si a < b, les ^ premiers termes de la

serie

E——- E —-—
a -f- 1 a 2

sont égaux au premier (Berger).
18° Démontrer les relations suivantes •

E -—1— 4- E "j" -f E ~j(~ -f- a (Gesaro)
'1 -t o

$ — bx « — c«r 1
TTLE =: SE 7 (Hermite)cb

SE^if 2E^, (Cesaro)

19° On pourra s'exercer sur d'autres fonctions analogues.
Ainsi, appelons f («) E(2«) — E(o)) l'expression de l'entier
le plus voisin du nombre &>, non entier ni moitié d'un entier;
on a :

lj + l| + + Eco (Cesaro)

61. Soit rt un nombre non carré, et désignons respectivement

par a, b, c, d, l'excès de n, de na, de nb, de /zc,

sur le plus grand carré inférieur au nombre considéré n,
na, zzô, /zc, ; les nombres 1, a, è, c, cl forment une suite
de Brocard. Une telle suite est périodique, e/ le nombre des

1 Chacun des deux membres de cette égalité représente le nombre de solutions du
problème figuré par la relation cy -f- bz ^ a (Cesaro).
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termes cle la période est inférieur ci 4n. Soient en effet k et l
deux termes successifs, et ku r2 -f- s ; on a :

l — s s — 2r 4 kn — 4r2 -f- r±s — 6'2 + 4s > s2

d'où P < 4/zk. Si h désigne une certaine puissance de 2, on a :

l2 (4/2) (2 \/ n) (\/2 [/ n)(\///2 \/ n) j/ « < 16/i2 a d'où l — Sn

oo r. 7 n • sin (272 — 1) 0-1- sin o
62. Posons kn ny\ L expression — 2 / ' 5 a pour

valeur n ou 0, selon que k est ou n'est pas multiple de n

(Libri).
Les fonctions 0° 0° -et (l —0° (i — 0° ont la

valeur 1 pour 0 ^5 x ^ a, et la valeur 0 pour toute autre valeur
cle x (Id.).

Libri lire de là de curieuses formules sur le nombre des
solutions des congruences cix — bx c et ctx2 — by2 c,
sur la représentation des nombres premiers, la somme des
nombres premiers compris entre deux limites données, la
détermination d'un nombre premier supérieur à une limite
donnée, enfin la somme des diviseurs de divers groupes de
nombres. Ces formules n'ont du reste aucun intérêt pratique.
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