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COURBES ET FONCTIONS
PANALGÉBRIQUES INTERSCENDANTES

PAR

E. Tuhrière (Montpellier).

Ainsi que ee titre l'indique, je me propose d'apporter ici des
contributions nouvelles à la Géométrie des transcendantes, en
faisant concourir en quelque sorte la théorie, si brillamment
développée par M. Gino Loria, des courbes panalgébriques et
celle, à laquelle je viens de consacrer récemment toute une série
de recherches1, des courbes algébrieo-in terseen d antes. En raison
de la généralité des résultats, je présenterai ces questions sous
une forme moins géométrique que celle qu'affectaient mes autres
recherches ; je m'attacherai principalement à élucider quelques
points assez intéressants touchant diverses fonctions transcendantes

et diverses équations différentielles du premier ordre.
1. — Les origines de la notion d'interscendance. — Je désire en

premier lieu faire connaître quelques résultats concernant des
recherches historiques sur l'origine des fonctions interscendantes,
en Angleterre notamment. Au moment où la Royal Society of
Edinburgh s'apprête à célébrer le tricentenaire de la découverte de
John Napier, il n'est peut-être point sans intérêt de rappeler que
la formule

log .r ~ limite — (,rn — 1)
/,=() 11

entrevue par les fondateurs de la théorie des logarithmes, Napier
et Briggs, est un exemple bien simple de fonction transcendante
proprement dite associée au titre de limite à une fonction algé-
brico-interscendante.

C'est dans l'œuvre de Wallis qu'il convient de chercher les
premières fonctions interscendantes, ainsi qu'il affirme lui-même sa

1 L'Enseignement mathématique, 1912, 1912, 1914 (passim) — Atinaes da Academia
Polytechnic a do Porto 1913, 1914 (passim).
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propre priorité, tout en reconnaissant n'avoir pas utilisé de
dénomination [spéciale, dans sa lettre du 30 juillet 1697, adressée à

Leibniz : « Quippe ego, praeter potestates olim receptas, puta
« lattis, qaadratum, cub tun, etc... potestates iutermedias censui
a considerendas (et, credo, primus) ; et consequenter, inter recep-
« tas aequationum analyticarum formulas... intelligendas esse,
« intermedias quotlibet ; quas (credo) nemo prius consideravit ;

« quales sunt (ni fallor) quas tu interscendentes vocas. »

« Aequationum transcendentium et interseen dentin m appellate
tiones mihi non displicent; (imo ut val de appositae) ; qualibns

« et ego aliquando utor aequationibus, sed absque nomine. »

Effectivement, on trouve diverses allusions à des quantités de
cette nature dans les travaux de Wallis. C'est ainsi qu'après avoir
écrit les lignes suivantes : « Quod intellect um velim, non tantum
« de (expositorum a ri th met ice proportionalium) quad rati s, eu bis,
« cae te risque potestatibus ascendent iJ^us ; sed de eorum radicibus
« quadraticis, cubicis, et item de compositis ex his aut Ulis a ut
« utrisque ; et horum omnium reciprocis1 », il cite 2 <712 comme
exemple de puissance. Puis, plus loin3, il s'explique avec encore
plus de précision : « Si tarnen exponens ille, seu numerus dîmen-
« sionum secundum quas proceditur, major fuerit, (puta 7, 8, 9)

2 4 \
« aut mtermedius aliquis ut ~

—, \ aut magis adhuc intri-

catus ^ut y/2

Il faut passera Newton pour trouver, dans son œuvre, une
dénomination spéciale pour les quantités interscendantes. L'exemple
des quantités appelées « geometrice irrationalia » par Newton et
qui se trouve dans la célèbre lettre à Oldenburg, du 24 octobre
1676, est une fonction interscendante assez compliquée :

« Communicatio resolutionis affectarum aequationum per
« method um Leibnitii, pergrata erit ; juxta et explicatio quomodo
« se gerat, ubi indices sunt fractiones ; ut in hac aequatione

3 6 2 7

20 + ,rT — x" r* — r" 0 ;

« aut surdae quantitates, ut in hac,

/ ,/T v'-\VPljVr + X y i

1 Johannis Wallis, Opera omnia, Oxoniae, 1693, operum mathematicorum volumen atfcerum.
p. 314.

2 Id. p. 315.
3 Id., p. 341. — Le second volume contient lui aussi (cf. p. 2 de la Prélace) plusieurslettres « de aequationibus et notationibus interscendentibus et transcendentibus ».
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« ubi V2 et y? non désignant coeffîcientes ipsius .r, sed indicés

« potestatum sen dignitatis ejus ; et y/)} (c'est-à-dire y/-^-)

« indicem dignitatis binomii .r^2 k
• Res, credo, mea meet

thodo patet ; aliter descripsissem. »

Mais, quoique l'exemple qu'il donne, dans cette lettre, soit une
courbe interscendante, Newton désigne indifféremment sous la
dénomination « geometries irrationales » toutes les courbes non-
algébriques, les courbes transcendantes proprement dites aussi
bien que les courbes interscendantes. C'est, par exemple, ce que
prouve le texte suivant : « Curvas geometries rationales appello
« qnarum puncta omnia per longitudines aequationib us définitas, id
« est, per longitndiftum rationes eomplieatas, determinari possunt ;
« caeterasqne (ut spirales, quadralriees, troehoides) geometrice
« irrationales. Nam longitudines quae sunt vel non sunt ut nu mete

rus ad numerum (quemadmodum in decimo elementorum) sunt
« arithmetice rationales vel irrationales. Aream igitur ellipseos
« tempori proportionalem absei 11 do per citrvam geometrice irra-
« tionalem ut sequitur b »

Ce fut Leibniz qui, le premier (ainsi qu'il l'affirme d'ailleurs
lui-même) distingua les deux sortes de courbes ou fonctions non-
algébriques et introduisit les dénominations de transcendantes* et

1 I. Newton, Philosophiae Naturalis Principia, t. I, ed. 1739, p. 268-269. — Les notes au bas
de ces pages, sont encore plus précises : « Si in aequatione ad curvam

axm -f- byn -f- etc. 0

« numerus terminorum finît«s sit et exponentes m, n... rationales fuerint, curva erit geome-
« trice rationalis ; contra si numerus terminorum infinitus fuerit, et summari nequeant, aut si
« exponens aliquis irrationalis fuerit, curva est geometrice irrationalis.

« Hinc patet curvas omnes quarum descriptio pendet a quadrature vel rectificatione cir-
« culi et ovalium indefinite quales sunt spirales, quadratrices, troehoides esse geometrice
« irrationales... »

2 Quoique je me borne actuellement h l'histoire des origines de la notion d'interscendance,
je crois nécessaire, afin d'éviter toute discussion relative à cette affirmation, de reproduire
un passage d'un travail (La notion de transcendance géométrique chez Descartes et Leibniz.
D'interscendance leibnizienne et l'hypertranscendance) qui vient de paraître, sous mon nom,
dans Isis (t. Il, pp. 106-124) : « Sa (il s'agit de Descartes) » distinction en « courbes géométriques

» et en « courbes méchaniques » diffère beaucoup de celle qui est actuellement en
usage. Descartes pouvait-il apercevoir toute l'importance d'une division des courbes, alors
qu'il n'avait pas la moindre idée de l'Analyse infinitésimale Il ne fait d'ailleurs allusion, sans
insister, que deux fois aux courbes de degré infini, Leibniz et les Bernoulli devaient, au
contraire et de toute nécessité, être amenés, par leurs travaux d'analyse, à découvrir et à

préciser la notion de transcendance des fonctions et des courbes correspondantes à ces fonctions.
Plusieurs auteurs ont attribué à juste titre l'introduction de cette notion de courbe

transcendante à Leibniz, tout en laissant à Jean Bernoulli l'honneur de la création du terme
« transcendens », pour désigner certaines fonctions non-algébriques simples. Il est probable
que cette dernière assertion a son origine dans le texte suivant, qui est de mars 1697. « Expo-
« nentialem igitur quantitatem concipiebam ut medium quid inter algcbraicam et transcen -
« dentem : accedit enim ad algebraicam, eo quod terminis finitis, ut indeterminatis, constet ;

« ad transcendentem vero, quod nulla constructione algebraica exhiberi potest. » [Principia
calculi exponentialium seu percurrentium, Acta eruditorum, ad annum 1697; Opera Johannis
Bernoullii, t. I, pp. 180 et Sq. Le terme « transcendens » reparaît aussi chez le même auteur
dans une pièce de 1724 (Acta Eruditorum ad annum 1724, p. 365 ; Opera, t. 2, Lausanne et
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cl' interseeridantes, dans une lettre à Wallis, du 28 mai 1697, dont
voici le passage important :

Caeterum Transcendentium appellationem, nequida me praeter
rationem in phrasi Geometrica novari putes, sic accipio ut trans-
cenclentes quantitates opponam ordinariis et algebraicis : et alge-
braicas quidem vel ordinarias voco quantitates, cpiarum relatio acl

datas exprimi potest algebraice, id est, per aequationes certi
gracilis, primi, secuncli, et tertii, etc., quales quanti ta tes Cartesius
solas in suam Geometriam recipiebat ; secl transcendentes voco,
quae omnem gradum algebraicum transcendunt.

Has autem exprimimus, vel per valores inlinitos, et in specie
per series, vel.., per aequationes ßnitas ; easque vel differentiales
vel exponentiales (ut cum incognita quaedam x exprimitur per
banc aequationem

xx + x 1

Et quidem transcendentium exponentialem, pro perfectissima
habeo ; quippe, qua obtenta, nihil ultra quaerenclum restart
arbitror ; quocl sec us est in ceteris.

Primus autem, ni fallor, etiam exponentiales aequationes intro-
duxi, cum ignota ingreditur exponentem. Et jam anno primo1

Genève, 1742, p. 591 ; t. III, p. 74).] Mais le mot « transcendens » fut employé par Leibniz
lui-même dans des textes antérieurs de plusieurs années et qui sont mentionnés dans la suite.

C'est vers 1677, date de la création du Calcul différentiel de Lkibmz, qu'apparaissent des
courbes à équations compliquées d'irrationalités. Tandis que Bah row n'étendit point, en
effet, sa méthode des tangentes à de telles courbes, Leibniz, dans sa lettre à Oldenburg du
21 juin 1677, expose précisément les règles de son nouveau calcul en les appliquant à des
exemples de cette nature. Le terme « transcendens » apparaît sous sa plume dans une pièce
de 1679, où il distingue les « curvcie transcendentes » des « curvae transcendentes altiores », et,
plus loin à propos des quantités incommensurables : eaeque sunt vel « algebraicae vel
transcendentes » [Cfr. Couturat, Opuscules et fragments inédits de Leibniz, Paris, 1903, p. 164.]
Dans un texte ultérieur, de janvier 1682, Leibniz précise la notion de transcendance, en
distinguant formellement trois sortes de transcendances, « Quadratura analytiea... iterum in
très potest dispesci 3 in Analyticam transcendentem, Algebraieam et Arithmetical!! », et en
faisant observer que personne avant lui n'avait considéré des fonctions de degré infini, c'est-
a-dire des fonctions transcendantes : « Analytiea transcendens inter alia habetur per aequa-
« tiones gradus indefiniti, hactenus à nemine consideratas, ut si sit

xx + x aequal. 30 :

« et quaeratur x, reperietur esse 3, quia 3s -j- 3 est 27+3 sive 30, quales aequationes dabi-
« mus suo loco. » Un texte de mai 1684 est encore plus important: Leibniz y donne une
liste étendue de courbes, en insistant sur leur algébricité ou leur transcendance : « Verum
« sciendum est istas ipsas (curvas) que ut Cycloidem, Logarithmici aliasque id genus, quae
« maximos habent usus, posse calculo et aequationibus etiam fmitis exprimi, at non Alge-
« b raieis seu certi gradus, sed gradus indefiniti, sive transcendentis... ac proinde quadratrix
« non erit algebraica seu certi gradus, sed transcendens... »

1 C'est-à-dire en 1682. Mais déjà, dans sa lettre à Oldenburg, du 21 juin 1677, Leibniz avait
considéré des expressions de cette nature : « Sunt et alia problematum genera, écrit-il, quae
« hactenus in potestate non habeo, quorum ecce exempla : sint dum aequationes

x'I + yx xy
«et

** + yV * + y
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Actorum Rrudito ru m Lipsiensium, specimen dedi in exemplo
quantitatis Ordinariat, transcendentaliter expressae ; utres fieret
intelligibilior ; nempe, si quae rat tir

.rx f ,r :>()

patet ^' 3 satisfacere ; cum sit 33 -|- 3 — 27 3 — 30.
P.-S. Unit m addo : placuisse mihi plirasin acutissimi Newtoni,

qui (ieo m etrice-1rra tiona lia voeat, quae (Airtesius in Geometriam
suam non recipit. Sed haec à Transcendentibus distinguo, tan-
quam genus à specie. Nam ilia geometrice-irrationalia du uni gcne-
ru m facio. Alia enim sunt gradûs certi, sed irrationalis ; quorum
exponens est numerus surdus, ut

1
seu potestas de 2 cujus exponens sit -—= ; et haec voco In tersäenden

tia ; quia gradus eorum cadit inter gradus rationales : possent;
etiam, strictiore sensu, geometrice (vel, si mavis algebraice) irra-
tionalia appellari. Alia vero sunt gradus indefiniti, ut xy ; et
haec magis proprie Transcendentia appello. ht taie prob le m a est,
Rationalem eel Angulum in data ratione secure.

2. — Position de la constante arbitraire d'intégration dans l'intégrale

générale d'une équation différentielle, rationnelle, du premier
ordre qui admet une intégrale interscendante. — Soit

(1) E \x y y'\ — 0

une équation différentielle du premier ordre, supposée algébrique
dy

par rapport aux trois variables x, y. et y' — —j-^ Les coefficients

numériques qui figurent clans son premier membre sont absolument

quelconques ; le paramètre m peut, par exemple, figurer
explicitement dans cette équation différentielle au titre de coefficient.

Je suppose, en outre, que cette équation différentielle fi)
admet une intégrale particulière interscenclante, définie par une
équation

(2) f[x, y, x"!) 0

algébrique par rapport aux variables x, y et xm ; les coefficients
sont absolument quelconques ; m est un paramètre irrationnel

« il u<x> sunt incognita? x, y, duœque ad eas inveniendas a?quationes. Quaeritur valor ta ni unius
« quam alte ri us litterse. Talia problemata vel in numeris vel in lineis solvere difficîllimum
« arbitror. Si tarnen de appropinquationibus agatur, pu to posse iis satisfieri. Si quam huie
« difficultati lucem affere potest Newton us, pro ea qua pollet ingenii vi, multnm analvsim
« promovebit... <>
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déterminé. Dans ces conditions, j'affirme que l'intégrale générale
de l'équation différentielle (il est définie par l'équation

f(r r Cxm\ 0

dans laquelle C est la constante arbitraire d'intégration.
De (2), en effet, on déduit par dérivation :

m.rm
(3) /x + /2r + /8 • —— 0

»

se

en posant :

r r=dI/:=fl i>x
' ôr ' ' ci.*'"

d'où, en substituant, dans l'équation différentielle (1), l'expression
de y' déduite de (3) et en vertu de l'hypothèse faite sur f :

f± _ tl
fi fi '

x
0

en éliminant alors y entre (2) et (4), on doit obtenir un résultant
R (x, xm) identiquement nul. Comme, a priori, il ne peut y avoir
aucune relation algébrique de cette nature entre x et xm (puisque
m est irrationnel), il est certain que cette identité R 0 subsistera

si l'on substitue à xm, dans tous les calculs qui précèdent,
l'expression Cjtä (avec une constante arbitraire C).

On peut évidemment remplacer, sans augmenter la généralité
de la question, xm par [<p {x)]'n, (p [x] étant une fonction
algébrique de la variable x. Le théorème est d'ailleurs presque immédiat

lorsqu'on particularise la question, en supposant l'existence
d'une intégrale particulière définie par une équation du type

y)]"1 fur r)

(p et /'étant des fonctions algébriques ; pour éliminer la transcendance,

il suffit de dériver logarithmiquement cette relation et l'on
obtient ainsi l'équation différentielle rationnelle à laquelle satisfait

y ; l'intégrale générale de celle-ci est évidemment :

C. [?(.*•. yH =f[x, y)

Du raisonnement qui précède, il résulte que :

1° Moyennant l'hypothèse de l'existence d'une intégrale particulière
interseendante f= 0, l'équation différentielle (1) admet une

intégrale générale interseendante, dont l'interscendance est due
à la présence de la même puissance irrationnelle xm de x ;
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2° La constante arbitraire G d'intégration est en facteur
devant

3° L'intégrale générale de E 0 est connue sans aucun calcul,
dès que l'on connaît une intégrale interscendante particulière ;

4° Une équation différentielle du premier ordre, de la nature de
celle qui vient d'être étudiée, peut admettre des intégrales
algébriques particulières. Celles-ci sont de deux espèces distinctes ;

provenant de C — 0 et de C — od Il suffira d'étudier dans chaque
cas particulier, deux surfaces algébriques d'équations

fix y z) — 0 et fix y — J — 0

au voisinage du plan Z — 0.
3. — Equations de Riccati à intégrales algébrico-interscen-

dantes. — Je vais d'abord donner un exemple simple d'équation
rationnelle cle Riccati dont toutes les intégrales sont interscen-
dantes, à l'exception de deux intégrales particulières qui sont
algébriques. Je rappelle que l'étude des équations de Riccati
proprement dites

est particulièrement intéressante lorsque l'exposant « affecte l'une
ou l'autre des formes

4N
2N ± 1

N étant un nombre entier; lorsque ce nombre N grandit indéfiniment,

a tend vers la limite — 2. Je considère donc cette équation
de Riccati :

<f> £+J-2=I -

dans laquelle K est un nombre algébrique quelconque. Dans le
cas particulier pour lequel K est égal à l'unité, c'est-à-dire clans le
cas de l'équation

àr 9 __
1

'chc+r~x
l'intégrale générale est1

zo\ — (l -j- y 5) y 5

2) const ;

2Xy — (1 — y 5)

c'est donc une fonction interscendante, particulière, dont l'inters-
cendance est due à la présence cle la quantité irrationnelle y5

1 Raffy, Nouvelles Annales [4], t. II, 1902, p. 515.
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Dans le cas général de l'équation (1), il est naturel, en raison
de la forme même de cette équation, de rechercher des intégrales
particulières de la forme :

_ A
^ x

on trouve la condition :

A2 — A K ;

c'est une équation de second degré par rapport à la constante A.
En général donc, il existe deux intégrales particulières de la
forme désirée.

Les deux racines sont réelles lorsque la quantité 4 K -f 1 est
positive. Soit 4 K -f- 1 — 1112 5 ^es deux racines sont alors :

1 + m 1 — m
A±— A —

2 2

pour intégrer l'équation (1), c'est-à-dire l'équation

/o\ ày ^ __
m2 — 1

,o) d~x+) - '

conformément à la méthode classique d'intégration des équations
de Riccati dont deux intégrales particulières sont connues, il faut
donc poser

2xy — 1 — m
2xy — 1 + m

la nouvelle fonction inconnue z est alors l'intégrale générale de
l'équation différentielle

1 dz m- -J- + - 0
r- dx x

c'est-à-dire la fonction
3 x~m X const

ïitégrale de l'équation (3) est doncL'inl

2 xy — I — m

2xr — 1 -f- m
xm — const ;

pour K t, c'est-à-dire pour m — y 5 cette forme générale (4)
se réduit bien à celle (2) qui a été trouvée par Raffy.

L'équation du second degré qui détermine les deux intégrales
particulières admet une racine double lorsque K est égal à

4
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c'est-à-dire lorsque m —0 ; l'équation correspondante

(5)
d.r 4.T'¬

admet une seule intégrale particulière connue a priori :

1

•T — 2x '

En posant y ^ z et intégrant l'équation de Bernoulli qui
définit la fonction auxiliaire 2;, on trouve pour intégrale générale

l 1

(6) r y- -f2,r x log (At)

A est la constante arbitraire d'intégration.
1

Reste le cas des racines imaginaires ; on a alors : K < — —

L'intégrale générale est encore fournie par l'équation (4), dans
laquelle m est une quantité imaginaire pure. L'imaginaire ne
s'introduit qu'en apparence dans cette équation (4) et il y a lieu
cle la faire disparaître. A cet effet, il suffît de poser

p> étant un nombre réel, et de mettre (4) sous la forme

2xy — 1 — 2/a
I At) ~il

; (A const, réelle)
2.rr — 1 -}- 2/a

en résolvant par rapport à l'expression 2 x y— 1, 011 obtient :

„
1 + (A*,'-" + lAr,-^

2.rr — 1 — 2/;j. — 2w. -
I — (A,r) • [Ax]1? — (A

(A.ri'-U + lA.ri I,tt (A.r|6a — (AjI"'"
-V • : ,/

— 2»j. cos (log Ax) : sin (log Ax)

Finalement, l'équation de Riccati admet alors l'intégrale générale

représentée par l'équation

(7) 2xy —- 1 — 2;j. cotang (log A.r)

Eclairons ces divers résultats à l'aide de la théorie de Linter-
scendance. Imposons à la constante arbitraire d'intégration une
valeur particulière, l'unité par exemple, ce qui n'altère en rien la
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généralité des courbes intégrales qui sont affines à celles que nous
allons envisager: suivant que le nombre m= ]/l + ^ est rationnel

ou irrationnel, l'intégrale correspondante est la courbe
algébrique ou interscendante que représente l'équation :

(8)
lr-r ~ i[ ] 2,ry — 1 + ni

Lorsque m tend vers zéro, d'une manière quelconque, cette
courbe algébrico-interscendante (8) tend vers une limite ; son
équation, mise sous la forme

1 I T
111

111

2scy — 1 m -Xj(1 + x~"l\
1 - x-'" 1 - x~m

tend vers la limite
o

(9) 2,ry —
iog x

puisque les deux facteurs mis en évidence ont respectivement
pour limites l'unité et l'inverse du logarithme de x.

La courbe transcendante d'équation (9), à laquelle sont affines
les diverses courbes (6), est donc la eourbe singulière limite du
faisceau algébrico-interscenclant envisagé.

D'après la formation même de l'équation (7), la courbe d'équation

2,rr — 1 — 2ij. cotang (log x)

est susceptible d'être associée au même faisceau au moyen de la
considération de la notion d'interscendance complexe.

4. — Une autre classe d'équations de Riccati, douées de deux
intégrales particulières algébriques, et dont l'intégrale générale
est algébrico-interscendante est celle

-T' + (a + 2 bx + cx>]> '

'

(A * aC - ^
A, a, b7 c étant des constantes. Elle fut étudiée primitivement par
Euler1, puis par J. Liouvillè, sous le pseudonyme de M. Besgc"2.
Plus récemment, elle a été rencontrée, indépendamment et dans
un cas particulier, dans des recherches de Géométrie infinitésimale,

par M. G. Demahtres 3.

1 L. Euler, Mémoires de Saint-Pétersbourg, t. III, 1809 et 1810.
d?ii A ii2 M. Besge, Sur l'équation

^ -,>/x _p—^22 (J°nrnal de Mathématiques pures et

appliquées de Liouvillè, 1844, l,e série, t, 9, p. 336.)
8 G-. Demartres, Sur certaines familles de courbes orthogonales et isothermes [Travaux et

Mémoires de l'Académie de Lille, t. X, Mémoire n° 28, Lille, au siège de l'Université, 1901

(p. 10 de l'extrait).]
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On remarque tout d'abord que l'équation proposée admet deux
intégrales algébriques

I) —j— Je —j— ex
cl —|— 2bx —}— coc"

où k est l'une ou l'autre des racines k\, k2 de la quantité, différente

de zéro par hypothèse : A2 A -J- — ac.
lien résulte qu'en appelant ?ji et ?/2les deux intégrales algébriques

particulières, correspondant respectivement à k\ < 0 et à k^> 0,
et posant, conformément à la théorie générale,

3' — Ji
" " X — J2

l'intégration de cette équation de Riccati est réductible à une
quadrature :

— f (ja — Jil d,r — 2 yA -f- b2 — ac Ç —— — 7, •

tJ tJ ci —p 2 bx —p ex
lot)

Suivant donc les signes des quantités

b2 — ac A -j- b2 — ac

on aura des intégrales véritablement algébrico-interscendantes ou
interscendantes généralisées par voie complexe.

C'est à ce dernier type d'équations que se rattache celle qu'avait
rencontrée M. G. Demartres ; elle peut être écrite,

/ « 9
1 a2

y -f y- —
(1 + X2

a désignant une constante non-nulle ; elle a deux intégrales
particulières

x 4- a
,Vl j T; J2 t j—5 >

1 -f- X~ 1 -f- X"

d'où son intégrale générale donnée par l'équation

X ,Ti r ç2a arc tgx
y — y% ~ ~

c'est bien une interscendante généralisée. Elle dépend d'une
fonction remarquable sur laquelle je vais revenir dans un instant.

5. — Après avoir signalé ces exemples divers d'équations de
Riccati admettant des intégrales algébrico-interscendantes, je
ferai connaître une propriété générale caractéristique des équations

de Riccati douées d'intégrales de cette espèce. Je considé-
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rerai à cet effet une fonction interscendante définie par une équation

(1) ;

m est le paramètre irrationnel auquel est due l'interscendance ; G

est une constante arbitraire ; f (.r), P, Q, R et. S sont cinq fonctions

de la seule variable x, essentiellement algébriques ; PS QR
n'est pas identiquement nul ; le paramètre irrationnel m peut
d'ailleurs, sans inconvénient, intervenir comme coefficient dans

ces fonctions algébriques.
En dérivant logarithmiquement l'équation, on obtient

m.C
• t

r'(PS - QU) + r2(P'R - PK'i + y(P'S — PS' + Q'R - QR') + Q'S — QS'

(Pr + Q)(Rr + S)

Ce résultat de calcul prouve donc que : Lorsqu une fonction
interscendante y de x est une fonction homographique d'une
puissance irrationnelle d'une fonction algébrique f (x) de x, les coefficients

de la fonction homographique étant des fonctions
algébriques de x, cette fonction y est panalgébrique. Li équation
différentielle du premier ordre rationnelle associée est une équation de

Riccati.
L'équation de Riccati précédente admet comme intégrale générale

la fonction y définie par la relation (1), où C est la constante
arbitraire. Parmi cette infinité d'intégrales interscendantes, se

trouvent deux (et deux seulement) intégrales algébriques : ce sont
les fonctions

Q S

J et r --ô-î

Réciproquement, une équation rationnelle quelconque de
Riccati n'admettra pas d'intégrale particulière interscendante. Si
elle en admet une, elle en admet une infinité. En vertu du théorème

général sur les fonctions pan algébriques interscendantes, et
du théorème général concernant la position de la constante dans
l'intégrale générale des équations de Riccati, l'équation actuellement

envisagée est nécessairement du type qui vient d'être étudié.

Elle admettra donc deux intégrales rationnelles particulières.
C'est donc parmi les équations de Riccati douées de deux
intégrales particulières algébriques qu'il convient de rechercher
celles dont l'intégrale générale est interscendante.

6. — Sur certaines fonctions interscendantes généralisées par
voie complexe. J'ajouterai quelques remarques utiles et bibliogra-
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phiques concernant l'extension par voie complexe de la notion de
courbe interscendante dont je me suis déjà occupé1.

Cette classe de fonctions transcendantes comprend celles qui
sont cle la forme

exp. [F (©)]

F (<jjp) étant elle-même une fonction circulaire inverse d'une fonction

o/i, algébrique en x. C'est le cas de la fonction exp (arclang x)
que j'ai rencontrée plus haut, dans l'étude d'une certaine équation

de Riccati.
Laguekre2 a, d'autre part, étudié une fonction analogue, F étant

1

arctang- Le mémoire de Laguerke prend fin sur l'observation

que les considérations relatives à la fonction exp ^arctang

s'appliquent sans aucun changement à la fonction (précisément
algébrico-interscendante)

fx + a\"
\x + b)

quelles que soient les valeurs attribuées aux quantités a, b et m ;

Laguerre fait observer enfin que, pour a~i, b — — /, m —

cette expression donne la fonction qu'il étudie.
Euler3 a donné le développement en série entière de la fonction

arc sin xï e

Ces développements en série peuvent être obtenus très simplement

en observant que ces diverses fonctions sont des extensions
de fonctions interscendantes. La fonction

rentre, par exemple, dans la famille algébrico-interscendante

1 -f- mxj
1 Sur la notion de courbe interscendante (Extrait d'une lettre adressée à M. Gomes Teixeira),

Annaes da Academia Polytechnica do Porto, publicados sob a direcçao de f. Gomiîs Tkixkir a,
t. VIII, 1913.

2 E. Laguerre, Sur le développement en fraction continue de exp ^arctg — ^ Bulletin de

la Société Mathématique de France, t.V, 1877, p. 95; œuvres de Laguerre, t. 1, 1898, pp. 291-294.
3 L. Eurer. Institutiones Calculi intcgralis, ed. 1748, Liber I, Caput III, p. 118.
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pour m — L On peut donc déduire son développement en série
de celui de la fonction plus simple

V1 + s)

De même, pour la fonction mentionnée par Eulek,

r earc sin ^

il résulte de son expression sous forme interscendante

y — Vi — — èr)

qu elle rentre dans la famille algébrico-interscendante :

{x -f V1 + x'2)1
'

en changeant x en — ix et en posant n i. Cette dernière fonction

fut elle aussi étudiée par Euler (loc. cit.); il a donné sa
primitive :

nx+ vr+^i'1-± v±±X+ V' +
J [x + M i x jdx— 2|rt +

cette fonction est encore une fonction algébrico-interscendante.
On peut se rendre compte aussi de cette manière de la panal-

gébricité de ces fonctions (malgré la présence de deux fonctions
transcendantes dans leur constitution) et de celle des fonctions
primitives de certaines d'entre elles : de celle qui vient d'être
citée et des suivantes, par exemple :

a arc tang x

3 3

(1+**)* fl + ^)2

dont les primitives respectives sont :

Cl -|- X ^a.arctanga; J

(i ci~) \ \ x" |ï -h ci") "\/l -j- ,x"

Ce sont là des fonctions mentionnées, comme exercices, dans
des ouvrages d'analyse du milieu du siècle dernier : je suis donc
porté à croire qu'elles ont été extraites de travaux antérieurs et
qu'elles doivent intervenir dans des applications, mais toutes
mes recherches dans ce sens sont restées sans résultat.

Montpellier, le 22 février 1914.
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