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122 | A. STREIT

IV. — Application des formules du groupe (3).

1. Soit ABC un triangle quelconque. Construisons le triangle
A’B'C’ ayant pour sommets les pieds des hauteurs (fig. 8). Les
relations (3) permettent :

1° d’établir le théoréme ci-dessous;

2° d’exprimer les c6tés du triangle A'B’C’ en fonction de ceux
du triangle ABC.

1° Partons de la seconde des relations {3):

Rh" — ab — a’’b’ .

Yig 8.

La figure ABA'B’ est un quadrilatére inscriptible; d’apres le
premier théoréeme de Ptolémée, le produit de ses diagonales est
égal a la somme des produits de ses cotés opposés :

KR = (A’B’).¢ + a’b"" .
Par suite
(A’b’).c + 'V = ab — a”’b"

d’ou
ab — a’b’’ — a’”’b’

c

A/ h ¥4 o
Mais
ab = (a’" 4+ a”’) (b’ + V") = 'l + a"’b"” + a’V" + a’’v’




TRIGONOMETRIE ET GEOMETRIE 123

Remplacons:
. a/bl + a//b//

A'B’ = ,
¢
. b/ ’ I// 77
De méme... (13) B'C’ = ——C——*—-_(—l——)——f— ,
et I L

b k4

c. A’B' = a’'b’ + a”’b"’
(13)/ a.BC = b + b’’’ ,
b.CA" =c'a” +c"a” .

Nous obtenons donc le théoreme suivant (relations 13'):

TutoreMe V. — Le rectangle construit sur un cété d’un triangle
quelconque et la distance des pieds des hauteurs abaissées sur les
deux autres cotés est équivalent a la somme des rectangles con-
struits sur les segments non consécultifs déterminés par ces hauteurs
sur les cotés correspondants.

2° Exprimons maintenant les cotés du triangle A’B’'C’ des pieds
des hauteurs en fonction de ceux du triangle ABC (fig. 8). Nous

avions (formule 13) :
albl + a//[)ll

AIB/ —
c
Or
a? = b* 4 ¢ — 200" ,
et
¢ = a® 4+ b*> — 2aa” ,
d’ou
" == b et b= Pohe —a
2a - 20 ’
En outre:
a,=a3-—b2+02 ot [),_1)2—c2+a2
2a 2b ’
car
a = a—a”’ et O = b — b .

Portons ces valeurs dans I'expression de A’B’ :

a’> — b? - ¢? b2-—c2+a2+ a® + b — ¢ b 4 ¢ — a?

AR — 2a 20 2a 24

ou

Arpy [0 (B2 — eIl L [a? — (b2 — )] 4 [b 4 (F— @] [b? — (¢* — a¥)]
habce ’
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ou, en effectuant les calculs et en simplifiant :

¢.1a* + b* — ¢*)

B = 2ab ’
. (b2 + ot — a?
Par permutation... (14) po =2t —a) ;
2bc
2 2 p2
et... A=t = b))
2ca

Ce sont les formules exprimant les c6tés du triangle des pieds
des hauteurs en fonction des cotés du triangle donné.
2. Partons de la premiére des formules du groupe (3):

hlh”/ — ac — a/CII .
D’autre part (fig. 1):

/t’” - CH

oo a

Multiplions membre & membre :

aa’c

C”

a’? .

B2 =

Or: Deux sommets d’un triangle quelconque et les pieds des
hauteurs qui en partent sont sur une circonférence ayant pour dia-
metre la distance de ces deux sommets :

A, B, D, E sont sur une circonférence de diameétre AB
B, C, E,F » » » » BC ;
C,A F, D » » T » CA .

Par suite, d’aprés le théoreme des sécantes :

n

aa" = bbb’ ; bb" — cc¢’ ; ce" = aa’

Remplacons aa’ par ¢¢” dans A'2:

ou
2=a?+ h'* .. théoréme de Pythagore.

Reprenons Vexpression de 4’2 {fig. 1) :

hr — aa’ (¢’ + ")
=

,.
— a’?
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ou
YN 4
aa’¢
h? = a' (a — a') + —5
Mais
aa’ — c¢”’
" Donc

h? = a'a" + cc’

h'?

ou aussi, (15)

I

a’a” 4+ hb”
puisque cc¢' = bb".

Les relations (15) donnent lieu au théoréme suivant:

TugorEmE VI. — Le carré construit sur une hauteur d’'un triangle
quelconque est équivalent au rectangle construit sur les segments
gu'elle détermine sur le coté correspondant plus le rectangle ayant
pour dimensions lun des deux autres cdtés et la projection du
second sur lui.

Cas particulier. — A =90°; 0" =c¢" = 0.

lLa relation (15) devient :

c’est-a-dire: La hauteur d’un triangle rectangle est moyenne pro-
portionnelle entre les segments qu’elle deétermine sur Uhypoténuse.
[.e théoreme VI peut étre envisagé comme étant la généralisa-
tion de la propriété ci-dessus.
La seconde des égalités (15) peut s’écrire (fig. 1):

W =a'a"” + bbb 4+ 0",
Par permutation...

R =bb"" 4+ ¢'¢"" + 7 .
et..

" —= ¢’¢’" + «’a”’” 4+ a’’? .
D’ou résulte :

(n’ ' 4 R4 " —= (;1"2 + 0" 4 ) + 2(a’a” 4+ VD 4 ') .
En partant de 'autre égalité
= a'a” + c¢’
on trouve, apres les mémes transformations :
(77 W2 4 W7 W7 = (@2 A D ) 4 2 4 VB )
De (I et (I)” résulte :
(16) @ b e = a4 B

¢’est-a-dire :
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Tutorkme VII. — Les sommes des carrés construits sur trois seg-
ments non consecutifs déterminés sur les cotés d’un triangle quel-
conque par les hauteurs correspondantes sont égales.

La relation (16) a été établie sans I'intermédiaire du théoréme
de Pythagore.

Conséquence géométrique. — De (16):

VY — b = (@ — @) + (" — )
ou :
(bl + l)ll) (b/ — I)I/) — (all _|_ a/) (a” _— a/} _l" (C" + C/) (C” . C/) ,

ou (fig. 9):

ou enfin

Tig 9.

Par suite, les segments CS, CR et Bl sont les c6tés d’un triangle
rectangle; d’ou le théoréme snivant :

TutoreMe VIII. — 87 avec les pieds des hauteurs d’un triangle
comme centres et les petits segments qu’elles déterminent sur les
coteés correspondants comme rayons on décrit des circonférences et
qu’aux points o elles coupent les grands segments on éleve des
perpendiculaires aux cotés jusqu’a leurs points d’intersection avec
les circonférences décrites sur ces cotées comme diametres, les dis-
tances de ces points aux extrémités des grands segments sont les
cotés d’un triangle rectangle. '

Remarque. — De (I)' ou (I)” on peut déduire le théoreme de
Pythagore en supposant A = 90°.




	IV. — Application des formules du groupe (3).

