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Mais

h'
sm y —

Par suite
h' h'{c' -j- c") _ h' c' + c"

s m a — s —
b b c c b

h'" c' + c" hm c" c' h'"
sm (a — ß - 7 — — — + t • -a b b a • b a

Or

— — 7 _ r 7i ^
b a |_ b J «

/ c
cos a — —

b

puisque a' est obtus; donc

(III) sin (cd — ß) — sin od. cos ß — cos od. sin ß

D. — Formale da cosinas de la différence de deax arcs. — Au
lieu de tirer cette formule de la relation (II) en y remplaçant ß

par —ß, on peut aussi l'établir en se basant sur la figure 1.

Choisissons un angle aigu a du triangle et soit a' l'angle extérieur

correspondant. Nous pouvons écrire successivement :

od — ß + Y Y — cd — ß ;

/ r r. a" aa"
cos y — cos (a — p) cos (a — p — — — —r1 b ab

h"'2 c'c" -f a a"

hm* — c'c" hm h'" c' c"
cos a — ß — -r- • y » — ;

ah b a b a

a' est obtus :

h>» h"'
sin a — -p ; sin p n — ;

b a

/ c' ù-
c"

cos öl — ; cos ü z=z — ;

b a

(IV) cos (od — ß) — cos od. cos ß -j- sin od. sin ß

III. — Conséquences géométriques résultant de l'application
des formules de trigonométrie au triangle quelconque.

En appliquant les formules précédentes et celles qui en
découlent au triangle quelconque, on retrouve les relations de
certains théorèmes importants de géométrie et l'on arrive à établir
des théorèmes nouveaux.
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A. —Application de la formule de sin(a-\-ß). (Déduction du
théorème de Pythagore généralisé.)

sin (a --f- [3) — sin a cos ß -j- cos a sin ß

En nous basant sur la figure 1 nous pouvons écrire :

h" a' b" hf a'h" -f- h"h'
sm la + )S| — — — -| — — — -,,

ou, en tenant compte de la relation bh" ah',

Or

Par suite

d'où il résulte

(1)

(* + jS)

k

b". hi fin"b h Cid —j— bo

— ~ sin y — sin (a -f-
b '

sin (a -j- |S) — sin (a -j-
acT -}- bb"

c2 ~ aaf -j- bb"

b2 ~ bl/ + ce"

ci2 — cd -}- ua"

Tig 2.

Les relations (1) s'expriment comme suit :

Théorème (I). Dans tout triangle acutangle, le carré construit sur
l'un quelconque des côtés est égal à la somme des rectangles
construits sur chacun des deux autres côtés et la projection du 1er sur
loi (fig. 2).

Si un triangle renferme un angle obtus, le carré construit sur
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l'un des côtés adjacents est égal au rectangle construit sur le plus
grand côté et la projection du 1er sur lui diminué du rectangle
construit sur le 3e côté et la projection du 1er sur lui.

Remarque. — En prenant

hm G*
sin a — -r- et cos a ~

b b

la formule de sin [a -f- ß) conduirait aussi à la lre des relations (1) ;

dans le cours des opérations il y aurait lieu toutefois de
remplacer ce' par bb".

Cas particuliers. — 1. C =• 90p. — Alors h' est confondu avec b

et h!' avec a.
Par suite

ai — a b" — b

et la première des relations (1) devient :

c~ — a2 -f- b2 (théorème de Pythagore)

2. — A —90°. h" est confondu avec c, donc b" 0.
La formule

c2 aa' + bb"
devient

c2 — a a'

ou : Dans un triangle rectangle? chaque côté de l'angle droit est

moyen proportionnel entre l'hypoténuse entière et sa projection
sur l'hypoténuse.

Les relations (1) peuvent être mises sous une autre forme. En
effet :

c2 r= aaf -(- bb" — a (a — a") -f- b[b — b')

c2 — a2 -{- b2 — aa" — bb'
Mais

bb' — aa"
Par suite

* (2) c2 — a2 + b2 — 2aa" (G aigu)

On retrouve ainsi le théorème de Pythagore généralisé.
B. — Application de la formule de cos (a ß). (Déduction du

théorème de Pythagore.). — Soient a, ß, y les angles d'un triangle
quelconque. Nous avons alors (fig. 1) :
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Mai s

ar a'c a' c ar c' -J- c" a' c' a'c"
b bc c

' b c b c b bc

Ln remplaçant on a

cT c' f a a'cf,~]
eos,a + P) -„--^-1-J

fa a'c"~\
cos (a -f- p) cos a cos p — — —-

cos (a jS) — cos a cos jS — sin a sin ß

OU

Or

d'où

(a)

Mais

et

Prenons d'abord :

sin a sin

Par suite

a a'c"
— b ~ bc

_
h"r

_ h"
" T ~ c

_
h'

_
IT"

c a

a
h"' IT

3
77 c

h'hm a a'c" ac - a'c"
bc b bc bc

OU

IT h'" Z=Z ne - a'c"

Par permutation cyclique on obtient deux nouvelles formules
formant avec la précédente le groupe suivant :

h' lim — ac — a'c'
(3) | h"h' — ba — //«"

h'"h" — cb — c'b"

Les relations du groupe (3) donnent lieu au théorème suivant :

Théorème II. — Le rectangle construit sur deux hauteurs d'un
triangle quelconque est égal au rectangle construit sur les deux.
côtés correspondants diminué du rectangle construit sur les
projections de ces côtés l'un sur l'autre.

Revenons à la relation (a) ci-dessus :

sin a sin ß — — —
a a c

b bc *

L'Enseignement mathém.. 17e année; 1915.
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et combinons d'autres valeurs de sin a et sin ß pour former le
produit sin a sin ß (fig. 1) :

d'où

Mais

car

sin a sin ß :_
hm h'"

~~ b a

hm a a'c"
hd) ~~1>~ bc

h'"2 — a2 -
a a'c"

c

a a' — cc"

Q.
a>

COS p — —
c

c"
a

h"'2 — a2 — c"2

a2 ~ c"2 -f h'"2

[a -f- ß) nous a donc

Il en résulte

ou

Théorème de Pythagore (triangle rectangle BCF).

En troisième lieu nous pouvons aussi écrire :

« h" h'
sin a sin p ~ — —r c c

d'où, si l'on compare avec l'égalité (a) :

h'h"
__ a a'c"
~~ I ~ ~b7 '

ac2 a'c" c c(ac — a'c")
T~ — =- b

'

Nous avons trouvé (formule 3) :

h'ti» — ac — a'c"
Substituons

Vh» i-KJïl.
b

d'où

(5)

Nous retrouvons une propriété connue : Le rapport de deux
hauteurs est égal au rapport inverse des côtés correspondants.
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Enfin, si l'on choisissait les valeurs encore disponibles de sin a
et sin ß pour obtenir le produit sin a sin ß, on arriverait aussi à

la propriété précédente.
C. — Application des formules de sin (a — ß) et cos (a.— ß). —

La formule de sin (a — ß), appliquée au triangle quelconque, conduit

aux relations (1) auxquelles a donné lieu celle de sin (a -f- ß)
et en appliquant la formule de cos (a — ß) on retrouve les relations
(3), (4) et (5) fournies par celle de cos (a-f- ß).

D. — Application de la formule sin a — 2sin cos Appliquée
au triangle quelconque, cette formule permet d'établir le théorème

suivant :

Théorème III. — Si d'un sommet B d'un triangle quelconque
ABC on abaisse la perpendiculaire sur la bissectrice de l'angle A
et de son pied S la perpendiculaire sur le côté AB, cette dernière
perpendiculaire a toujours pour mesure la moitié de la hauteur
issue du sommet B.

En effet, d'après la figure 3, la relation

o • a a
sin a zsin — cos -

peut s'écrire

— 2 —
SX AS
AS ' T 'c

d'où

(6)
5E _ h"
Y ~ T ' c. q. f. d

On aurait de même

£ C/
r3
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On arriverait au même résultat en prenant

sm
2

'
BS

il faudrait alors remplacer le produit BS AS par c ST.

E. — Application de la formale cos« 2cos2^ — 1- — Com

piétons la figure 3 pour obtenir la figure 4.
En nous basant sur cette dernière, nous pouvons écrire la rela

tion ci-dessus comme suit :

AB l AB/

Posons
AE — b"

AT e

L'égalité devient :

d'où

//'

Tig W.

AB c ST

BT f,AS

02

— 2 — 1

c {c -f- h")

Mais

En remplaçant on trouve
c(c -f- b"
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d'où
c + b"

e
2

j Q ()f>

En outre... f f =—~, car f—c — e

Par suite, T est le point milieu de BP et puisque S est situé sur
le cercle décrit sur AB comme diamètre, on aboutit à la propriété
suivante :

Théorème IV. — Si avec un sommet A d'un triangle quelconque
comme centre et sa distance au pied E de la hauteur BE comme
rayon on décrit un arc de cercle coupant le côté AB en P et qu on
élève au point milieu T du segment BP une perpendiculaire à AB
sur laquelle on porte la moitié de la hauteur considérée BE,
l'extrémité obtenue S appartient à la bissectrice de l'angle A et au
cercle décrit sur le côté AB comme diamètre.

Remarque. — Dans le cas où l'angle A que traverse la bissectrice

est obtus, la propriété reste la même, mais le point P tel
que AP AE doit être pris sur le prolongement du côté AB.

Formons le produit e ./(fig. 4) :

e.f,
Mais

c* — b"2

2

d'où

Remplaçons

Or

<* e-tg£ et d /\tg(90— ^

T2

d2 — e .f
c2 — b"2

donc

d'où

d - h"
T

h**% c2 — b"2
4 4

c2 h//2 -}- b//2 théorème de Pythagore

F. — Application des relations entre les éléments d'un triangle
rectangle. (Déduction des théorèmes du triangle rectangle.) — Soit
ABC un triangle rectangle en A, p la projection de b sur l'hypoténuse

a et q celle de c, h la hauteur.
Ces relations sont les suivantes :

t. Chaque côté de l'angle droit est égal à l'hypoténuse multi-
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plièe pat- le sinus de l'angle opposé ou par le cosinus de l'angle
compris.

2. Chaque coté de l'angle droit est égal à l'autre multiplié par
la tangente de l'angle opposé au premier.

D'après la première relation, on a :

b a cos G et h — -
P

cos G

d'où
(8) b2 — a p

c'est-à-dire :

I. Chaque côté de l'angle droit est moyen proportionnel entre
Vhypoténuse et sa projection sur l'hypoténuse.

D'après la seconde relation :

h — p tg G et h — q tg B

d'où
h2 p q.(tgCIgB)

mais
tg G tg B 1

par suite
(9) h2 — p .q

OU

II. La hauteur est moyenne proportionnelle entre les segments
qu'elle détermine sur l'hypoténuse.

G. — Application du théorème du sinus. (Déduction des
théorèmes de Céva et de Mènèlaiis.)

1. Appliquons le théorème du sinus aux six triangles :

PA'B PB'C PC'A ; PA'C PB'A PC'B (fig. 5) :

A

a' sin 8 // sin <p cr sin e

/ sin A' '
m sin B' ' /• sin C'
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d'où

1)

et

d'où

2)

n\ //• c'
h I m

m sin A'

sin 6 sin s sin ç
sin A', sin B'. sin C'

sin B' I sin G'

k.l.i

b" ~ sin 5 ' c"

sin A', sin B'. sin C'
sin S sin s sin ©

Multiplions 1) et 2) membre à membre:

f/- <*'

_yr7i7r~7~' ~~

d'où résulte
(10) a'. //. cf h", c"

C'est la relation du
Théorème de Ceva. — Trois transversales issues des trois sommets

d'un triangle quelconque et se coupant en un même point
déterminent sur les côtés six segments tels que les produits de trois
segments non consécutifs sont égaux.

Remarque. — En appliquant le théorème du sinus aux six
triangles :

ABA' BGB' CAC' ; AGA' BAB' CBC'

on aboutirait aussi à la relation du théorème de Céva. On obtiendrait

:

a'. //. cf sin a" sin ß" sin y" l m k

a". //'. c" sin ß' ' sin y' sin a' kl' m

d'où
a'. //. c' a". //'. c"

Cas particulier. — En exprimant, dans un triangle quelconque,
l'un quelconque des produits

cos a cos ß cos y sec a sec ß sec y

tg a tg ß tg y col g a col g ß cotg y

de deux manières différentes et en égalant les deux expressions,
on arrive à la relation du théorème de Céva pour le cas particulier
où les transversales issues des sommets se coupent à l'orthocentre
du triangle.



120 A STREIT
En effet (fig. 1) :

e' h" af c"
cos a — — — — ; COS ß — — — ;be c a

Par suite

d'où

2. Considérons un triangle ABC et une transversale coupant les
côtés a, b, c respectivement aux points X, Y, Z et formant avec
eux les angles <î, f, (p (fîg. 6).

A

D'après le théorème du sinus appliqué aux triangles AYZ, BZX,
CXY, nous avons successivement (fig. 6) :

AY ,sin © BZ sin 8 CX sin s

AZ sin s
' BX sin ©

' C Y sin 8

Multiplions ces trois relations membre à membre :

AY.BZ.CX
AZ BX GY — '

d'où

(11) AZ BX CY AY CX BZ

c'est-à-dire
Théorème de Ménélaûs. — Toute transversale située dans le

pian d'un triangle détermine sur les côtés six segments tels que les

produits de trois segments non consécutifs sont égaux.

cf a' b'
cos a cos p cos y — — — —

1 1 /i /- n

b"

a'. b'. cf a". b". c"
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H. — Application du théorème du cosinus. (Déduction des

théorèmes de Ptolémèe.) — La figure 7 donne :

et

d'où

AC2 =r ci2 + b2 — 2ab cos B

AC2 c2 d2 2cd cos B

«2 + b2 _ Xc2 ÂC2 — c2 — d2

lab led

De cette relation on tire :

1) AC t /^ad hc) {ac + bd)

y ab -|- cd

On trouverait de même :

2) BD + CJ*11
(a'~ + ,,d)

y ad-j- bc

En multipliant les relations 1) et 2), puis en les divisant membre
à membre, on obtient:

AC BD ac -f bd

(12) | AC _ ad -f- bc

BD ab cd

c'est-à-dire
Théorèmes de Ptolémér. — 1. Dans tout quadrilatère inscrip-

tihle9 le produit des diagonales est égal à la somme des produits des
côtés opposés.

2. Dans tout quadrilatère inscriptible, les diagonales sont entre
elles dans le même rapport que les sommes des produits des côtés
qui concourent avec elles.
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