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108 A. STREIT
Les segments, déterminés par les hauteurs, qu'il faut suivre

pour aller de A vers B, puis de B vers C, et enfin de G vers A
seront appelés c' c" (sur c), a' a" (sur a), b' b" (sur b).

II. — Formules de sin (« ± ß) et cos (« =h ß).

Démonstrations basées sur an théorème de géométrie
et son corollaire.

A. — Formule du sinus de la somme de deux arcs. — La somme
de deux angles d'un triangle quelconque et le 3e angle étant
supplémentaires? leurs sinus sont égaux :

1 sin (a ß) — S]n T •

Il est donc tout naturel de partir de cette relation pour chercher
à établir une nouvelle démonstration de la formule du sinus de la
somme de deux arcs. D'après la fïg. 1 :

La relation (1) devient :

sin (a -f- (3) j
A

B a"
F/g i.

C

On a successivement
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Mais

Par suite

h'
__

c a

h'" c' + h!" c" h'"c'
a b. ab ab

W" c" c' h'"
sin (a -j- ß) — — — + T" • — '^ 1 1 ; b a b a

ou

(I)
' sin (a -j- ß) =: sin a cos ß -f- cos a sin ß

B. — Formule du cosinus de la somme de deux arcs. — a. ß et y

étant les angles d'un triangle, nous avons :

cos (a -f- ß) —' — cos y
La figure 1 donne

cos Y — -a"
1 '

d'où, en remplaçant:
a" aa"

eos (a + f) - -j-

Nous établirons plus loin la relation suivante :

h'"2 — c'c" + aa"
d'où

aa" — hWÎ — c'c"

Substituons ci-dessus :

m c'c" - h'"2 cf c" h'" hm
cos (a -}~ ß) — 7 — 7- • T • —v ab b a b a

OU

(II) cos (a -f- ß) — cos a cos ß — sin a sin ß

C. — Formule du sinus de la différence de deux arcs. — Au lieu
de déduire cette formule de la relation (1) en y remplaçant ß par
— ß, on peut aussi l'obtenir directement de la figure 1 par un
procédé peu différent de celui déjà employé.

Supposons que a soit un angle aigu du triangle et désignons
par a' l'angle extérieur correspondant à a. Il vaut la somme des
angles intérieurs non adjacents :

a' ß + T
d'où

Y od — ß sin y — sin (a' — ß)
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h'
sm y —

Par suite
h' h'{c' -j- c") _ h' c' + c"

s m a — s —
b b c c b

h'" c' + c" hm c" c' h'"
sm (a — ß - 7 — — — + t • -a b b a • b a

Or

— — 7 _ r 7i ^
b a |_ b J «

/ c
cos a — —

b

puisque a' est obtus; donc

(III) sin (cd — ß) — sin od. cos ß — cos od. sin ß

D. — Formale da cosinas de la différence de deax arcs. — Au
lieu de tirer cette formule de la relation (II) en y remplaçant ß

par —ß, on peut aussi l'établir en se basant sur la figure 1.

Choisissons un angle aigu a du triangle et soit a' l'angle extérieur

correspondant. Nous pouvons écrire successivement :

od — ß + Y Y — cd — ß ;

/ r r. a" aa"
cos y — cos (a — p) cos (a — p — — — —r1 b ab

h"'2 c'c" -f a a"

hm* — c'c" hm h'" c' c"
cos a — ß — -r- • y » — ;

ah b a b a

a' est obtus :

h>» h"'
sin a — -p ; sin p n — ;

b a

/ c' ù-
c"

cos öl — ; cos ü z=z — ;

b a

(IV) cos (od — ß) — cos od. cos ß -j- sin od. sin ß

III. — Conséquences géométriques résultant de l'application
des formules de trigonométrie au triangle quelconque.

En appliquant les formules précédentes et celles qui en
découlent au triangle quelconque, on retrouve les relations de
certains théorèmes importants de géométrie et l'on arrive à établir
des théorèmes nouveaux.
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