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108 A. STREIT

Les segments, déterminés par les hauteurs, qu’il faut suivre
pour aller de A vers B, puis de B vers C, et enfin de C vers A
seront appelés ¢’ ¢” (sur ¢), a’a” (sur a), 6’0" (sur b).

II. — Formules de sin (« + ) et cos (& -+ f).

Démonstrations basées sur un théoreme de géométrie
et son corollaire.

A. — Formule du sinus de la somme de deux arcs. — La somme
de deux angles d’un triangle quelconque et le 3° angle étant supple-
mentaires, leurs sinus sont égaux :

(1) sin (& + ) = siny .
Il est donc.tout naturel de partir de cette relation pour chercher

a établir une nouvelle démonstration de la formule du sinus de la
somme de deux arcs. D’apres la fig. 1:

On a successivement

- | X | X% R b R
sm(a-}-{fﬁ):b.cz g %L):—.L + ¢ .
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Mais
A
¢ a
Par suite
/l”, L" + (” h”IC” /a”’C,
i LBy = —. - = ,
sinfo + f) = T
/l 14 ¢ n c 4 hf//
sin (& 4 0) 5 -+ T
ou '
(I ' sin (¢ -+ Bl = sina.cos 3 - cosa.sinf’ .
B. — Formule du cosinus de la somme de deux arcs. — a. ety

étant les angles d’un triangle, nous avons :

-

cos (& + B == — cosy .
La figure 1 donne
"
a
CcOS "( - —Z' 5
d’ou, en remplacant:
n "
a aa
cos (o = — - = — —
(@ + F) b ab

Nous établirons plus loin la relation suivante :

hl//;), — C’C” + (l(l” ,

d ou
(l(l" — ]II//Z . Clc"
Substituons ci-dessus :
1IN/} m2 ’ 1/4 nm m
¢’ — h'"* ¢ ¢ R" h
cos (a Bl o e D e e e e, R
(¢ + ) ab b« b a
ou
(I1) cos (& 4 [3) == cosa.cosf — sina.sinff .

C. — Formule du sinus de la difference de deux arcs. — Au lieu
de déduire cette tormule de la relation (1) en y remplacant 8 par
— B, on peut aussi 'obtenir directement de la figure 1 par un pro-
cédé peu différent de celui déja employé.

Supposons que « soit un angle aigu du triangle et désignons
par a’ Vangle extérieur correspondant a a. [l vaut la somme des
angles intérieurs non adjacents :

‘ o =p+y
dou .
: y=a — B, siny — sin (&’ — §) .
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Mais’
h/
sin Y= - .

. b
Par suite

. hl . h’(cl + C") . /l, cl + C”

’ b b.c ¢’ b
. /,Ll// C/ cl‘ /tlll C" C, hlll
3111(a’-f5)_—_‘——.—+—— = — .= 4+ —. -,
a b b a-" b a
k”l C!‘I C, /L,”
——— '_l;' . '(_L’ -_ |j'_— —(;'] . —(l_ .
Or
coO ¢
sa = — —
b
puisque «' est obtus; donc
(L1I) sin (0’ — 3) = sina’. cos f — cos a’. sin § .
D. — Formule du cosinus de la différence de deux arcs. — Au

lieu de tirer cette formule de la relation (II) en y remplacant 3
par — 3, on peut aussi 'établir en se basant sur la ﬁgure 1.

Choisissons un angle aigu o« du trlangle et soit «' angle exté-
rieur correspondant. Nous pouvons écrire successivement :

=p+y, v=o —5F;

a aa
osy — cos (o' — B} , Fre Bl = — = —
cos y cos (& 5) cos (a B) 7 !
" = ¢'¢" + ad”
W2 ol W o Uu
(¢) / ./ -— G - ——— — —— — ;
cos {a v ab b b
o' est obtus:
/,l’// ./[lll
: ’o— . : —_ . =
sma.._./) 3 sm@wn :
¢’ e
cosa — — — ; cos i = — ;
b a
(IV) cos (a’ — &) = cos a’. cos B + sina’. sin 5 .
III. — Conséquences géométriques résultant de I'application

des formules de trigonométrie au triangle quelconque.

En appliquant les formules précédentes et celles qui en dé-
coulent au triangle quelconque, on retrouve les relations de cer-
tains théorémes importants de géométrie et 'on arrive a établir
des théorémes nouveaux.
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