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86 : E. DUMONT

IT. — Vecteur-quaternion.

Définitions. — Considérant deux vecteurs géométriques
ayant méme origine O :

6—1_\- = :1 a et OB = V. {) s

portés par les axes ¢, et ¢, dont le plan est orienté grace a
un axe u perpendiculaire a ce plan en O, on appelle quater-
nton toute loi de formation de 'un de ces vecteurs a 1'aide
de l'autre.
Par exemple, pour former OB a l'aide de OA, il suffit de
multiplier d’abord OA par le nombre qualifié
b

h — -

a 9

puis de faire tourner le vecteur ainsi obtenu, autour de I'axe

w d'un angle

/\\
VqVlg = O + Qkﬁ )

de maniere a 'amener en coincidence avec OB. Le nombre
chargé de cette rotation s’appelle le verseur du quaternion;
si I'on désigne par u le verseur qui opére autour de 'axe u
une rotation d'un droit dans le sens direct, je démontre que
le verseur du quaternion précédent peut étre noté

euf) ou eu(()ﬁ—?kﬁ) )
Le quaternion considéré, qui s'appelle rapport de OB a OA,

est égal au produit du nombre qualifié % par le verseur e*, et
'on a

Ayant défini les sommes et produits de quaternions, on
démontre que l'on a

g =1l cost + u.hsinl .
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Le terme « . 2 sin # quil peut aussi s’écrire

T
. u;
h sinf.e 2

est un quaternion dont l'angle est droit. On I'appelle un
quaternion-droit ou un vecteur-quaternion, ce qui fait dire
qu'un quaternion est égal a4 la somme d’un nombre qualifié
— que Hamilton appelle scalar — et d’un vecteur. Une erreur
courante est de croire que ce vecteur est un vecteur géomé-
trique. En réalité c¢’est un nombre, un quaternion-droit. Mais
'expression vecteur-quaternion se justifie si 'on remarque
que les quaternions-droits se comportent dans les calculs
comme les vecteurs géométriques obtenus en substituant au
verseur u le vecteur-unité «.
J'ai appelé le vecteur-géométrique

u.l
le vecteur homologue du vecteur-quaternion
w.l .

Si I'on considére trois axes trirectangulaires ¢, j, %, d’ori-
gine O et orientés suivant la régle du pouce, on aura

_ - N - AN - SN
z¢[:z.lcoszz¢+].lcos]zc+k.lcos/m
et en méme temps
ul =1.lcosiu 4 j.lcosju + k.l cosku ,

les symboles u, i, j, k, désignant les verseurs-droits autour
des axes correspondants. ;
On peut d’ailleurs observer que 'on a

k=7j.i,
d’ou, en posant

. AN
h cos 0 = x, h sinb COS Ju == &,

h sin 6 cos tu.== y, h sin cos ku = ¥,
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on obtient
g = x1 4+ 01 + jaa 4+ Jire
ou
g == a1 + Uy Jlas + g
ou enfin
q == 3 + ]7,

z, et z, élant deux nombres complexes binaires.

En résumé : Un vecteur-qualernion est un quaternion dont
I'angle est droit. C’est un vecteur axial et glissant.

Toute l'analyse vectorielle repose sur la confusion entre
les vecteurs géométriques et les vecteurs-quaternions homo-
logues; confusion dont j'ai démontré la légitimité dans mon
Arithmétique générale.

I11. — Vecteurs-glisseurs.

Les notations AB et AB sont les notations classiques d’un
vecteur géométrique d’origine A et d’extrémité B. Hamilton
et Grassmann ont employé les notations A — B el B — A,
Cette derniére. ou l'on a voulu voir une abréviation de
OB — OA, semble actuellement réunir les préférences des
mathématiciens. On reproche a AB sa forme qui rappelle
celle des produits. Il me parait que ce reproche est puéril.
Lorsque jécris une formule et que je la transforme par le
calcul, je n’agis pas comme une mécanique inconsciente : il ne
m’arrivera jamais de prendre AB, qui au début aurait repré-
senté un vecteur ou sa mesure, pour un produit de A par B.
[l faut évidemment savoir de quoi I'on parle, et par exemple
n'user de la propriété commutative des produits que lorsqu'il
ne s’agit pas de facteurs quaternions.

Quoi qu’il en soit, le fait d’avoir vu représenter un vecteur
AB par la notalion B — A m’a amené a considérer un vecteur
comme un transporteur de points. Cette conception donne
naissance a une nouvelle espéce de vecteurs, opérateurs ou
nombres, tout a fait distincts des vecteurs-géométriques et
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