
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 17 (1915)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Rubrik: CHRONIQUE

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 26.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


CHRONIQUE

Commission internationale de l'enseignement mathématique.

Ailemag'iie. — La Sons-commission allemande vient de faire
paraître le 11e fascicule de ses Berichte und Mitteilungen (ire série
Il est entièrement consacré à la réponse au questionnaire du
Comité central sur la préparation des professeurs de mathématiques
de renseignement secondaire.

Berichte und Mitteilungen, veranlasst durch die Internationale Mathematische

Unterrichtskommission: Erste Folge, XI. — W * Lietzmanx : Die
Ausbildung der Mathematiklehrer an den höheren Schulen Deutschlands. —
1 fasc. in-8°, 18 p., B. G. Teubner, Leipzig.

Russie. — La Sous-commission russe vient de publier un
nouveau fascicule. Rédigé en langue française par M. B. Mlod-
zievsky, professeur émérite de l'Université cle Moscou, il est intitulé

Rapport sue renseignement mathématique aux cours
supérieurs des femmes à Moscou. Nos lecteurs en trouveront un compte
rendu dans le présent numéro, sous la rubrique « Notes et Documents

».

Concours pour le 6e Congrès international des mathématiciens.

Le délai pour la remise des mémoires est prolongé d'un an du
31 octobre 1915 an 31 octobre 1916). On sait qu'il s'agit d'un prix
de 3000 couronnes offert par le Roi de Suède à l'auteur du meilleur

travail apportant une contribution importante cl la théorie des

fonctions analytiques. (Voir L'Eus. math, du 15 sept. 1913, p. 415.)

Académie royale des Sciences de Bologne. — Concours de 1916.

La Classe des Sciences physiques de l'Académie royale des
Sciences de Bologne met au concours, sur la demande de M. le
Chevalier Dr Adolphe Merlani, les sujets suivants :



338 CHRONIQUE
I. — « Exposer, au moyen d'une méthode de critique historique,

le développement organique de la théorie des fonctions elliptiques
ainsi que les différents points de vue sous lesquels cette théorie
a été considérée depuis la fin du XVIIIe siècle jusqu'à nos jours.
Indiquer l'influence qu'ont eue, sur d'autres branches de l'Analyse,

les vues qui se sont présentées successivement dans la dite
théorie » L

II. — «Dès les premières années du XXe siècle, il a été proposé,
de différents côtés, de substituer, à la définition classique de
l'intégration définie, d'autres définitions, à l'effet de généraliser la
notion d'intégrale et de l'appliquer à des classes de fonctions
aussi étendues que possible. »

« On propose de soumettre ces définitions à un examen historique

et critique précis et de faire connaître celle des définitions
étudiées que l'on adopterait soi-même, en exposant d'une façon
approfondie les raisons de sa préférence. »

A celui qui, au jugement de l'Académie, aura présenté le meilleur

travail sur l'un ou l'autre de ces sujets, le Chevalier Adolphe
Merlani fera remettre la somme de 500 lires à titre cle contribution
aux frais d'exécution du travail.

La fermeture du concours aura lieu le 31 décembre 1916. Les
mémoires devront être adressés, avant cette date, au Secrétaire
de la Classe des Sciences physiques de l'Académie royale des
Sciences de Bologne, Via Zamboni, 33. Ils devront être rédigés
en italien et être inédits. Les auteurs ne mettront point leur nom
au mémoire; ils indiqueront seulement une devise qu'ils
reproduiront sur un pli cacheté renfermant leur nom et leur adresse.

Société mathématique suisse, réunion annuelle.
Centenaire de la Société helvétique des Sciences naturelles.

Genève, septembre 1915.

La Société helvétique des Sciences naturelles a célébré le centenaire

de sa fondation en une série de séances qui ont eu lieu à

Genève du 12 au 15 septembre 1915. Fondée dans cette ville le
6 octobre 1815, elle groupa tout d'abord les naturalistes suisses,
mais elle ne larda pas à élargir son cadre et à faire une place de
plus en plus large aux sciences physiques et mathématiques.
Aujourd'hui, le Sénat de la Société helvétique comprend les
représentants des grandes commissions permanentes de géologie,
de géodésie, des glaciers, de la publication des Œuvres d'Euler,

1 Ce même sujet a déjà été mis au concours deux autres fois, mais aucun concurrent ne s'est
présenté.
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etc., ainsi que les présidents des Sociétés cantonales de Sciences
naturelles et des Sociétés suisses scientifiques s occupant d'une
branche spéciale. C'est à ce dernier titre que la Société mathématique

suisse se trouve rattachée à la Société helvétique depuis
1910. Le Sénat joue en quelque sorte le rôle d'une académie des

sciences, tout au moins pour les relations à l'étranger; il a d'ailleurs

des représentants dans l'Association internationale des
Académies.

La Société helvétique des Sciences naturelles est la première
institution académique nomade dont le siège se déplace chaque
année. Depuis sa fondation, elle tient ses réunions annuelles
successivement dans les différentes parties du pays et devient
ainsi toujours plus un facteur d'union nationale. Ce type de
société nomade fut imité plus tard à l'étranger (Société des médecins

et naturalistes allemands, Munich, 1822 ; Association britannique

pour l'avancement des sciences, York, 1831, etc.).
L'œuvre scientifique de la Société helvétique est considérable.

11 suffit pour s'en rendre compte de parcourir le beau volume
contenant les « Notices historiques et les documents réunis par
la Commission historique instituée à l'occasion du Centenaire1. »

Pour ce qui concerne plus particulièrement les mathématiques,
nous avons à mentionner ici la commission nommée en 1909 avec
la mission de publier les Œuvres complètes d'Euler. En coordonnant

ainsi les efforts des savants suisses, la Société helvétique
des Sciences naturelles a produit des travaux utiles à la fois à la
science et au pays.

H. F.

Les séances de la Section des sciences mathématiques et
astronomiques tenaient en même temps lieu de réunion annuelle de la
Société mathématique suisse. Les communications ont été réparties

sur deux séances qui ont eu lieu le mardi 14 septembre à

l'Université.

1. — En ouvrant la première séance, M. le professeur H. Fehr,
président, a rappelé qu'au moment de la fondation de la Société
helvétique, la chaire de mathémathique de l'ancienne Académie
était occupée par le géomètre Simon L'Huillier, puis il a indiqué,
à grands traits, le rôle joué par les mathématiciens suisses du
19e siècle. Les principaux d'entre eux sont : Louis Berthand (de
Genève), 1731-1812; Simon L'Huillier, 1750-1840 ; Robert Argand,
1768-1822; Jacob Steiner, 1796-1863; Charles Sturm, 1803-1855;
Ludwig Schläfli, 1814-1895 ; Gabriel Oltramare, 1816-1906 ; Ch.

1 Centenaire de la Société helvétique des Sciences naturelles, 1 vol. in-4°, 310 p. Georg
et Cie, Bâle et Genève.
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Cellérier, 1818-1889; J. Amsler-Laffon, 1823-1912; Georg Sidler,
1831-1907; Charles Ruchonnet, 1832-1914; Hermann Kinkelix,
1841-1913; Von Der Mühll, 1841-1912; Gustave Cellérier, 1855-
1914; Walter Ritz, 1878-1909.

2. — M. le Prof. L.-G. DuPasquier (Neuchâtel) : Sur les systèmes
de nombres complexes. — Soit un système cle nombres complexes
comprenant une infinité de « complexes » x ==xiei -f- x2e2 -|-

1 ...r

-j-xrer 2 -v\ e\ >
où les xr sont /• nombres réels quel-

1

conques dits coordonnées dit complexe x, et les ei, e2, <?. er
des symboles dits les unités relatives du système de nombre envisagé.

Supposons définies, dans ce système de nombres complexes,
les opérations rationnelles de l'addition et de la multiplication, et
leurs opérations inverses: la soustraction et la division. On sait
qu'alors tout produit e,ek de deux unités relatives quelconques
s'exprime en fonction linéaire, à coefficients réels, des mêmes
unités relatives e.}.

Appelons complexe rationnel un tel nombre complexe dont
toutes les r coordonnées x^ sont des nombres rationnels quelconques,

entiers ou fractionnaires. L'ensemble de tous les complexes
rationnels forme alors un «domaine de rationalité » ou a corps
de nombres complexes », c'est-à-dire que ces complexes rationnels
se reproduisent parles 4 opérations de l'addition, de la soustraction,

de la multiplication et de la division; en d'autres termes : la
somme, la différence, le produit et le quotient (pour autant que la
division est définie et possible) de deux complexes rationnels
quelconques est toujours de nouveau un complexe rationnel.

Pour faire l'arithmétique de ce corps de nombres, c'est-à-dire
pour ériger une théorie des nombres dans ce domaine de rationalité,

il faut tout d'abord le départager en deux, mettant d'une part:
les complexes rationnels « entiers », et d'autre part : les complexes
rationnels «non entiers».

;; La définition suivante se présente le plus naturellement à l'es-
prit :

1 i-..r
; Un complexe rationnel x 2 x\e\ est dit entier? si toutes ses

X

r coordonnées sont des nombres entiers ordinaires ; ce complexe
x sera dit non entier, si l'une au moins de ses r coordonnées est
un nombre fractionnaire.

Prenant pour base cette définition et envisageant les complexes
entiers ainsi définis comme éléments (c'est-à-dire comme l'ana-

• logue des nombres entiers dans l'arithmétique classique), on peut



CHRONIQUE 341

ériger toute une arithmétique du système de nombres complexes
considéré. Cette arithmétique généralisée présente beaucoup
d'analogies avec l'arithmétique ordinaire dont les éléments sont
les nombres rationnels entiers. On retrouve en général, dans cette
arithmétique des complexes, l'équivalent du nombre premier, et
la possibilité de décomposer un complexe entier quelconque en

facteurs premiers ; on y retrouve aussi les diviseurs communs de 2

complexes entiers donnés, ou, plus généralement, de n
complexes entiers donnés ; 011 y retrouve encore un algorithme
analogue à celui <F Fuclide, permettant de déterminer, par un
nombre fini d'opérations rationnelles, le plus grand commun diviseur

de plusieurs complexes entiers donnés; on y retrouve une
théorie des congruences, l'analogue du théorème cle Wilson, l'analogue

du théorème de Fermât; etc.
Mais'il y a des cas où cette analogie ne joue pas. Il y a des

systèmes de nombres où l'arithmétique généralisée basée sur la
définition ci-dessus du nombre complexe entier présente de
curieuses exceptions aux règles générales, des anomalies
étonnantes et inexplicables. Cela tient à la définition même du
complexe entier, comme l'a montré pour la première fois M. .4. Hur-
witz à Zurich, sur l'exemple des quaternions entiers.

Voici les considérations pouvant conduire à une définition
satisfaisante du nombre complexe entier :

Les nombres entiers sont caractérisés par les propriétés
fondamentales suivantes :

i° Ils doivent former un domaine (F intégrité, c'est-à-dire qu'ils
doivent se reproduire par addition, soustraction et multiplication ;

en d'autres termes: la somme, la différence et le produit de deux
nombres entiers doit toujours être de nouveau un nombre entier.

2° Ce domaine d'intégrité doit contenir « le nombre 1 » et « le
nombre zéro ».

3° Ce domaine d'intégrité doit posséder une base finie; autrement

dit : il doit être possible de choisir, dans ce domaine d'intégrité,

un nombre fini de complexes entiers, disons tv, f2, tn%

jouissant de la propriété suivante :

Si ml 3 /rc2, mn désignent des nombres entiers ordinaires
quelconques (positifs, nuls ou négatifs), l'expression

(1) mtti 4- -J- -f- mntn

doit pouvoir reproduire, par un choix convenable des nombres
entiers m^, absolument tous les éléments du domaine envisagé.
Réciproquement: le domaine d'intégrité en question doit se
composer de tous les complexes, et uniquement des complexes, qu'on
obtient en assignant, dans l'expression (1) ci-dessus, aux nombres
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ordinaires mi, /?z2, mn, de toutes les manières possibles, des
valeurs entières positives, nulles ou négatives.

Tout ensemble de complexes jouissant des trois propriétés ci-
dessus est appelé un domaine holoïde.

En vertu de cette définition, tout domaine holoïde contient une
infinité d'éléments, parmi lesquels « le nombre 1 » et « le nombre
zéro » ; de plus, on peut y effectuer sans restriction l'addition, la
soustraction et la multiplication, et cela sans jamais sortir du
domaine; enfin, il possède une base finie.

Or, pour caractériser les nombres entiers, il faut une quatrième
propriété :

4° Ils doivent constituer un domaine holoïde qui soit maximal.
Définition : un domaine holoïde [H] est dit maximal, lorsqu'il

n'existe pas, dans le corps de nombres envisagé, un autre domaine
holoïde contenant tous les éléments de [H], plus encore d'autres
éléments non contenus dans [H].

La définition du complexe rationnel « entier» est alors la sui-
1 ...r

vante : un complexe rationnel x 2 •xXeX est dit entier, s'il fait
X

partie du domaine holoïde maximal en question; le complexe
rationnel x sera dit non entier, s'il n'est pas contenu dans ce
domaine holoïde maximal.

Adoptant cette définition et envisageant comme éléments les
complexes «entiers» définis de cette façon, on peut construire,
dans le domaine des nombres complexes entiers ainsi délimité,
toute une arithmétique et toute une théorie des nombres, d'une
simplicité analogue à celle de l'arithmétique ordinaire et de la
théorie des nombres classique.

En prenant, comme exemples particuliers, différents systèmes
de nombres complexes, l'orateur montre ce qui suit:

1° Cette définition du nombre complexe entier peut avoir comme
conséquence qu'on appellera «entiers » même certains complexes
rationnels x à coordonnées x\ fractionnaires; il peut arriver aussi

que certains complexes rationnels x ne soient pas des complexes
« entiers », bien que toutes leurs coordonnées x\ soient des nombres

entiers ordinaires.
2° L'opération consistant à partager le corps de nombres envisagé

en deux domaines, mettant d'un côté: les complexes entiers,
de l'autre : les complexes non entiers, cette opération peut ne pas
être univoque. Il existe, en effet, des systèmes de nombres
complexes tels que le corps constitué par l'ensemble de tous les
complexes rationnels contient plusieurs domaines holoïdes maximaux,
très différents entre eux.

3° Etant donné un corps de complexes rationnels faisant partie
d'un système déterminé de nombres complexes, il peut même
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arriver que ce corps de nombres ne contienne aucun domaine
holoïde maximal. L'auteur cite, à titre d'exemple, un système de

nombres complexes à trois coordonnées doué de cette curieuse

particularité que, dans ce système, le corps des complexes rationnels

ne contient aucun domaine holoïde maximal.
Si l'on fait alors l'arithmétique d'un domaine holoïde non maximal,

on rencontre dans les théorèmes de divisibilité, dans la
théorie du plus grand commun diviseur, etc., des exceptions
curieuses, des anomalies surprenantes.

Ces anomalies-là ne se présentent pas, quand l'ensemble des

complexes rationnels entiers constitue un domaine holoïde maximal.

Discussion : M. Speiser, Mrae Young et M. Du Pasquier.

3. — M. le Dr G. Pölya (Zurich).'Une série de puissances est-elle
en général non-continuable — On parle en mathématique de
« cas général » dans les cas suivants : lorsque l'ensemble des
cas d'exception est :

1. de mesure nulle, ou bien
2. de dimension inférieure, ou bien
3. de puissance inférieure à celle de l'ensemble des cas réguliers.

— L'ensemble des séries de puissances continuables et celui
des séries de puissances non-continuables ont tous deux la même
puissance, celle du continu. Les notions de mesure ou de dimension
n'ont pas encore été définies dans l'espace,'dont les éléments
représentent les séries de puissances ; dans tous les cas, les raisonnements

de MM. Borel et Fabry ne s'appuient sur aucune définition
explicite de ces notions. Ces raisonnements donc, bien qu'ils nous
fournissent des vues intéressantes sur la nature des séries de
puissances, ne peuvent pas être considérés comme la stricte
démonstration, que les séries de puissances ne sont en général
pas continuables.

On fait bien d'envisager la question d'une façon différente. Dans
l'espace d'une infinité de dimensions dont les points sont les séries
de puissances convergentes dans le cercle de rayon un, on peut
définir convenablement certaines notions relatives aux ensembles
et démontrer le théorème suivant :

Uensemble des séries de puissances non-continuables n'a que des
points intérieurs et il est partout dense. Uensemble des séries de
puissances continuables est parfait et nulle part dense.

Ce théorème peut être démontré, car les notions de point
intérieur, d'ensemble parfait, partout ou nulle part dense, qui
interviennent dans l'énoncé, ont été définies avec précision. Toutes ces
notions reposent sur celle de voisinage. Le voisinage complet
(f0, en, du point a0, ai, an, consiste dans l'en-
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semble des points u0, ui, un, satisfaisant aux inégalités

I K0 — ao \ ^ £o> I ui — ai I S £1 ' I Un — Ö« 1 ^ £/i,

où l'on a

e" o
>

Si la série 2 — an) oc11 converge dans un cercle de rayon plus
grand que 1, le point itQ, ux, m7i, • •• appartient au voisinage
immédiat du point aQ, J'appelle oq, <zw,

point limite de l'ensemble E, lorsque dans un voisinage complet
arbitraire du point a0, al% rt7l, on peut trouver un point, qui
appartienne à l'ensemble E, mais non au voisinage immédiat du
point a0, ai, an,

C'est avec cette notion du point limite qu'on démontre le théorème

énoncé E

Discussion : Mme Young, M. G. Dumas, M. Plancherel.

4. — M. le Prof. Dr M. Planchen kl (Fribourg), Sur la convergence

d'une classe remarquable d'intégrales définies. — Prenons
comme champ fonctionnel 42 l'ensemble des fonctions f[x),
définies clans l'intervalle (0, oo) et de carré intégrable (au sens de

GO

Lebesgue) dans cet intervalle, c'est-à-dire telles que J'/2 dx soit
o

finie. Considérons une transformation T faisant correspondre à

toute fonction/du champ 42 une fonction T (/) du même champ.
Nous caractériserons cette transformation par les propriétés
suivantes

a) linéarité
T(/i + f2) *= T(/i) + T(£}

T (kf) ~ kT (f) k constante.

b) involution
TT [f)=f

c) limitation. Il existe une constante M telle que

00 00

J[Tf f)]-dx£M'/,f'dx
0 0

Une transformation vérifiant ces conditions sera dite une
transformation fonctionnelle linéaire, involutive et bornée. Il existe

1 Le mémoire paraîtra clans les Acta Mathematica.
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alors one fonction génératrice &ix, y) permettant d exprimer T [f)
presque partout par la formule

T(f) ±fMg<ï>(x,y)dy.'

o *
Dans le cas où

ô2<ï>
— ®{x, y)

öxöy ' J

existe presque partout et où l'on a

x y

f r dix dy — <ï> {x, y) — <ï> (x, 0) — $ (0 y) -f- $ (0 0)
t/ d tyxfoy

elle peut s'écrire
00 / &

1 Lf]f®^ [

Dans ce cas y i.r, y) est le noyau de la transformation T.
En général, il n'est pas permis de permuter les deux intégrations

successives de la dernière formule et d'écrire

T(f) ff(y)f(x> dr

Par contre, il est toujours possible de déterminer une suite de
constantes an oo telles que

a„
T (f) lim Ç f{y)v(x, y) dy

71 -V 00 X

presque partout. La suite an dépend en général de la fonction f et
varie avec elle. Il est, par suite, naturel de se demander quelle
hypothèse sur la fonction f permettrait de se débarrasser de la
suite particulière arl et d'assurer la convergence presque partout

de lim j f{y) <$>[%, y dy. J'ai montré dans les Rendiconti di
Z-+ cojf

Palermo? tome 30, qu'il suffisait pour cela de supposer que
00 3fp[x)\/x dx existe. En transposant aux « représentations inté-

0

grales » la méthode que j'ai employée pour étudier la convergence
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des séries de fonctions orthogonales, j'obtiens une hypothèse
plus large et je démontre le théorème suivant :

Soit <jp(x, y) le noyau d'une transformation fonctionnelle T
linéaire, involutive bornée dans le champ des fonctions de carré
intègrable dans l'intervalle (0, x). Pour toute fonction f(x) de ce

00

champ, telle que Jf2 (x) log3xdx soit finie, la limite
i

lim f f{y) ® (x y)dy
* 20

o

existe presque partout et elle représente la transformée T (f) de f.

5. — M. le Prof. W. II. Young (Genève). Sur l'intégration par
rapport à une fonction à variation bornée. — Dans le rapport que
cet auteur a donné lui-même à la Société mathématique suisse,
il n'a pas abordé la partie du sujet qui se rapporte à la recherche
de la fonction primitive. Récemment il a obtenu la généralisation
parfaite des théorèmes de M. Lebesgue et de lui-même sur ce
sujet. Les démonstrations sont fort simples. On peut en effet
employer la méthode de M. de la Yallée-Poussin. Les « fonctions
majorantes et minorantes » introduites par celui-ci rentrent en
effet d'une manière tout à fait naturelle dans le cadre de la théorie
de M. Young.

Désignant par g(x) une fonction croissante, on aura à considérer

non seulement des intégrales et des fonctions sommables
par rapport à g(x) mais aussi des nombres dérivés par rapport à

g(x) ; la mesure d'un ensemble deviendra la variation de g{x) par
rapport à cet ensemble, et, dans le cas où cette variation est nulle,
on dira que l'ensemble complémentaire existe presque partoutpar
rapport à g(x). Pour éviter des répétitions ennuyeuses on peut
omettre l'expression « par rapport à g[x) » dans les énoncés. On
aura alors cinq théorèmes principaux :

1° S'il existe une fonction î(x) intermédiaire (au sens large) entre
les deux nombres dérivés à droite d'une fonction continue F (x)? et
si f(x) est sommable, ou bien

i) f (x) est infini (+ oo ou — oo) dans tous les points d'un ensemble

ayant la puissance du continu, ou bien

X

ii) F (x) — F(a) Jf{x)ds>(x)
a

En particulier, par conséquent, si F (x) a un nombre dérivé A
sommable et fini sauf peut-être dans un ensemble dénombrable de
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points, on aura
X

F(*) - F (a) A
a

2° L'intégrale indéfinie d'une fonction sommable f(x) a f (x) pour
dérivée presque partout.

3° Si la fonction F(x), continue ou discontinue, est non-décroissante

dans un intervalle (a, b), l'un quelconque A de ses nombres
dérivés est sommable dans cet intervalle et Von a

x) =¥{b) — F (a) — une fonction positive non-décroissante.

4° Une fonction à variation bornée9 continue ou discontinue9 a
une dérivée presque partout, et les nombres dérivés de la fonction
sont sommables.

5° Une fonction F (x) continue et à variation bornée, dont l'un des

nombres dérivés est fini, saufpeut-être dans les points d'un ensemble

n'ayant pas la puissance du continu est l'intégrale indéfinie de ce

nombre dérivé.
Le premier de ces théorèmes est moins général que le théorème

suivant obtenu par M. Young :

Si F (x) est une fonction semi-continue inférieurement à droite
et supérieurement à gauche, et si elle possède un nombre dérivé à
droite (gauchej f(x) par rapport à g(x), sommable par rapport à

g(x) sur ïensemble S des points ou f(x) > G, on a les deux possibilités

:
1° f(x) — co dans les points d'un ensemble de puissance c ;

2° F (x) est une semi-intégrale supérieure par rapport à g(x)g en

F [x] — F (a) J f{x) dg[x) -|- une fonction positive non-décroissante.

Pour obtenir ces généralisations il était nécessaire d'élaborer

la théorie des nombres dérivés par rapport à g[x) d'une
fonction F (x) qui est au moins d'un côté semi-continue. De telles
fonctions ont fait leur apparition à plusieurs reprises dans les
recherches de M. Young, et les théorèmes qu'il obtient maintenant
montrent de nouveau l'intérêt de ces fonctions. Il obtient entre
autres un théorème du genre du théorème deDini,etqui contient
ce dernier comme cas spécial :

Si F [x) est semi-continue supérieurement à droite dans un intervalle

(a, b), les bornes supérieures des nombres dérivés à gauche
sont toutes les m.êmes et coïncident avec la borne supérieure du rapport

incrémental, les nombres dérivés et le rapport incrémental
étant pris par rapport à x ou g(x), pourvu que i) g (x) soit continue

X

a

effet

s
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à droite9 ou ii) F (x) n'est pas monotone et non-croissant partout dans
l'intervalle.

Discussion: M. Plancherel.

6. — Mme Grace Chisholm Young (Genève). Sur les courbes sans
tangente. — Weierstrass a démontré que la fonction continue
représentée par la série de Fourier 2 b* cos a11 xtc n'a pas de

«=0
dérivée. La question se pose : est-ce que la courbe y — /%£'), où f\x)
est la fonction de Weierstrass, n'a pas de tangente Pour ceci il
ne suffit pas que la fonction n'ait pas de dérivée, car si elle avait
une dérivée à droite et une dérivée à gauche, toutes les deux
infinies mais avec des signes opposés, la courbe aurait une
tangente singulière, dont le point d'incidence serait un point de
rebroussement de la courbe. D'après un théorème connu, ceci ne
peut avoir lieu que dans un ensemble dénombrable de points.
On verra qu'en effet il y a de tels points de rebroussement sur la
courbe de Weierstrass, mais que, sauf dans un ensemble de
première catégorie et de mesure nulle, chaque ligne passant par un
point P cle la courbe a un caractère tangentiel pour la courbe dans
le point P considéré.

Discussion : M. C. Cailler, M. Raoul Pictet.

7. — M. le Dr D. Mirimanoff (Genève) et Mme Grace Chisholm
Young. Sur le théorème des tuiles. — Une tuile d'après W. II. Young,
l'auteur du théorème, est un élément de forme et grandeur
déterminées autour d'un point spécial dit point d'attachement. L'énoncé
est le suivant : Etant donné un ensemble de tuiles sur une droite,
dont chacune peut être taillée autant que l'on veut, on peut trouver
un nombre fini ou une infinité dénombrable de tuiles, ayant les

propriétés suivantes :
1° la largeur de chaque tuile est plus petit que e ;

2° chaque point d'attachement est couvert par au moins une des

tuiles ;
3° le point d'attachement Pi de la tuile d?, n est pas couvert par

une autre tuile;
4° la somme des largeurs des tuiles diffère de la mesure m (S) de

Vensemble S des points d'attachement de moins e'.
Ici e et e' sont des quantités positives choisies.
Si l'ensemble est fermé, les tuiles peuvent être trouvées en nombre

fini.
La démonstration présentée est une élaboration par D.

Mirimanoff de celle donnée par l'auteur sous une forme incomplète.
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8. M. le Prof. L. Crelier (Berne-Bienne). Sur un théorème

particulier de géométrie cinématique et quelques constructions de

tangentes liées à ce théorème1. — Les résultats généraux de la

géométrie cinématique peuvent être appliqués avec succès à un
très grand nombre de mécanismes particuliers et conduire ainsi
à une foule de résultats de détail originaux et forts intéressants.

Considérons en particulier le mécanisme bien connu «Bielle-
Manivelle ». La manivelle étant OB et la bielle AB. Nous
prendrons le chemin de la bielle suivant le diamètre OA et nous le
considérerons comme axe des x. L'origine sera le centre 0.

Nous avons,

pour la base : (^2 + V^) { — R2 — — ^RAr4

pour la roulante : R2 {x2 — Ixf Px"2 [y'2 -[- (x — Z)2)

pour la courbe Cd : [x2 — P) (x2 -f- y2) -f- R2?/2 O.

Cette dernière courbe est une conchoïde de la base par rapport
au centre 0 et dont la constante est R OB.

Tangentes. — 1. De la roulante. Ï1 suffît de rappeler que celle-
ci est une conchoïde de conique par rapport à un foyer. La constante

de la conique est 2R et celle de la conchoïde — R. Soit M
un tel point de la roulante; F2M est prolongé jusqu'en a avec
Ma R ; a est le point de la conique. Nous construisons la
normale en a au moyen du cercle directeur et du cercle principal;
nous obtenons aJ. EnF2, nous faisons F2J perpendiculaire à F2M ;

c'est la normale de l'enveloppe de la droite mobile pour la position

correspondante, et de cette manière J est le centre instantané
nécessaire. Nous en déduisons a priori la tangente et la normale
en M.

2. De la base. Soit C le point de la base pour la position considérée

OBA. Nous porterons Aa ~ AB l sur le prolongement de
la bielle AB et opposé à B, puis 0B2 OB R sur le prolongement

correspondant de la manivelle OB. Nous aurons B2a parallèle
à Ox. Soit maintenant BaB^d le trapèze isocèle sur la base

B2<2 et la diagonale B2B. Il en résulte B2B a,cl 2R, et B^O —
OB — am md R. En désignant le point de coupe des diagonales

par D, nous aurons encore Dd DB et aB -f- DB r= 2R.
De cette manière D est un point de la conique (ellipse) de foyers

a et B et de constante 2R. Nous avons également, avec DB'
perpendiculaire à dB, dB' B'B puis AB' R et OB' I; dans ces
conditions D est encore un point de la courbe C</, et nous en
tirons DC R.

Examinons maintenant la tangente en C. La théorie des
mouvements épicycloïdaux nous enseigne que la base et la position

1 Voir L. Ciikmer, Systc?nes cinèmatiques (collections Scientia), Gauthier-Villars, Paris.
Chapitres VI el IV.

L'Enseignement mathém. 17e année; 1915.
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correspondante de la roulante pour le point C ont la même
tangente en C. En outre cette roulante correspond h la conique de
foyers a et B et de constante 2R. Nous appliquons maintenant la
construction de la tangente de la roulante. Nous savons déjà que
le point nécessaire de la conique est D et nous pourrions encore
l'obtenir en portant R depuis C sur OB. La tangente de la conique
en D est évidemment DB', perpendiculaire à l'axe des x, donc la

normale est une parallèle Dy à ce même axe. D'autre part la
normale de l'enveloppe du segment mobile OB dans la génération de
la roulante est une perpendiculaire By à OB. Nous trouvons alors
le centre instantané y, relatif à notre conchoïde de conique.

11 est maintenant facile de tracer la normale et la tangente
cherchée en C.

3. De la courbe Cd• Comme celle-ci est une conchoïde de la
base, nous utiliserons la normale de la base en C et la normale
de l'enveloppe du segment mobile OB autour de O; cette dernière
est Od perpendiculaire à OB. Lepoint § est ainsi le nouveau centre

instantané de rotation et nous en déduisons sans autre la
normale, puis la tangente en D.

Trajectoires de a et d. — Nous savons que a est un point fixe
de la bielle avec BA Aa 1. Sa trajectoire est une roulette du
mécanisme considéré. L'équation de cette courbe s'appelle :

(x* _ R2 _ 4/2 5j2)2 _ 16 (R2 __ j2) (/2 __ _

Nous devons observer en plus que le mécanisme OBA et le mécanisme

symétrique travaillant à gauche de l'axe des y ont la même
base, et la même courbe Cd. Comme nous avons aussi B2A2 0
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OB2A2 est une des positions de ce mécanisme symétrique. Avec
A2d — /, la trajectoire de d est une roulette analogue à celle
décrite par a. En établissant son équation, nous trouvons le même
résultat que pour le chemin de a ; en conséquence les points a et
d se déplacent sur la même courbe.

Si nous considérons plus spécialement la diagonale ad dont les
extrémités s'appuient sur la trajectoire (a) ou (d), nous avons là
une droite de longueur fixe, double de la manivelle, disposée
symétriquement par rapport à celle-ci et passant toujours par le

point correspondant D de la courbe Cd- Cette droite donne lieu
au théorème suivant :

Théorème: Dans le mouvement du mécanisme « Bielle-Manivelle»,

il existe une droite mobile de longueur fixe 2R, symétrique
avec le rayon OB, passant toujours par le point correspondant D
et telle que son milieu m glisse sur l'axe des x pendant que ses
extrémités s'appuient sur la trajectoire (a) d'un point a de la bielle,
avec Aa 1

ou en d'autres termes :

Les cordes de la trajectoire (a) symétriques des rayons OB et
menées par les divers points D correspondants, sont de longueur
fixe 2R et elles sont divisées en deux parties égales par l'axe des x.

9. — M. le Dr René de Saussure (Berne et Genève), La Géométrie

des feuillets cotés. — M. René de Saussure, poursuivant l'étude
delà géométrie dite des ((feuillets», expose un développement
récent de cette géométrie obtenu en introduisant la notion du
« feuillet coté ». Les résultats de cette étude ont été exposés dans
les Arch, des Se. Phys. et Nat. de Genève (1915). Rappelons
seulement que le « feuillet » n'est pas autre chose qu'un corps rigide
quelconque, considéré non pas en sa forme ou en sa grandeur,
mais seulement comme position. C'est cette position qui est prise
comme élément spatial primitif, donnant lieu à une nouvelle
géométrie de caractère quadratique et à 6 dimensions (quoique située
dans notre espace à 3 dimensions). En affectant chaque feuillet
d'un coefficient numérique, appelé cote, on obtient le feuillet
« coté », qui donne lieu à une géométrie à 7 dimensions (toujours
située dans notre espace) et dont le caractère n'est plus quadratique

mais linéaire. Les formes fondamentales de cette géométrie
ont reçu de l'auteur les noms de : mono-, bi-, tri-, tétra-, penta-,
et hexacouronne.

L'hexacouronne est le lieu des feuillets cotés (en nombre ex6)

qui satisfont à l'équation :

f -p f h tang ^

/"étant la cote d'un feuillet fixe F (appelé feuillet central); <p, la
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cote du feuillet mobile (& qui engendre l'hexacouronne ; enfin h
et w, la translation et la rotation du mouvement hélicoïdal qui
permet de passer de la position fixe F à la position

Toutes les autres polycouronnes peuvent être définies comme
l'ensemble des feuillets cotés communs à 2, 3, 4, 5 ou 6 hexa-
couronnes. Finalement: 7 hexacouronnes ont en commun un
feuillet coté et un seul. De sorte que réciproquement: 7 feuillets
cotés déterminent une hexacouronne, 6 feuillets une pentacou-
ronne, etc., 2 feuillets une monocouronne.

10. — M. le Prof. C. Cailler (Genève). Sur la théorie analytique
des corps cotes. — M. C. Cailler présente quelques développements
sur les principes analytiques de la théorie des corps solides cotés
ou feuillets cotés, due essentiellement à M. de Saussure, qui l'a
étudiée surtout par la voie géométrique. C'est M. E. Study qui, le
premier, a représenté par des coordonnées d'un emploi commode
les positions d'un solide dans l'espace. Rappelons la formation de
ces coordonnées où intervient la notion de biquaternion qui
remonte à Cayley et Clifford.

Soient q, i3 les unités quaternionniennes, i une nouvelle
unité complexe permutable avec les précédentes et telle que i'2 0.
Un corps solide congruent à un système d'axes coordonnés est
équivalent à un mouvement de ce dernier; à son tour le mouvement

se ramène à une rotation, dont les constantes de Rodrigues
sont eQy eiy c2, e3, combinée avec une translation de composantes

lexj
aiy a^y a3. Les 8 coordonnées homogènes du corps < „> seront,

selon M. Study, les suivantes :

«aj3II¥ (Citfi -f~ e2a2 "h <?8 as)

6L[ e± K +\ (eQat + eza% — Cz)

a; e2, Cl3 + g
eQ a2 + etaB — esat)

6is z= ez +II (eoas -f" ^2Ci — etat)

elles vérifient les conditions 2 ~ 1
>

0 de sorte
1 ^k) !/l>

que le corps occupe dans l'espace oo6 positions comme il convient.
Désignons par un accent la partie réelle d'une quantité com-
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plexe, par deux accents la partie imaginaire de cette même quan-
tité, et posons

ak a'k+ «&; et a cxo + », ex, + », a, + », a,
le biquaternion (ft ainsi formé représente analytiquement le corps
ou le mouvement donné. On montre que si (ft est le, conjugué de

(ft obtenu en changeant dans (ft le signe des quatre quantités z,
le déplacement d'un point solidaire du corps mobile est représenté

par la formule quaternionnienne

a' elcéX
dans laquelle

a 1 + i{itxt + i%x% + isxs) a' 1 + i(i±x[ + ^ + i^)

x et x'k désignant les coordonnées du point avant et après le

mouvement.
Pour s'élever à la conception du corps coté, il suffit de remarquer

que la formule précédente ne change pas quand on multiplie
(ft par le facteur scalaire (1 -f- twz)s et partant, (ft par le facteur
conjugué 1 — ico; en effet, le produit des facteurs ainsi introduits
vaut 1 — z2 bf — 1.

La quantité arbitraire w prendra le nom de cote du corps ; le
corps coté aura pour représentant analytique un biquaternion

a (1 + m)CXa0 + »,a, -f- ^a, + (a.[- + ia*)

+ \ i\ + iaJ + • •• ;

!a
J

du corps coté les valeurs
ak)

a\ — ek > H "H + ^k > ik °> L 2< 3)

lesquelles satisfont les équations

(aa)' ~ aQ -j- -f- ag ag ~ 1

1

2 (aa)" «X + aX + «X + «X «

De la sorte, un corps et une cote déterminent ensemble, au signe
UJ

près, le tableau l „> ; réciproquement 8 nombres quelconques ak
(ak)

définissent, d'une manière unique, un corps coté, pourvu que ces
nombres vérifient la condition (aa)' — 1.
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Il est d'ailleurs aisé d'assigner la signification géométrique des

Wf
coordonnées l A en la faisant dériver de celle des invariants

h)
(aß)' et (aßf de deux corps a et ß, de cotes o>a et Si a et b

désignent l'angle de rotation et le glissement du mouvement hélicoïdal
conduisant un de ces corps sur l'autre, on trouve facilement

(aßy =cos | •

k

(aß)" + aI 14) (ü>a + <»ß) cos | | sin \ •

Ce dernier invariant qu'on peut nommer le moment relatifdes
deux corps joue le rôle principal dans l'étude des polyséries linéaires

de corps cotés. M. de Saussure a donné la théorie géométrique

de ces polyséries et les a désignées sous le nom générique
de polycouronnes ; elles sont semblables aux systèmes de vis de

lakf
Bail. L'emploi des coordonnées l A permet de présenter d'une ma-

K>
nière très claire l'ensemble de ces résultats.

M. Cailler termine sa communication en insistant sur les
analogies que présente, avec les théories de la Statique ordinaire,
celle des corps non cotés mais doués d'une masse ou d'une inten-

[&'kl
sitê a. Ce sont les corps l A vérifiant la condition ^ ^k — ®

k

mais donnant 2 ^'k — aÀ
» au de 2 ^k ~ 1 •

k k

Un système de corps massifs ((Si, a), (<33, b), (<3. c) est
toujours équivalent à un corps coté a: deux systèmes et 'S',
équivalents au même corps côté a, sont réductibles l'un à l'autre par
une opération toute semblable à la composition des vecteurs
concourants. Ainsi se trouve fermé le cycle des comparaisons entre la
Géométrie réglée d'une part et celle des corps cotés de l'autre.

11. — M. le Dr H. Berliner (Berne), Une nouvelle géométrie
projective analytique. — Dans le plan: Ayant fixé un triangle
A B C et 3 nombres zi z^z3, nous attribuons dans le faisceau autour
d'un point P — ou dans la ponctuelle sur une droite g ; aux 3 rayons
PA, PB, PC — respectivement aux 3 points gBC, gGA, gAB ou
bien les nombres z±z2z3 eux-mêmes comme abscisses, ou bien
(ayant fixé un angle unité) les angles ziz2z3 comme coordonnées
angulaires. (Voir: Berliner Involutionssysteme in der Ebene des

Dreiecks, Braunschweig 1914, No. 26). Un élément génétique s
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aura l'abscisse £ ou la coordonnée angulaire w déterminées
respectivement par les conditions :

Z'8 A1
:

S
— (PA, PB, PC, S) resp. ~ (#BC, gCA, #AB, S)

Zg Z2 Z •— Zg

(Cf. v. Staudt, Beiträge z. Geom. der Lage, § 29).

ou bien :

t8z* — lSw — *8*1
(PA> pp. PC, S) resp. (^BC, gCA, gAB, S).

tgzz — tgz2 tg<* — igz%

Toute forme fondamentale de premier rang possède ainsi un
système d'abscisses et de coordonnées angulaires. Si P est sur#; si

x est l'abscisse ou la coordonnée angulaire de P dans le système
correspondant kg, et si y est l'abscisse ou la coordonnée angulaire

de #dans le système correspondant à P, x égale y. On peut
aussi parler de Vabscisse ou de la coordonnée angulaire d'un point
sur une courbe: on entendra les coordonnées qui sont attribuées ci

P dans le système de la tangente en ce point.
Les systèmes d'abscisses ou de coordonnées angulaires

conduisent à plusieurs systèmes de coordonnées ponctuelles ou tan-
gentielles dans le plan. Nous n'en citons qu'un.

Si l'on fixe un point D, non situé sur un côté du triangle, un
second poit P détermine alors univoquement 2 coordonnées
angulaires. cp et ip, en général : ce sont la coordonnée angulaire y
de DP, dans le système correspondant à D, et la coordonnée
angulaire y de P, dans le système de DP. Nous nommons y et y
la Te et la 2e coordonnées de P. On pourrait semblablement
employer des systèmes d'abscisses.

Les systèmes d'abscisses et de coordonnée angulaire conduisent
chacun à une géométrie métrique. Nous définissons la distance de
2 points par la différence des abscisses ou des coordonnées angulaires

dans le système correspondant à la droite de jonction, et
Tangle de 2 droites par différence des abscisses ou des coordonnées
angulaires des droites, dans le système de leur point d'intersection.

La distance et l'angle ont ainsi un signe déterminé. Le cercle
est une C3, et par tout point on peut mener 3 parallèles à une
droite g, si (par définition) l'angle de# et de ses parallèles est nul.

Dans l'espace : Ayant fixé un tétraèdre ABCD (BCD a,
CDA =E ß, DAB s Y, ABC ~ â) et 3 nombres ziz<iz3, nous
attribuons — dans la ponctuelle sur une droite g arbitraire aux 3 points
#«, gß, gy — dans le faisceau de plans autour de # aux 3 plans
#A, #B, g C — dans le faisceau de droites par un point P, dans un
plan s ou bien (lre manière) aux 3 rayons (P,tBC) (P, sCA) (P,fAB)
ou bien (2e manière) (P,sßy), (P,eya), (P, saß) — les 3 nombres zt z2z3
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comme abscisses et détêrminons comme plus haut l'abscisse de
l'élément générique. On pourrait employer de façon analogue les
coordonnées angulaires.

De cette façon, à chaque forme fondamentale de 1er rang
correspondent un (respectivement deux) système d'abscisse, et un
(respectivement deux) système de coordonnées angulaires. De
plus, à chaque forme fondamentale de second rang, dont le support

est un point P, ou un plan e, le tétraèdre ÀBCD fait correspondre

un système de coordonnées dans lequel le trièdre
fondamental P(ABG), le rayon PD et le plan polaire de PD suivant
P(ABC), ou bien le triangle fondamental e[aßy), la droite eô et le
pôle de eô suivant e(aßy) jouent le rôle de base, et où l'on emploiera
comme coordonnées les abscisses de la première ou de la seconde
manière. Si P et e sont incidents, si xy sont les lre et 2e coordonnées

de P, dans le système correspondant àf, et £, rj celles de e,
dans le système correspondant à P (comme centre d'une gerbe de
droites) on a

x =2 Ç et y — r]

Par lre et 2e coordonnées d'un point sur une surface (d'une
tangente, d'un point tangent) on comprendra celles du point dans le
système de son plan tangent.

Les systèmes d'abscisses — ou de coordonnées angulaires — ou
de Pe et 2e coordonnées des formes fondamentales de 1er et de
2e rang conduisent à plusieurs systèmes de coordonnées ponctuels
linéaires ou tangentiels de l'espace. Nous ne citons que le suivant.
Si nous fixons un point e non situé sur une des faces du tétraèdre,
un point P détermine 3 coordonnées angulaires ce sont la
lre et 2e coordonnée angulaire cp] <p2 de eP dans le système
correspondant à £, et la coordonnée angulaire cp3 de P dans le système
correspondant à la ponctuelle e P. En outre une droite g détermine

4 coordonnées angulaires ipi, tp2, ip3, ip4 qui sont les lre et
2e coordonnées angulaires du plan eg dans le système correspondant

à e, et les lre et 2e coordonnées angulaires de g dans le
système du plan eg. </), ygp3 sont les les coordonnées de P; ipiip2ip3ipA
celles de g, — on peut semblablement employer les abscisses
comme coordonnées.

L'auteur se propose de publier prochainement un travail plus
complet et plus explicite sur ce sujet.

12. — M. le professeur Louis Kollros (Zurich). Sur une dualité.
— On peut établir entre la géométrie ponctuelle à 4 dimensions
et la géométrie des sphères une liaison telle qu'à un point, une
droite, un plan et un espace à 3 dimensions de la première
correspondent respectivement une sphère, un cercle, une paire de
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points et un réseau de sphères (toutes orthogonales à une sphère
iixe) de la seconde.

On trouve ainsi (parmi beaucoup d'autres1) quelques théorèmes

qui n'ont pas, à notre connaissance, été énoncés jusquici; par
exemple :

1. Fltant données 2 paires de points : /q et /q et une sphère : s,
il existe, en général, une seule paire : x de points de s telle que
les 2 paires x et /q d'une part, x et /q d'autre part, soient sur un
cercle.

2. Etant données 3 paires de points : /q/q/q et une sphère : 5,
il existe, en général, un seul cercle de s qui soit sur une sphère
avec /q, respectivement /q et /q.

3. Etant donnés 3 cercles quelconques <q<q<q de l'espace, il
existe toujours un plaiq et en général un seul, qui coupe les
3 cercles en 6 points d'un nouveau cercle : <rq (cercle associé
a cA c çy

c
3

Sur chaque arête du trièdre formé par les plans des 3 cercles
donnés, il y a un point, et en général un seul, qui a la même
puissance par rapport aux 2 cercles adjacents. Le plan de jonction
de ces 3 points est le plan cherché.

4. Etant donnés 4 cercles : <q <qc3<q, en les combinant 3 à 3, on
obtient 4 cercles associés : aAa^a3aA [ai est l'associé de <q<q<q,
etc.). Si l'on désigne par ,q. la sphère orthogonale aux 2 cercles
c. et at i= (1, 2, 3, 4), on peut prouver que les 4 sphères :

sont orthogonales à un même cercle : <q ; nous l'appellerons le
complémentaire du groupe (<q<q<q<q)-

Les 5 cercles : ci...c5 jouissent de propriétés symétriques;
chacun est le complémentaire du groupe formé par les 4 autres. En
les combinant 3 à 3, puis 2 à 2, on trouve respectivement 10 cercles
associés et 10 sphères analogues aux s.. Ces 10 sphères forment
avec les 15 cercles une configuration curieuse telle que chaque
sphère soit orthogonale à 6 cercles, chaque cercle étant orthogonal

à 4 sphères. Les 15 cercles peuvent se réunir de 6 manières
différentes en groupes de 5 jouissant des mêmes propriétés
qu eq..c,

5. Par une transformation corrélative dans l'espace à 4 dimensions,

on trouve que 4 paires de points /q/q/q/q choisies
arbitrairement déterminent d'une manière unique 10 sphères et 11

autres paires de points telles que chaque sphère passe par 6 paires
de points et que chacune des 15 paires soient situées sur 4 sphères.

La paire /q complémentaire du groupe (/q/q/q/q) jouit d'une
propriété intéressante; sur une sphère quelconque, il n'existe
pas, en général, de cercle situé sur une sphère avec /q, respecti-
vement/q, /q et /q; mais si la sphère passe par /q (condition suffi-

1 Les nombreuses propriétés des cyclides s'établissent très simplement par ce procédé.
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santé, mais pas nécessaire), elle contient toujours un tel cercle, et,
en général, un seul.

13. — M. le Dr Ferd. Gonseth (Zurich). Extensions d'un thèo-
reine de Poncelet. — I. M. Gonseth expose trois extensions du
théorème de Poncelet : S'il existe un polygene inscrit à une conique
et circonscrit à une seconde conique, il en existe une simple
infinité, d'un même nombre de cotés.

A) S'il existe un polygone gauche inscrit à une cubique gauche
C3, et dont les plans joignant deux côtés consécutifs sont oscula-
teurs à une seconde cubique gauche T3, si de plus C3 et T3 sont
réciproques dans un système focal arbitraire, il existe une simple
infinité de pareils polygones gauches.

La condition que C3 et T3 soient réciproques dans un système
focal arbitraire est essentielle.

II. Viennent ensuite deux extensions du théorème de Weyr1 :

S'il existe sur une conique un groupe de n -j- 1 points dont toutes
les droites de jonction de tous les points 2 à 2 sont tangentes à

une courbe de classe n, T«, il existe sur la conique une simple infinité

linéaire de groupe de n -f- 1 points dont les droites de jonction

touchent T„.
Ce théorème est évidemment lui-même une généralisation du

théorème de Poncelet. Ces extensions sont:
B) S'il existe sur une quadrique une courbe de [n -f- l)ème ordre

dont toutes les bisécantes sont comprises dans un complexe
de nème ordre, C«, il existe sur la quadrique une simple infinité
de courbes de (n -f- l)ème ordre dont toutes les bisécantes sont
comprises dans C».

C) S'il existe sur une cubique gauche C3 2 groupes de n 2

points dont tous les plans de jonction de tous les points 3 à 3
dans chaque groupe touchent une même surface de nème classe,
il existe sur la cubique gauche une double infinité linéaire de
pareils groupes de n -f- 2 points.

Discussion : M. Grossmann.

14. — M. le Dr Ed. Guillaume (Berne). Sur Vimpossibilité de

ramener à une probabilité composée la loi des écarts à plusieurs
variables. — L'auteur montre d'abord un petit appareil permettant

de tracer rapidement, sur une feuille de papier, un grand
nombre de points répartis suivant la loi des écarts à deux variables,

comme les points d'impact sur une cible. L'appareil se compose

d'un entonnoir dont l'axe est vertical, maintenu au-dessus
d'un certain nombre de grilles horizontales superposées. Sous les

1 Mathematische Annalen.
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grilles, à une certaine distance, on place une feuille de papier
millimétré et, sur cette feuille, une feuille de papier carbone. En
mettant dans l'entonnoir de la grenaille de plomb, les grains
s'écoulent, traversent successivement les grilles superposées, ce

qui les disperse, et tombent finalement sur le papier carbone en
faisant une marque sur le papier millimétré. Lorsqu'un grand
nombre N de grains sont tombés, celui-ci offre une image très
nette de la répartition des points d'impact.

Le papier millimétré permet de diviser facilement le plan en
un grand nombre de petites cases carrées identiques, de côtés
Ax Ay s. La probabilité pour qu'un des grains, désigné à

l'avance, soit tombé sur une case de coordonnées x0, yQ et de
surface e2 est, approximativement, en appelant n le nombre de grains
tombés dans cette case, et A et a deux constantes caractéristiques
de l'appareil :

n +
9

— — A2e e-
N

Cette probabilité peut se décomposer en un produit de 2 autres
2 a 2

— ax —ay ta —axn iprobabilités: Ae °s et Ae s. Par exemple, Ae e est la
probabilité pour que le point ait une abscisse comprise entre x0
et x0 -f- s, autrement dit, soit tombé dans une bande (#0, y) de

largeur £, formée par toutes les cases d'abscisse xQ, et parallèle à l'axe
des y. Si n% est le nombre de grains tombés dans cette bande, on
aura :

— ax nAe
N •

On aura de même pour les grains tombés dans la bande (x, y0)
parallèle à l'axe des x à la distance yQ :

N

Or, on ne peut traiter Ae~~axos et Ae~~ayo s comme deux probabilités

indépendantes, car il y a une liaison géométrique qui ?i

apparaît pas analytiquement: la répartition des points dans une
bande, par exemple (x0, y), dépend de la répartition des points
de toutes les bandes qui lui sont perpendiculaires, en particulier
de la bande (x, y0). Les grains nl et. ;z2 ne pourraient donc faire
l'objet de deux tirages dans une urne. Le fait qu'il peut y avoir
liaison géométrique sans liaison analytique a déjà été entrevu par
Poincaré (Dernières pensées, p. 64) L

1 Voir en outre : Ed. Guillaume, La Théorie des Probabilités et la Physique, Arch. Sc.
phys. et liât. 1914, t. XXXVIII et 1915 t. XXXIX, pp. 373, 205 et 302.
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15. — Seance administrative de la Société mathématique suisse.

— M. le Prof. H. Fehr, président, donne un rapide aperçu de
l'exercice écoulé. Depuis la réunion extraordinaire, tenue à Zurich
en mai 1914, le Comité a admis dix nouveaux membres, dont deux
au cours de la séance annuelle : MM. G. Tiercy (Genève), E. Rod
(Genève), F. Lévy (Genève), Mme Gr. Young (Genève), MM. Berliner
(Berne), C.-E. Guye (Genève), F. Gonseth (Genève), Pölya (Zurich),
Fr. Laurent (Genève), Denis (Genève). Par contre il a eu le regret
d'enregistrer le décès de MM. Guccia (Païenne), G. Cellérier
(Genève) et H. v. Wayer (Bàle-C.]. La Société compte actuellement
144 membres.

Sur la proposition des vérificateurs des comptes, MM. Crelier
et Marchand, la Société approuve le rapport du trésorier, M. Plan-
cherel. Elle procède ensuite au renouvellement de son comité
pour les années 1916 et 1917. Sont élus MM. les Prof. Grossmann
(Zurich), président; M. Plancherel (Fribourg), vice-président;
L. Crelier (Bienne-Berne), secrétaire-trésorier.

La prochaine réunion ordinaire aura lieu dans les Grisons.

Nouvelles diverses. — Nominations.

M. Harold Bohr, professeur adjoint à l'Université de Copenhague,

est nommé professeur de mathématiques à l'Ecole
polytechnique de la même ville, en remplacement de M. le professeur
P. C. V. Hansen, qui prend sa retraite.

M. K. Bopp, privat-docent, est nommé professeur extraordinaire
à l'Université de LIeidelberg.

M. G. Faber, professeur à l'Université de Strasbourg, est nommé
professeur à l'Ecole technique supérieure de Munich.

M. U. C. Mitchell est nommé professeur extraordinaire à

l'Université de Kansas.
M. Joh. Mollerup est nommé professeur adjoint à l'Université

de Copenhague, en remplacement de M. Bohr, appelé à l'Ecole
polytechnique.

M. F. W. Owens est nommé professeur extraordinaire à

l'Université Cornell, Ithaca, E.-U.
M. H. B. Philipps est nommé professeur extraordinaire à l'Institut

technologique de Boston, Mass.
Privat-docents. — Ont été admis en qualité de privat-docents

pour les mathématiques, MM. J. Radon et Rulf, à l'Ecole
technique supérieure de Vienne, M. Simandl, à l'Ecole technique
supérieure de Brünn, et M. G. Tiercy, à l'Université de Genève.

Nécrologie.

M. H. Ganter, professeur au Gymnase d'Aarau (Suisse), est
décédé le 29 juillet 1915. Très apprécié par ses élèves, il était
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connu dans le monde de l'enseignement moyen par le traité de
Géométrie analytique qu'il publia en collaboration avec M. le
prof. F. Rudio (Zurich).

M. E. Janisch, professeur à l'Ecole technique supérieure de
Prague, est décédé le 11 août 1915, à l'âge de 46 ans.

M. J.Knoblauch, professeur à l'Université de Berlin, est décédé
le 29 juillet 1915, à l'âge de 59 ans.

M. E. Riecke, professeur de physique à l'Université de Gœt-
tingue, est décédé à l'âge de 69 ans.

NOTES ET DOCUMENTS

Commission internationale de l'Enseignement mathématique.
Compte rendu des travaux des Sous-commissions nationales.

(22e article)

Les mathématiques dans l'enseignement secondaire supérieur
en Angleterre h

On sait qu il a été publié en Angleterre, par les soins de la Sous-commission

anglaise de la Commission Internationale de l'Enseignement
Mathématique, toute une série de rapports concernant renseignement mathématique

dans les divers établissements d'instruction d'Angleterre (voir YEns.
math., 1912 a 1914). Ces rapports, publiés indépendamment les uns des autres
et par des auteurs différents, ne fournissent pas directement une idée
d'ensemble sur l'enseignement mathématique en Angleterre. Du reste, l'élaboration

d'un rapport général sur l'organisation de l'enseignement d'un pays
n est pas une chose facile si 1 on tient compte du fait qu'il s adresse non seulement

au pays lui-même, mais aussi a l'étranger. Tout spécialement en Angleterre,

pays de la liberté individuelleres difficultés sont très grandes, car on
n y trouve pas une organisation systématique et uniforme de l'instruction etil est difficile, même pour un Anglais, de s'orienter dans ce chaos d'institutions

diverses, surtout pour ce qui concerne l'enseignement supérieur.
Dans son rapport, le Dr Wolff se propose précisément de fournir une vue

d'ensemble de l'enseignement mathématique dans les écoles supérieures
anglaises. Il comble en cela une lacune des rapports présentés par la Sous-

•
upd Mitteilungen veranlasst durch die internationale mathematische

Unterrichtskommission. Zweite Folge, II, enthaltend : Der mathematische Unterricht der höheren
Knabenschulen Englands, von Dr. Georg Wolff, Oberlehrer am Realgymnasium Betzdorf-Kirchen ; mit 60-Abbildungen im Text. — Un läse. in-S° de 207 p.; B. G. Teubner, Leipzig.
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