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CHRONIQUE

Commission internationale de I'enseignement mathématique.

Allemagne. — La Sous-commission allemande vient de faire
paraitve le 11° fascicule de ses Berichte und Mitterlungen (1™ série.
Il est entierement consacré a la réponse au questionnaire du Co-
mité central sur la préparation des professeurs de mathématiques
de 'enseignement secondaire.

Berichte und Mitteilungen, veranlasst durch die Internationale Mathema-
tische Unterrichtskommission: Erste Folge, XI. — W. Lierzvan~y: Die
Ausbildung der Mathematiklehrer an den hoheren Schulen Deutschlands. —
1 fasc. in-8¢, 18 p., B. G. Teubner, Leipzig.

Russie. — La Sous-commission russe vient de publier un
nouveau fascicule. Rédigé en langue francaise par M. B. Mrop-
z1EVSKY, professeur émérite de I'Université de Moscou, il est inti-
tulé Rapport sur lenseignement mathématique aux cours supe-
rieurs des femmes ¢ Moscou. Nos lecteurs en trouveront un compte
rendu dans le présent numéro, sous la rubrique « Notes et Docu-
ments ».

Concours pour le 6° Congrés international des mathématiciens.

Le délai pour la remise des mémoires est prolongé d’un an (du
31 octobre 1915 au 31 octobre 1916). On sait qu’il s’agit d’'un prix
de 3000 couronnes offert par le Roi de Suede a 'auteur du meil-
leur travail apportant une contribution importante a la théorie des
fonctions analytiques. (Voir L’ Iins. math. du 15 sept. 1913, p. 415.)

;
i

Académie royale des Sciences de Bologne. — Concours de 1916.

La Classe des Sciences physiques de l'Académie royale des
Sciences de Bologne met au concours, sur la demande de M. le
Chevalier D* Adolphe Merraxt, les sujets suivants :



338 CHRONIQUE

I. — « Exposer, au moyen d’une méthode de critique historique,
le développement organique de la théorie des fonctions elliptiques
ainsi que les différents points de vue sous lesquels cette théorie
a été considérée depuis la fin du XVIII® siecle jusqu’a nos jours.
Indiquer l'influence qu’'ont eue, sur d’autres branches de I’Ana-
lyse, les vues qui se sont présentées successivement dans la dite
théorie » 1.

II. — «Des les premieres années du XX¢ siecle, il a été proposé,
de différents cotés, de substituer, a la définition classique de I'in-
tégration définie, d’autres définitions, a l'effet de généraliser la
notion d’intégrale et de l'appliquer a des classes de fonctions
aussi étendues que possible. »

« On propose de soumettre ces définitions a un examen histo-
rique et critique précis et de faire connaitre celle des définitions
étudiées que 'on adopterait soi-méme, en exposant d’une facon
approfondie les raisons de sa préférence. »

A celui qui, au jugement de ’Académie, aura présenté le meil-
leur travail sur I'un ou 'autre de ces sujets, le Chevalier Adolphe
Merlani fera remetire la somme de 500 lires a titre de contribution
aux frais d’exécution du travail.

La fermeture du concours aura lieu le 31 décembre 1916. Les
mémoires devront étre adressés, avant cette date, au Secrétaire
de la Classe des Sciences physiques de 1’Académie royale des
Sciences de Bologne, Via Zamboni, 33. lls devront étre rédigés
en italien et étre inédits. [.es auteurs ne mettront point leur nom
au mémoire; ils indiqueront seulement une devise qu’ils repro-
duiront sur un pli cacheté renfermant leur nom etleur adresse.

Société mathématique suisse, réunion annuelle.
Centenaire de la Société helvétique des Sciences naturelles.

Geneve, septembre 1915.

La Société heloétique des Sciences naturelles a célébré le cente-
naire de sa fondation en une série de séances qui ont eu lieu a
Genéve du 12 au 15 septembre 1915. Fondée dans cette ville le
6 octobre 1815, elle groupa tout d’abord les naturalistes suisses,
mais elle ne tarda pas a élargir son cadre et a faire une place de
plus en plus large aux sciences physiques et mathématiques.
Aujourd’hui, le Sénat de la Société helvétique comprend les
représentants des grandes commissions permanentes de géologie,
de géodésie, des glaciers, de la publication des (Buvres d’Euler,

1 Ce méme sujet a déja été mis au concours deux autres fois, mais aucun concurrent ne s’est
" présenté.
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ete., ainsi que les présidents des Sociétés cantonales de Sciences
naturelles et des Sociétés sunisses scientifiques s’occupant d’une
branche spéciale. C'est 4 ce dernier titre que la Société mathéma-
tique suisse se trouve rattachée a la Société helvétique depuis
1910. Le Sénat joue en quelque sorte le role d’ane académie des
sciences, tout au moins pour les relations a I'étranger; il a d’ail-
leurs des représentants dans [’Association internationale des
Académies.

La Société helvétique des Sciences naturelles est la premiere
institution académique nomade dont le siege se déplace chaque
année. Depuis sa fondation, elle tient ses réunions annuelles
successivement dans les différentes parties du pays et devient
ainsi toujours plus un facteur d’union nationale. Ce type de
société nomade fut imité plus tard a l'étranger (Société des méde-
cins et naturalistes allemands, Munich, 1822 ; Association britan-
nique pour 'avancement des sciences, York, 1831, ete.).

[eeuvre scientifique de la Société helvétique est considérable.
Il suffit pour s’en rendre compte de parcourir le beau volume
contenant les « Notices historiques et les documents réunis par
la Commission historique instituée a I'occasion du Centenaire!. »
Pour ce qui concerne plus particulierement les mathématiques,
nous avons a mentionner ici la commission nommée en 1909 avec
la mission de publier les (Euvres completes d’Euler. En coordon-
nant ainsi les efforts des savants suisses, la Société helvétique
des Sciences naturelles a produit des travaux utiles a la fois a la
science et au pays.

H. F.

Les séances de la Section des sciences mathématiques et astro-
nomiques tenaient en méme temps lieu de réunion annuelle de la
Societé mathématique suisse. Les communications ont été répar-
ties sur deux séances qui ont eu lieu le mardi 14 septembre a
I’'Université.

1. — En ouvrant la premiére séance, M. le professeur H. Frug,
président, a rappelé qu’au moment de la fondation de la Société
helvétique, la chaire de mathémathique de 'ancienne Académie
était occupée par le géometre Simon L’HuiLLier, puis il a indiqué,
a grands traits, le role joué par les mathématiciens suisses du
19¢ siecle. Les principaux d’entre eux sont: Louis Berrranp (de
Geneéve), 1731-1812; Simon L’HurLLier, 1750-1840 ; Robert Arcanp,
1768-1822 ; Jacob StriNer, 1796-1863 ; Charles Srurm, 1803-1855;
Ludwig ScurirL, 1814-1895 ; Gabriel Orrranare, 1816-1906; Ch.

! Centenaire de la Société helvétique des Sciences naturelles, 1 vol. in-4°, 310 p. — GEoRG
et Cie, Bale et Geneve.
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Cervirier, 1818-1889; J. Amsver-Larrox, 1823-1912; Georg SipLEr,
1831-1907 ; Charles Rucmonngr, 1832-1914; Hermann KinkELIY,
1841-1913 ; Von Der Muucrr, 1841-1912 ; Gustave CELLERIER, 1855-
1914 ; Walter Rirz, 1878-1909.

2. — M. le Prof. L.-G. DuPascquier (Neuchatel): Sur les systemes
de nombres complexes. — Soit un systéme de nombres complexes
comprenant une infinité de « complexes» @ =—=ux e, + z,e, + ...

1..r
, \J . , :
+ zrer = Z X, ey, ou les &, , x,, ..., 2» sont r nombres réels quel-
A

conques dits coordonnées du complexe x,etlese,, e,, ... €ys wns Or

des symboles dits les unités relatives du systeme de nombre envi-
sagé. Supposons définies, dans ce systéme de nombres complexes,
les opérations rationnelles de ’addition et de la multiplication, et
lears opérations inverses: la soustraction et la division. On sait
qu’alors tout produit e,e, de deux unités relatives quelconques

s’exprime en fonction linéaire, a coefficients réels, des mémes

unités relatives ey

Appelons complexe rationnel un tel nombre complexe dont
toutes les 7 coordonnées -, sont des nombres rationnels quelcon-

ques, entiers ou fractionnaires. L’ensemble de tous les complexes
rationnels forme alors un « domaine de rationalité » ou «corps
de nombres complexes», ¢’est-a-dire que ces complexes rationnels
se reproduisent par les 4 opérations de I'addition, de la soustrac-
tion, de la multiplication et de la division; en d’autres termes: la
somme, la différence, le produit et le quotient (pour autant que la
division est définie et possible) de deux complexes rationnels
quelconques est toujours de nouveau un complexe rationnel.

Pour faire larithmétique de ce corps de nombres, ¢’est-a-dire
pour ériger une théorie des nombres dans ce domaine de rationa-
lité, il faut tout d’abord le départager en deux, mettant d’'une part:
les complexes rationnels « entiers », et d’autre part: les complexes
rationnels « non entiers ».

[La définition suivante se présente le plus naturellement a l'es-
prit :

~

.
Un complexe rationnel x —= > xy ey est dit entier, si toutes ses

A
r coordonnées sont des nombres entiers ordinaires ; ce complexe
x sera dit non entier, si I'une au moins de ses 7 coordonnées est

un nombre fractionnaire.
Prenant pour base cette définition et envisageant les complexes

’

entiers ainsi délinis comme éléments (¢c’est-a-dire comme 'ana-
logue des nombres entiers dans larithmétique classique), on peut
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ériger toute une arithmétique du systéme de nombres complexes
considéré. Cette arithmétique généralisée présente beaucoup
d’analogies avec 'arithmétique ordinaire dont les éléments sont
les nombres rationnels entiers. On retrouve en général, dans cette
arithmétique des complexes, 1'équivalent du nombre premier, et
la possibilité de décomposer un complexe entier quelconque en
facteurs premiers; on y retrouve aussi les diviseurs communs de 2
complexes entiers donnés, ou, plus généralement,  de n com-
plexes entiers donnés; on y retrouve encore un algorithme
analogue a celui d’Kuclide, permettant de déterminer, par un
nombre fini d’opérations rationnelles, le plus grand commun divi-
seur de plusieurs complexes entiers donnés; on y retrouve une
théorie des congruences, 'analogue du théoreme de Wilson, I'ana-
logue du théoreme de Fermat, etc. |

Mais il y a des cas ou cette analogie ne joue pas. Il y a des
systéemes de nombres ou 'arithmétique généralisée basée sur la
définition ci-dessus du nombre complexe entier présente de
curieuses exceptions aux regles générales, des anomalies éton-
nantes et inexplicables. Cela tient a la définition méme du com-
plexe entier, comme ’a montré pour la premieére fois M. 4. Hur-
witz & Zurich, sur 'exemple des quaternions entiers.

Voiciles considérations pouvant conduire a une définition satis-
faisante du nombre complexe entier :

Les nombres entiers sont caractérisés par les propriétés fonda-
mentales suivantes :

1° Ils doivent former un domaine d’intégrité, ¢’est-a-dire qu’ils
doivent sereproduire par addition, soustraction et multiplication ;
en d’autres termes: la somme, la différence et le produit de deux
nombres entiers doit toujours étre de nouveau un nombre entier.

2° Ce domaine d’intégrité doit contenir « le nombre 1 » et « le
nombre zéro ».

3° Ce domaine d’'intégrité doit posséder une base finie; autre-
ment dit: il doit étre possible de choisir, dans ce domaine d’inté-
grité, un nombre fini de complexes entiers, disons ¢, ¢,, ... tn,
jouissant de la propriété suivante :

St m,, my, ..., m, désignent des nombres entiers ordinaires
quelconques (positifs, nuls ou négatifs), I'expression

(1) Mty + maly 4 oo o m

doit pouvoir reproduire, par un choix convenable des nombres
entiers m), absolument tous les éléments du domaine envisagé.
Réciproquement : le domaine d’'intégrité en question doit se com-
poser de tous les complexes, et uniguement des complexes, qu'on
obtient en assignant, dans I’expression (1) ci-dessus, aux nombres
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ordinaires m,, m,, ... m., de toutes les maniéres possibles, des
valeurs entiéres positives, nulles ou négatives.

Tout ensemble de complexes jouissant des trois propriétés ci-
dessus est appelé un domaine holoide.

En vertu de cette définition, tout domaine holoide contient une
infinité d’éléments, parmi lesquels « le nombre 1 » et «le nombre
zéro» ; de plus, on peut y effectuer sans restriction 'addition, la
soustraction et la multiplication, et cela sans jamais sortir du
domaine; enfin, il posséde une base finie.

Or, pour caractériser les nombres entiers, il faut une quatrieme
propriété :

4° Ils doivent constituer un domaine holoide qui soit maximal.

Définition : un domaine holoide [H] est dit maximal, lorsqu’il
n’existe pas, dans le corps de nombres envisagé, un autre domaine
holoide contenant tous les éléments de [H], plus encore d’autres
éléments non contenus dans [H].

La définition du complexe rationnel « entier» est alors la sui-
1...r

vante : un complexe rationnel & = >, ay.e) est dit entier, s'il fait
A

partie du domaine holoide maximal en question; le complexe
rationnel x sera dit non entier, s’il n’est pas contenu dans ce do-
maine holoide maximal.

Adoptant cette définition et envisageant comme éléments les
complexes «entiers» définis de cette facon, on peut construire,
dans le domaine des nombres complexes entiers ainsi délimité,
toute une arithmétique et toute une théorie des nombres, d’'une
simplicité analogue a celle de l'arithmétique ordinaire et de la
théorie des nombres classique.

En prenant, comme exemples particuliers, différents systemes
de nombres complexes, 'orateur montre ce qui suit:

1° Cette définition du nombre complexe entier peut avoir comme
conséquence qu on appellera «entiers » méme certains complexes
rationnels x a coordonnées x; fractionnaires; il peut arriver aussi
que certains complexes rationnels 2 ne soient pas des complexes
« entiers », bien que toutes leurs coordonnées xy soient des nom-
bres entiers ordinaires.

2° [opération consistant a partager le corps de nombres envi-
sageé en deux domaines, mettant d’un c6té: les complexes entiers,
de 'autre : les complexes non entiers, cette opération peut ne pas
étre univoque. Il existe, en effet, des systéemes de nombres com-
plexes tels que le corps constitué par 'ensemble de tous les com-
plexes rationnels contient plusieurs domaines holoides maximauz,
tres différents entre eux.

3° Etant donné un corps de complexes rationnels faisant partie
d’'un systéeme déterminé de nombres complexes, il peut méme
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arriver que ce corps de nombres ne contienne aucun domaine
holoide maximal. L’auteur cite, a titre d’exemple, un systeme de
nombres complexes a trois coordonnées doué de cette curieuse
particularité que, dans ce systéme, le corps des complexes ration-
nels ne contient aucun domaine holoide maximal.

Si l’on fait alors arithmétique d’un domaine holoide non maxi-
mal, on rencontre dans les théorémes de divisibilité, dans la
théorie du plas grand commun diviseur, etc., des exceptions
curieuses, des anomalies surprenantes.

- Ces anomalies-1a ne se présentent pas, quand l'ensemble des
complexes rationnels entiers constitue un domaine holoide maxi-
mal.

Discussion: M. Speiser, M™ Younc et M. Du Pasquikr.

3. — M. le D* G. Porya (Zurich). Une série de puissances est-elle
en général non-continuable ? — On parle en mathématique de
« cas général » dans les cas suivants: lorsque l'ensemble des
cas d’exception est:

1. de mesure nulle, ou bien

2. de dimension inférieure, ou bien

3. de puissance inférieure a celle de ’ensemble des cas régu-
liers. — L’ensemble des séries de puissances continuables et celui
des séries de puissances non-continuables ont tous deux la méme
puissance, celle du continu. Les notions de mesure ou de dimension
n’ont pas encore été définies dansl'espace,’dontles éléments repré-
sentent les séries de puissances ; dans tous les cas, les raisonne-
ments de MM. BoreL et FaBrY ne s’appuient sur aucune définition
explicite de ces notions. Ces raisonnements donc, bien qu’ils nous
fournissent des vues intéressantes sur la nature des séries de
puissances, ne peuvent pas étre considérés comme la stricte
démonstration, que les séries de puissances ne sont en général
pas continuables.

On fait bien d’envisagerla question d’une facon différente. Dans
I'espace d’une infinité de dimensions dontles points sont les séries
de puissances convergentes dans le cercle de rayon un, on peut
définir convenablement certaines notions relatives aux ensembles
et démontrer le théoréme suivant:

L’ensemble des séries de puissances non-continuables n’a que des
points intérieurs et il est partout dense. L’ensemble des séries de
puissances continuables est parfait et nulle part dense.

Ce théoreme peut étre démontré, car les notions de point inté-
rieur, d’ensemble parfait, partout ou nulle part dense, qui inter-
viennent dans ’énoncé, ont été définies avec précision. Toutes ces
notions reposent sur celle de voisinage. Le voisinage complet
(€05 &5 +-- &, ...) du point «,, a,, ... au, ... consiste dans 1’en-
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semble des points u,, w«,, ... us, ... satisfaisant aux inégalités

|“o—“o|§€0, |U1—-a1}§€1,-u- ‘U-n——(lnlgsn,.
ou l'on a
lim n,— _
en 20, n—=ow [/En =1.

Si la série 3 (u, — an) 2" converge dans un cercle de rayon plus
grand que 1, le point «,, w,, ... w,, ... appartient au voisinage
. ) ’ . . ?
immediat du point a,, a,, ... an, .... Jappelle a,, a,, ... an, ...
point limite de I'ensemble E, lorsque dans un voisinage complet
arbitraire du point «,, a,, ... a,, ... on peut trouver un point, qui
appartienne & ’ensemble I, mais non au voisinage immédiat du
pomnt a,, a,, ... an, ....

C’est avec cette notion du point limite qu'on démontre le théo-
réme énoncé !,

Discussion : M™® Youxg, M. G. Dumas, M. PLANCHEREL.

4. — M. le Prof. D* M. Pra~cuerer (Fribourg), Sur la conver-
gence d’une classe remarquable d’intégrales définies. — Prenons
comme champ fonctionnel £ 'ensemble des fonctions f(x), dé-
finies dans l'intervalle (0, ) et de carré intégrable (au sens de

o
Lebesgue) dans cet intervalle, c¢’est-a-dire telles que ffgdx soit
0
finie. Considérons une transformation T faisant correspondre a
toute fonction f'du champ £ une fonction T(f) du méme champ.
Nous caractériserons cette transformation par les propriétés sui-
vantes
a) linéarite

[

T+ ) = ThH + T(f)
T(kf) = kT(f) , k constante.

b) involution
TT(f]

|

e) limitation. Il existe une constante M telle que

o] [e.2]

f{'r (f)2dx < M2ff2dx .

0 0

Une transformation vérifiant ces conditions sera dite une trans-
formation fonctionnelle linéaire, involutive et bornée. Il existe

1 Le mémoire paraitra dans les Acta Mathematica.
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alors une fonction génératrice @z, y) permettant d’exprimer T(f)
presque partout par la formule

, d D
Pif) = [T 2w 0)d)
0
Dans le cas ou
"D — etz )
swoy — P1* 0

existe presque partout et ou I'on a

Yy

S/

0 0

@, y) — Dla, 0) — (0, 7) + ©(0, 0

elle peut s’écrire

o]

T(f) = fé ftyﬂ
0

Daus ce cas gz, y) est le noyau de la transformation 1.
En général, il n’est pas penms de permuter les deux intégra-
tions successives de la derniére formule et d’écrire

0

T = [Firlelx, ) dy -

0

Par contre, il est toujours possible de déterminer une suite de
constantes a, » » telles que

T(f) = lim f f2)e(x, 2)dy
. 0

presque partout. L.a suite o, dépend en général de la fonction fet
varie avec elle. Il est, par suite, naturel de se demander quelle
hypotheése sur la fonction f permettrait de se débarrasser de la
suite particuliére a, et d’assurer la convergence presque partout

de lim /f (y)olx, y)dy. Jai montré dans les Rendiconti di

2> 0
Palermo, tome 30, qu’il suffisait pour cela de supposer que

3 .
ffg(x) \ 'z dx existe. En transposant aux « représentations inté-
(1]

grales » la méthode que j’ai employée pour étudier la convergence



346 CHRONIQUE

des séries de fonctions orthogonales, j'obtiens une hypothese
plus large et je démontre le théoréme suivant :

Soit 9(x, y) le noyau d’une transformation fonctionnelle T li-
néaire, involutive bornée dans le champ des fonctions de carré
intégrable dans Uintervalle (0, © ). Pour toute fonction f(x) de ce

champ, telle que ff“ (x) log®xdx soit finie, la limite
1
lim fﬂy')so(x, ) dy
ooy

existe presque partout et elle représente la transformee T (f) de f.

5. — M. le Prof. W. H. Younc (Geneve). Sur lUintégration par
rapport a une fonction a variation bornée. — Dans le rapport que
cet auteur a donné lui-méme a la Société mathématique suisse,
il n’a pas abordé la partie du sujet qui se rapporte a la recherche
de la fonction primitive. Récemment il a obtenu la généralisation
parfaite des théoréemes de M. Lebesgue et de lui-méme sur ce
sujet. Les démonstrations sont fort simples. On peut en effet
employer la méthode de M. de la Vallée-Poussin. Les « fonctions
majorantes et minorantes » introduites par celui-ci rentrent en
effet d'une maniére tout a fait naturelle dansle cadre de la théorie
de M. Young.

Désignant par g(z) une fonction croissante, on aura & consi-
dérer non seulement des intégrales et des fonctions sommables
par rapport & g(x) mais aussi des nombres dérivés par rapport a
g(x); la mesure d’'un ensemble deviendra la variation de g(x) par
rapport 4 cet ensemble, et, dans le cas ou cette variation est nulle,
on dira que ’ensemble complémentaire existe presque partout par
rapport ¢ g(x). Pour éviter des répétitions ennuyeuses on peut
omettre I'expression « par rapport a g(x)» dans les énoncés. On
aura alors cinq théoremes principaux:

1° 8l existe une fonction f(x) intermédiaire (au sens largejentre
les deux nombres dérivés a droite d’'une fonction continue I (x), et
st f(x) est sommable, ou bien

i)t (x) est infini (4 o ou — =) dans tous les points d’un ensemble
ayant la puissance duw continu, ou bien

x

ii) F(x) — F(a) :ff{x) dg(x) .

a

En particulier, par conséquent, st F (X) a un nombre dérive A4 som-
mable et fini sauf peut-étre dans un ensemble denombrable de
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points, on aura
x
Fla) — F(a) = [Adg(a)

9° L’intégrale indéfinie d’une fonction sommable f(x) a t(x) pour
dérivéee presque partout.
° Si la fonction F(x), continue ou discontinue, est non-décrois-
sante dans un intervalle (a, b), l'un quelconque A de ses nombres
dérivés est sommable dans cet interyvalle et l'on a

f./ldg(x) — F(b) — F(a) — une fonction positive non-décroissante.

4° Une fonction & variation bornée, continue ou discontinue, a
une derivée presque partout, et les nombres dérives de la fonction
sont sommables.

5° Une fonction F (x) continue et a variation bornée, dont l'un des
nombres dérivés est fini, sauf peut-étre dans les points d’un ensemble
n’ayant pas la puissance du continu est Uintégrale indéfinie de ce
nombre dérivé.

Le premier de ces théoremes est moins general que le théoreme
suivant obtenu par M. Young:

St F (xX) est une fonction semi-continue inférieurement a droite
et supérieurement & gauche, et si elle possede un nombre dérivé a
droite (gauche) f(x) par rapport ¢ g(x), sommable par rapport a
g(x) sur lensemble S des points ot £(x) > 0, on a les deux possi-
bilités :

1° f(x) == — o dans les points d’un ensemble de puissance c;

2° F (x) est une semi-intégrale supérieure par rapport a g(x), en
effet
Flz) — Fla) = Jf(x) dgl(x) + une fonction positive non-décrois-

sante. Pour obtenir ces généralisations il était nécessaire d’éla-
borer la théorie des nombres dérivés par rapport a g(z) d’une
fonction F () qui est au moins d’un coté semi-continue. De telles
fonctions ont fait leur apparition a plusieurs reprises dans les
recherches de M. Young, et les théoremes qu’il obtient maintenant
montrent de nouveau l'intérét de ces fonctions. Il obtient entre
autres un théoreme du genre du théoréme de Dini, et qui contient
ce dernier comme cas spécial :

Si F (x) est semi-continue supérieurement a droite dans un inter-
valle (a, b), les bornes supérieures des nombres dérives a gauche
sont toutes les mémes et coincident avec la bornesupérieure du rap-
port incrémental, les nombres derivés et le rapport incrémental
etant pris par rapport a x ow g(X), pourvw que i) g(X) soit continue
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a droite, ou ii) F (x) n’est pas monotone et non-croissant partout dans
Uintervalle.

Discussion: M. PLANCHEREL.

6. — M™¢ Grace Chisholm Younc (Geneve). Sur les courbes sans
tangente. — Weierstrass a démontré que la fonction continue
représentée par la série de Fourier > 4" cosa”amw n’a pas de

n=0

dérivée. La question se pose: est-ce que la courbe y = f(2), ou f(2)
est la fonction de Weierstrass, n’a pas de tangente ? Pour ceciil
ne suffit pas que la fonction n’ait pas de dérivée, car si elle avait
une dérivée a droite et une dérivée a gauche, toutes les deux
infinies mais avec des signes opposés, la courbe aurait une tan-
gente singuliere, dont le point d’incidence serait un point de
rebroussement de la courbe. D’aprés un théoréme connu, ceci ne
peut avoir lieu que dans un ensemble dénombrable de points.
On verra qu'en effet il y a de tels points de rebroussement sur la
courbe de Weierstrass, mais que, sauf dans un ensemble de pre-
miere catégorie et de mesure nulle, chaque ligne passant par un
point I> de la courbe a un caractere tangentiel pour la courbe dans
le point P considéré.

Discussion : M. C. CaiLLer, M. Raoul Picrer. -

7. — M. le D* D. Mirimanorr (Geneve] et M™® Grace Chisholm
Younc. Surle théoreme des tuiles. — Une tuile d’apres W. . Young,
I'auteur du théoréme, est un élément de forme et grandeur déter-
minées autour d'un point spécial dit point d’attachement. L.’énoncé
est le suivant: Etant donné un ensemble de tuiles sur wune droite,
dont chacune peut étre taillée autant que ’on veut, on peut trouver
un nombre fini ow une infinité dénombrable de tuiles, ayant les
proprietés suivantes :

1° la largeur de chaque tuile est plus petit que e

2° chaque point d’attachement est couvert par auw moins une des
tiiles ; | ,

3° le point d’attachement P; de la tuile aZP,1 n'est pas couvert par

une autre tuile ;

4o la somme des largeurs des tuiles differe de la mesure m(S) de
I'ensemble S des points d’attachement de moins e’.

Ici e et €' sont des quantités positives choisies.

Si Uensemble est fermé, les tuiles peuvent étre trouvées en nombre
fint.

I.a démonstration présentée est une élaboration par D. Miri-
manoff de celle donnée par l'auteur sous une forme incomplete.
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8. — M. le Prof. L.. CreLier (Berne-Bienne). Sur un theoreme
particulier de géométrie cinématique et quelques constructions de
tangentes liées o ce théoreme'. — Les résultats généraux de la
géométrie cinématique peuvent étre appliqués avec succes a un
trés grand nombre de mécanismes particuliers et conduire ainsi
4 une foule de résultats de détail originaux et forts intéressants.

Considérons en particulier le mécanisme bien connu « Bielle-
Manivelle ». La manivelle étant OB et la bielle AB. Nous pren-
drons le chemin de la bielle suivant le diametre OA et nous le
considérerons comme axe des z. L’origine sera le centre O.

Nous avons,

pour la base: (2?2 4+ »?) (2 — R* — &%) = 4R%*
pour la roulante: R2?(2? + y* — l2)? = PPa?(y* 4+ (x — [)?)
pour la courbe C;: (2* — ) (2? + y?) + R*y* = 0.

Cette derniére courbe est une conchoide de la base par rapport
au centre O et dont la constante est R = OB.

Taxcent1ES. — 1. De la roulante. 11 suflfit de rappeler que celle-
ci est une conchoide de conique par rapport a un foyer. La cons-
tante de la conique est 2R et celle de la conchoide — R. Soit M
un tel point de la roulante; F,M est prolongé jusqu’en a avec
Ma = R ; a est le point de la conique. Nous construisons la nor-
male en @ au moyen du cercle directeur et du cercle principal;
nous obtenons «J. En F,, nousfaisons I',J perpendiculaire a F,M;
¢’est la normale de 'enveloppe de la droite mobile pour la posi-
tion correspondante, et de cette maniére J est le centre instantané
nécessaire. Nous en déduisons « priori la tangente et la normale
en M. '

2. De la base. Soit C le point de la base pour la position consi-
dérée OBA. Nous porterons Aa = AB =/ sur le prolongement de
la bielle AB et opposé a B, puis OB, = OB = R sur le prolonge-
ment correspondant de la manivelle OB. Nous aurons B,a paral-
lele & Ox. Soit maintenant BaB,d le trapéze isocele sur la base
B,a et la diagenale B,B. Il en résulte B,B = ad = 2R, et B,0O =
OB = am = md — R. En désignant le poinl de coupe des diago-
nales par D, nous aurons encore Dd = DB et aD + DB = 2R.

De cette maniere D est un point de la conique (ellipse) de foyers
a et B et de constante 2R. Nous avons également, avec DB’ per-
pendiculaire a dB, dB’ = B'B puis AB’ =R et OB’ = /; dans ces
conditions D est encore un point de la courbe C4, et nous en
tirons DC = R. ' |

Examinons maintenant la tangente en C. La théorie des mou-
vements épicycloidaux nous enseigne que la base et la position

1 Voir L. CruLIER, Systémes cinématiques (collections Scientia), Gauthier-Villars, Paris.
Chapitres V1l et 1V. '

L’Enseignement mathém. 17¢ année; 1915, 23
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correspondante de la roulante pour le point C ont la méme tan-
gente en C. En outre cette roulante correspond a la conique de
foyers a et B et de constante 2R. Nous appliquons maintenant la
construction de la tangente de la roulante. Nous savons déja que
le point nécessaire de la conique est D et nous pourrions encore
l'obtenir en portant R depuis C sur OB. La tangente de la conique
en D est évidemment DB’, perpendiculaire a ’axe des z, donc la

J

A, g

B

normale est une paralléele Dy a ce méme axe. D’autre part la nor-
male de ’enveloppe du segment mobile OB dans la génération de
la roulante est une perpendiculaire By a OB. Nous trouvons alors
le centre instantané y, relatif & notre conchoide de conique.

11 est maintenant facile de tracer la normale et la tangente
cherchée en C.

3. De la courbe Cyz. Comme celle-ci est une conchoide de la
base, nous utiliserons la normale de la base en C et la normale”
de I'’enveloppe du segment mobile OB autourde O ; cette derniére
est OJ perpendiculaire a OB. Lepoint d est ainsi le nouveau cen-
tre instantané de rotation et nous en déduisons sans autre la nor-
male, puis la tangente en D.

Trasecroires de a et d. — Nous savons que a est un point fixe
de la bielle avec BA — Aa = /. Sa trajectoire est une roulette du
mécanisme considéré. [.’équation de cette courbe s’appelle :

22— R? — 42 4+ 592)2 — 16 (R? — 42)([2 — 42) .
7) s Y (I

Nous devons observer en plus que le mécanisme OBA et le méca-
nisme symétrique travaillant a gauche de I'axe des y ont la méme
base, et la méme courbe C;. Comme nous avons aussi B,A, =/,
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OB, A, est une des positions de ce mécanisme symétrique. Avec
A,d = [, la trajectoire de d est une roulette analogue a celle dé-
crite par a. En établissant son équation, nous trouvons le méme
résultat que pour le chemin de a; en conséquence les points a et
d se déplacent sur la méme courbe.

Si nous considérons plus spécialement la diagonale ad dont les
extrémités s’appuient sur la trajectoire (@) ou (d), nous avons la
une droite de longueur fixe, double de la manivelle, disposée
symétriquement par rapport a celle-ci et passant toujours par le
point correspondant D de la courbe Cs. Cette droite donne lieu
au théoréme suivant :

TukorkiME: Dans le mouvement du mécanisme « Bielle-Mani-
velle», il existe une droite mobile de longueur fixe 2R, symétrique
avec le rayon OB, passant toujours par le point correspondant D
et telle que son miliew m glisse sur l'axe des x pendant que ses
extrémites s'appuient sur la trajectoire (a) d’'un pointa de la bielle,
avec Aa — 1 | :

ou en d’autres termes:

Les cordes de la trajectoire (a) symétrigues des rayons OB et
meneées par les divers points D correspondants, sont de longueur
fixe 2R et elles sont divisées en dewx parties égales par l'axe des x.

9. — M. le D" René de Saussurk (Berne et Geneve), La Géome-
trie des feuillets cotés. — M. René de Saussure, poursuivant I'étude
de la géométrie dite des «feuillets », expose un développement
récent de cette géométrie obtenu en introduisant la notion du
« feuillet coté ». Les résultats de cette étude ont été exposés dans
les Arch. des Sc. Phys. et Nat. de Genéve (1915). Rappelons seu-
lement que le « feuillet » n’est pas autre chose qu’un corps rigide
quelconque, considéré non pas en sa forme ou en sa grandeur,
mais seulement comme position. C'est cette position qui est prise
comme élément spatial primitif, donnant lieu 4 une nouvelle géo-
métrie de caractere quadratique et a 6 dimensions (quoique située
dans notre espace a 3 dimensions). En affectant chaque feuillet
d’un coeflicient numérique, appelé cote, on obtient le feuillet
«coté », qui donne lieu & une géométrie a 7 dimensions (toujours
située dans notre espace) et dont le caractere n’est plus quadra-
tique mais linéaire. Les formes fondamentales de cette géométrie
ont recu de 'auteur les noms de: mono-, bi-, tri-, tétra-, penta-,
et hexacouronne.

[’hexacouronne est le lieu des feuillets cotés (en nombre of)
qui satisfont a I’équation :

f—}-—cp::htangu—;»

[ étant la cote d’un feuillet fixe F (appelé feuillet central); ¢, la
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cote du feuillet mobile @ qui engendre ’hexacouronne; enfin 2
et w, la translation et la rotation du mouvement hélicoidal qui
permet de passer de la position fixe I a la position @.

Toutes les autres polycouronnes peuvent étre définies comme
I’ensemble des feuillets cotés communs & 2, 3, 4, 5 ou 6 hexa-
couronnes. Finalement: 7 hexacouronnes ont en commun un
feuillet coté et un seul. De sorte que réciproquement: 7 feuillets
cotés déterminent une hexacouronne, 6 feuillets une pentacou-
ronne, etc., 2 feuillets une monocouronne.

10. — M. le Prof. C. CairLer (Geneve). Sur la théorie analytique
des corps cotés. — M. C. Cailler présente quelques développements
sur les principes analytiques de la théorie des corps solides cotés
ou feuillets cotés, due essentiellement a M. de Saussure, qui I'a
étudiée surtout par la voie géométrique. C'est M. E. Study qui, le
premier, a représenté par des coordonnées d’'un emploi commode
les positions d’un solide dans I’espace. Rappelons la formation de
ces coordonnées ou intervient la notion de biquaternion qui
remonte a Cayley et Clifford.

Soient 7,, i,, {; les unités quaternionniennes, / une nouvelle
unité complexe permutable avec les précédentes et telle que /2= 0.
Un corps solide congruent a un systeme d’axes coordonnés est
équivalent a un mouvement de ce dernier; a son tour le mouve-
ment se ramene a une rotation, dont les constantes de Rodrigues
sont e,, e,, €,, ;,, combinée avec une translation de composantes

A,
a,, @,. l.es 8 coordonnées homogenes du corps L »( seront,
k

a,,

selon M. Study, les suivantes :

’ 14 1

ao = €, (E\«O —_— —2' (?101 + €a0g + egag) s
! ” 1

(9L1 = e , @(.1 o +.§ (6,1 + esas — ezas)
/ ” 1

A, = e, A, =+ 3 (e,as + eja5 — ezay)

C 4 C /4 1 °

(13 — ey , (13 = 3 (e,as + esa; — ejay) ;

elles vérifient les conditions SA; =1, A, A&, =0, de sorte
2 (k)
que le corps occupe dans ’espace «® positions comme il convient.

- Désignons par un accent la partie réelle d’'une quantité com-



CHRONIQUE 353

plexe, par deux accents la partie imaginaire de cette méme quan-
tité, et posons

Q=@+ i@, ot =@, +i@ +i@, + i@,

le biquaternion @ ainsi formé représente analytiquement le corps
oule mouvement donné. On montre que si & est le. conjugué de
@ obtenu en changeant dans @ le signe des quatre quantités Z,
le déplacement d’un point solidaire du corps mobile est repré-
senté par la formule quaternionnienne

=& c—(;%_
dans laquelle

o=1 4 i(ix, + iz, + ix) o =1+ iz + i, + ix)

x, etz désignant les coordonnées du point avant et apres le

mouvement. ;

Pour s’élever a la conception du corps coté, il suffit de remar-
quer que la formule précédente ne change pas quand on multiplie
A par le facteur scalaire (1 4 wi), et partant, (L par le facteur
conjugué 1 — im; en effet, le produit des facteurs ainsi introduits
vaut 1 — ?w? = 1. -

La quantité arbitraire @ prendra le nom de cote du corps; le
corps coté aura pour représentant analytique un biquaternion

a= (14 i) & = a, + i + 1'27a2 + i = (a;r—i—— ioc;,]
i A i) A

’
a

C oy k .
de la résultent pour les 2 coordonnées { ,> ducorps cotéles valeurs
o8
k

a, = e, , a;: wek—|—,(f¥,/,;; (k=0,1, 2, 3)
lesquelles satisfont les équations

’2 12 /2 2
(aa) = a + o +oa, o, =1,

" P row ron ron
(0a) = aya 4 a0 4 o a a0, = w .

De la sorte, un corps et une cote déterminent ensemble, au signe

’
o

\ | k ‘n
pres, le tableau { ,» ; réciproquement 8 nombres quelconques «
%k
définissent, d’'une maniére unique, un corps coté, pourva que ces
nombres vérifient la condition (aa)’ = 1.

k
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Il est d’ailleurs aisé d’assigner la signification géométrique des

’
o

. k : . . ;
coordonnées { ,;, en la faisant dériver de celle des invariants
o8
k) .
(efB) et (¢B)" de deux corps « et 8, de cotes w, et g - Sia et b dési-
gnent 'angle de rotation et le glissement du mouvement hélicoi-
dal conduisant un de ces corps sur 'autre, on trouve facilement

a

’:Ea’@’—_—cos—,
- kvk 2

P ” a b . «a
(af) = Z(ak@k -+ “ki,) = (wq + (o‘g) cos 5 — 5 sin 5 .

k

Ce dernier invariant qu’'on peut nommer le moment relatif des
deux corps joue le role principal dans I’'étude des polyséries liné-
aires de corps cotés. M. de Saussure a donné la théorie géomé-
trique de ces polyséries et les a désignées sous le nom générique
de polycouronnes; elles sont semblables aux systemes de vis de

'
.

Ball. I.’emploi des coordonnées permet de présenter d’'une ma-

14
L
niere treés claire 'ensemble de ces résultats.

M. Cailler termine sa communication en insistant sur les ana-
logies que présente, avec les théories de la Statique ordinaire,

celle des corps non cotés mais doués d’'une masse ou d’une inten-

| A o
sité a. Ce sont les corps { _ ¢ vérifiant la condition ¥ A, A, = 0
v /t: k

mais donnantzclk = a*, au lieu de Z@LA =1.

Un systéeme de corps massifs (L, a), (3, b), (C. c) ... esttou-
jours équivalent & un corps coté a: deux systémes S et 'S, équi-
valents au méme corps coté a, sont réductibles I'un a 'autre par
une opération toute semblable & la composition des vecteurs con-
courants. Ainsi se trouve fermé le cycle des comparaisons entre la
Géomsétrie réglée d'une part et celle des corps cotés de l'autre.

1. — M. le Dr H. Bervuiner (Berne), Une nouvelle géométrie
projective analytique. — Dans le plan: Ayant fixé un triangle
ABC et3 nombres z,z,z,, nous attribuons dans le faisceau autour
d’un point P — ou dans la ponctuelle sur une droite g; aux 3 rayons
PA, PB, PC — respectivement aux 3 points gBC, gCA, gAB ou
blen les nombres z,z,z, eux-mémes comme absczsses, ou bien
(ayant fixé un angle umte) les angles z,z,z, comme coordonnées
angulaires. (Voir: BerLiNner Involutionssysteme in der Ebene des
Dreiecks, Braunschweig 1914, No. 26). Un élément génétique s
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aura 'abscisse z ou la coordonnée angulaire w déterminees respec-
tivement par les conditions:

BT 8. T B (PA, PB, PC, S) resp. = (gBC, gCA, gAB, §)

Zg — Zg & — 2

(Cf. v. Staupr, Beitrige z. Geom. der Lage, § 29).

ou bien:
tgz — lgm l§W — 8% __ py pB, PC, S) resp. = (¢BC, gCA, gAB, S).
lgzy — 1g7s IgW — 187

Toute forme fondamentale de premier rang posséde ainsi un sys-
teme d’abscisses et de coordonnées angulaires. Si P est sur g; si
2 est I'abscisse ou la coordonnée angulaire de P dans le systéme
correspondant & g, et si y est 'abscisse ou la coordonnée angu-
laire de g dans le systéme correspondant a P, x égale y. On peut
aussi parler de l'abscisse ou de la coordonnée angulaire d’un point
sur une courbe: on entendra les coordonnées qui sont attribuées a
P dans le systeme de la tangente en ce point.

Les systemes d’abscisses ou de coordonnées angulaires con-
duisent a plusieurs systemes de coordonnées ponctuelles ou tan-
gentielles dans le plan. Nous n’en citons qu’un.

Si 'on fixe un point D, non situé sur un cété du triangle, un
second poit P détermine alors univoquement 2 coordonnées an-
gulaires. ¢ et ¢, en général : ce sont la coordonnée angulaire ¢
de DP, dans le systeme correspondant a D, et la coordonnée
angulaire ¢ de P, dans le systeme de DP. Nous nommons ¢ et y
la 1r¢ et la 2° coordonnées de P. On pourrait semblablement em-
ployer des systemes d’abscisses.

Les systemes d’abscisses et de coordonnée angulaire conduisent
chacun & une géométrie métrique. Nous définissons la distance de
2 points par la différence des abscisses ou des coordonnées angu-
laires dans le systeme correspondant a la droite de jonction, et
langle de 2 droites par différence des abscisses ou des coordonnées
angulaires des droites, dans le systéeme de leur point d’intersec-
tion. La distance et 'angle ont ainsi un signe déterminé. Le cercle
est une C3, et par tout point on peut mener 3 paralleles a une
droite g, si (par définition} 'angle de g et de ses paralleles est nul.

Dans Ulespace : Ayant fixé un tétraedre ABCD (BCD = g,
CDA =8, DAB =y, ABC = 9) et 3 nombres z,z,z,, nous attri-
buons — dans la ponctuelle sur une droite g arbitraire aux 3 points
ge, gf, gr — dans le faisceau de plans autour de g aux 3 plans
gA, gB, gC — dans le faisceau de droites par un point P, dans un
plan ¢ ou bien (1* maniére) aux 3 rayons (P,eBC) (P,eCA) (P, AB)
ou bien (2° maniere) (P, 8y), (P, eya), (P, caf) — les 3 nombres z,z,7,
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comme abscisses et détérminons comme plus haut I'abscisse de
I'élément générique. On pourrait employer de facon analogue les
coordonnées angulaires.

De cette fagon, a chaque forme fondamentale de 1°" rang cor-
respondent un (respectivement deux) systéme d’abscisse, et un
(respectivement deux) systéme de coordonnées angulaires. De
plus, a chaque forme fondamentale de second rang, dont Je sup-
port est un point P, ou un plan ¢, le tétraédre ABCD fait corres-
pondre un systeme de coordonnées dans lequel le triedre fonda-
mental P(ABC), le rayon PD et le plan polaire de PD suivant
P (ABC), ou bien le triangle fondamental ¢{afy), la droite ¢ et le
pole de &d suivant &(¢fy) jouent le role de base, et ot 'on emploiera
comme coordonnées les abscisses de la premiéere ou de la seconde
maniere. Si P et ¢ sont incidents, si 2y sont les 1™ et 2¢ coordon-
nées de P, dans le systéme correspondant a¢, et &, » celles de ¢,
dans le systeme correspondant a P (comme centre d’une gerbe de
droites) on a

Par 1 et 2¢ coordonnées d’un point sur une surface (d’'une tan-
gente, d’un point tangent) on comprendra celles du point dans le
systeme de son plan tangent.

les systémes d’abscisses — ou de coordonnées angulaires — ou
de 1'® et 2° coordonnées des formes fondamentales de 1° et de
2¢ rang conduisent a plusieurs systemes de coordonnées ponctuels
linéaires ou tangentiels de ’espace. Nous ne citons que le suivant.
Si nous fixons un point ¢ non situé sur une des faces du tétraedre,
un point P détermine 3 coordonnées angulaires ¢, ¢, 9,; ce sont la
1r¢ et 2° coordonnée angulaire ¢, ¢, de &P dans le systeme corres-
pondant a &, et la coordonnée angulaire ¢, de P dans le systeme
correspondant a la ponctuelle ¢P. En outre une droite g déter-
mine 4 coordonnées angulaires y,, ¥,, W,, ¥, qui sont les 1™ et
2¢ coordonnées angulaires du plan ¢¢g dans le systeme correspon-
dant a &, et les 1™ et 2° coordonnées angulaires de g dans le sys-
teme du plan €g. ¢, 9,9, sont les les coordonnées de P; w,y,yp,y,
celles de g, — on peut semblablement employer les abscisses
comme coordonnées.

[auteur se propose de publier prochainement un travail plus
complet et plus explicite sur ce sujet.

12. — M. le professeur Louis Ketrros (Zurich). Sur une dualite.
— On peut établir entre la géométrie ponctuelle a 4 dimensions
el la géométrie des sphéres une liaison telle qu’a un point, une
droite, un plan et un espace a 3 dimensions de la premieére corres-
pondent respectivement une sphére, un cercle, une paire de



CHRONIQUE 357

points et un réseau de spheéres (toutes orthogonales a une sphere
tixe) de la seconde.

On trouve ainsi (parmi beaucoup d’autres?) quelques théoremes
qui n’ont pas, 4 notre connaissance, été énonceés Jusqu ‘iei; par
exemple :

1. Etant données 2 paires de pomts : p, et p, et une sphere: s,
il existe, en général, une seule paire : # de points de s telle que
les 2 paires x et p, d’'une part, x et p, d’autre part, soient sur un
cercle.

2. Etant données 3 paires de points : [’uvepe et une sphere : s,
il existe, en général, un seul cercle de s qui soit sur une sphere
avec p,, respectlvement Po et pg.

3. Etant donnés 3 cercles quelconques ¢, coey de 1espace il
existe toujours un plan, et en général un seul, qui coupe les
3 cercles en 6 points d’'un nouveau cercle : a, (cercle associc
& 0, 5050

Sur chaque aréte du triedre formé par les plans des 3 cercles
donnés, il y a un point, et en général un seul, qui a la méme
puissance par rapport aux 2 cercles adjacents. L.e plan de jonction
de ces 3 points est le plan cherché.

4. Etant donnés 4 cercles : ¢, ¢, c ¢, , en les combinant 3 a 3, on
obtient 4 cercles associés : a,a,a,a, la, est l'associé de c¢,c,¢,,
etc.). Si I'on désigne par s, la sphere orthogonale aux 2 cercles

;eta, i={(1, 2, 3, 4), on peut prouver que les 4 spheres : s,s,5,5,
sont 01’th0gonales A un méme cercle : ¢,; nous 1’appeller0ns le
complémentaire-du groupe (¢, cyc,c,).

Les 5 cercles : ¢,...c, jouissent de propriétés symétrigues ;
chacun est le complémentaire du groupe formé par les 4 autres. En
les combinant 3 a3, puis 2a 2, on trouve respectivement 10 cercles
associés et 10 spheres analogues aux s,. Ces 10 spheres forment
avec les 15 cercles une configuration curieuse telle que chaque
sphere soit orthogonale a 6 cercles, chaque cercle étant ortho-
gonal a 4 spheres. L.es 15 cercles peuvent se réunir de 6 manieres
différentes en groupes de 5 jouissant des mémes propriétés
que ¢, ...cs.

5. Par une transformation corrélative dans ’espace a 4 dimen-
sions, on trouve que 4 paires de points p, p,p,p, choisies arbi-
trairement déterminent d’une maniére unique 10 sphéres et 11
autres paires de points telles que chaque sphére passe par 6 paires
de points et que chacune des 15 paires soient situées sur 4 spheéres.

La paire p; complémentaire du groupe (p,p,p,p,) jonit d’'une
propriété intéressante; sur une sphére quelconque, il n’existe
pas, en général, de cercle situé sur une sphére avec p,, respecti-
vement p,, p, et p,; mais si la sphére passe par p, (condition sufli-

! Les nombreuses propriétés des cyclides s’établissent trés simplement par ce procédé.
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sante, mais pas nécessaire), elle contient toujours un tel cercle, et,
en général, un seul.

13. — M. le Dr Ferd. Gonsern (Zurich). Extensions d’'un théo-
reme de Poncelet. — 1. M. GonseTn expose trois extensions du
théoreme de Poncelet : Sl existe un polygene inscrit @ une conique
et circonscrit a une seconde conique, il en existe une simple infi-
nité, d’'un méme nombre de cétés.

A) S’il existe un polygone gauche inscrit &4 une cubique gauche
C,, et dont les plans joignant deux cotés consécutifs sont oscula-
teurs a une seconde cubique gauche T,, si de plus C, et T, sont
réciproques dans un systéme focal arbitraire, il existe une simple
infinité de pareils polygones gauches.

La condition que C, et T, soient réciproques dans un systéme
focal arbitraire est essentielle. _

II. Viennent ensuite deux extensions du théoreme de Weyr, :
S’il existe sur une conique un groupede n 4 1 points dont toutes
les droites de jonction de tous les points 2 a 2 sont tangentes a
une courbe de classe n, T,, il existe sur la conique une simple infi-
nité linéaire de groupe de n + 1 points dont les droites de jonc-
tion touchent T,,.

Ce théoréeme est évidemment lui-méme une généralisation du
théoréme de Poncelet. Ces extensions sont:

B) S’il existe sur une quadrique une courbe de (n 4+ 1)*™ ordre
dont toutes les bisécantes sont comprises dans un complexe
de n*™ ordre, C,, il existe sur la quadrique une simple infinité
de courbes de (n 4 1)* ordre dont toutes les bhisécantes sont
comprises dans C,. -

C) S’il existe sur une cubique gauche C, 2 groupes de n 4 2
points dont tous les plans de jonction de tous les points 3 a 3
dans chaque groupe touchent une méme surface de n**° classe,
il existe sur la cubique gauche une double infinité linéaire de
pareils groupes de n 4 2 points.

Discussion : M. GROSSMANN.

14. — M. le D" Ed. GuiLLavme (Berne). Sur Uimpossibilité de
ramener a une probabilité composée la loi des écarts a plusieurs
pariables. — [’auteur montre d’abord un petit appareil permet-
tant de tracer rapidement, sur une feuille de papier, un grand
nombre de points répartis suivant la loi des écarts a deux varia-
bles, comme les points d’'impact sur une cible. l.’appareil se com-
pose d’'un entonnoir dont ’axe est vertical, maintenu au-dessus
d’un certain nombre de grilles horizontales superposées. Sous les

1 Mathematische Annalen.
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grilles, & une certaine distance, on place une feuille de papier
millimétré et, sur cette feuille, une feuille de papier carbone. En
mettant dans l’entonnoir de la grenaille de plomb, les grains
s’écoulent, traversent successivement les grilles superposées, ce
qui les disperse, et tombent finalement sur le papier carbone en
faisant une marque sur le papier millimétré. Lorsqu'un grand
nombre N de grains sont tombés, celui-ci offre une image trées
nette de la répartition des points d’impact.

. Le papier millimétré permet de diviser facilement le plan en
un grand nombre de petites cases carrées identiques, de cotés
Az — Ay = ¢. La probabilité pour qu'un des grains, désigné a
I’avance, soit tombé sur une case de coordonnées z,, y, et de sur-
face ? est, approximativement, en appelant n le nombre de grains
tombés dans cette case, et A et @ deux constantes caractéristiques
de U'appareil :

n —afzg+y,

— — AZe ¢?
N

Cette probabilité peut se décomposer en un produit de 2 autres

2 2
eyl . --ax —ay —ax
probabilités: Ae " °s et Ae °e. Par exemple, Ae ‘¢ est la

probabilité pour que le point ait une abscisse comprise entre =z,
et z, + ¢, autrement dit, soit tombé dans une bande (z,, y) de lar-
geur ¢, formée par toutes les cases d’abscisse z,, et paralléle a ’axe
des y. Si n, est le nombre de grains tombés dans cette bande, on
aura :

On aura de méme pour les grains tombés dans la bande (x, y,)
parallele a 'axe des x a la distance y, :

Or, on ne peut traiter Ae™ % et Ae™ % & comme deux proba-
bilités independantes, car il y a une liaison geométrique qui n’ap-
parait pas analytiqguement: la répartition des points dans une
bande, par exemple (z,, y), dépend de la répartition des points
de toutes les bandes qui lui sont perpendiculaires, en particulier
de la bande (z, y,). Les grains n, ef n, ne pourraient donc faire
Vobjet de deux tirages dans une urne. Le fait qu’il peut y avoir
liaison géométrique sans liaison analytique a déja été entrevu par
Poincaré (Dernieres pensées, p. 64)1.

1 Voir en outre: Ed. GuitLaumi, La Théorie des Probabilités et la Physique, 4drch. Sc.
phys. et nat. 1914, t. XXXVIIT et 1915 t. XXXIX, pp. 373, 205 et 302.
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15. — Séance administrative de la Société mathématique suisse.
— M. le Prof. H. Fenr, président, donne un rapide apercu de
I'exercice écoulé. Depuis la réunion extraordinaire, tenue a Zurich
en mai 1914, le Comité a admis dix nouveaux membres, dont deux
au cours de la séance annuelle: MM. G. Tiercy (Geneve), E. Rop
(Geneéve), F. Lévy (Genéve), M™ Gr. Youna (Genéve), MM. BerLINER
(Berne), C.-E. Guye (Geneve), F. Goxseru (Genéve), Povya (Zurich),
Fr. Lavrexrt (Genéve), Dexts (Geneve). Par contre il a eu le regret
d’enregistrer le déces de MM. Guccia (Palerme), G. CeLLERIER
(Geneve) et H. v. Wayer (Bale-C.). La Société compte actuellement
144 membres.

Sur la proposition des vérificateurs des comptes, MM. CreLIER
et MarcHanDp, la Société approuve le rapport du trésorier, M. PrLan-
cHEREL. Elle procéde ensuite au renouvellement de son comité
pour les années 1916 et 1917. Sont élus MM. les Prof. Grossmann
(Zurich), président; M. Praxcuerer (Fribourg), vice-président;
L. CreLier (Bienne-Berne), secrétaire-trésorier.

La prochaine réunion ordinaire aura lieu dans les Grisons.

Nouvelles diverses. — Nominations.

M. Harold Bour, professeur adjoint a ’'Université de Copen-
hague, est nommé professeur de mathématiques a ’Ecole poly-
technique de la méme ville, en remplacement de M. le professeur
P. C. V. Ha~sex, qui prend sa retraite.

M. K. Bopp, privat-docent, est nommé professeur extraordinaire
a ’Université de Heidelberg.

M. G. Faser, professeur a I’'Université de Strasbourg, est nommé
professeur a I’'Ecole technique supérieure de Munich.

M. U. C. MircuerLr est nommé professeur extraordinaire a I'Uni-
versité de Kansas.

M. Joh. MocrLerup est nommé professeur adjoint a 1'Université
de Copenhague, en remplacement de M. Bonr, appelé a I'Ecole
polytechnique.

M. F. W. Owexs est nommé professeur extraordinaire a ’'Uni-
versité Cornell, Ithaca, E.-U. '

M. H. B. Puirieps est nommé professeur extraordinaire a I'Ins-
titut technologique de Boston, Mass.

Privat-docents. — Ont été admis en qualité de privat-docents
pour les mathématiques, MM. J. Rapox et Rurr, a I’'Ecole tech-
nique supérieure de Vienne, M. Stmanor, a I’'Ecole technique supé-
rieure de Brinn, et M. G. Titrcy, a 'Université de Geneve.

Nécrologie.

M. H. Ga~rter, professeur au Gymnase d’Aarau {Suisse), est
décédé le 29 juillet 1915. Tres apprécié par ses éleves, il était
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connu dans le monde de l'enseignement moyen par le traité de
Géométrie analytique qu’il publia en collaboration avec M. le
prof. I¥. Rudio (Zurich). '

M. E. Janiscu, professeur a I’Ecole technique supérieure de
Prague, est décédé le 11 aotit 1915, a 'dge de 46 ans.

M. J. KnosraucH, professeur a I’'Université de Berlin, est décédé
le 29 juillet 1915, a 'dge de 59 ans.

M. E. Riecke, professeur de physique a 'Université de Goet-
tingue, est décédé a 'dge de 69 ans.

NOTES ET DOCUMENTS

Commission internationale de I'Enseignement mathématique.

Compte rendu des travaux des Sous-commissions nationales.
(22e article)

Les mathématiques dans I’enseignement secondaire supérieur
en Angleterre .

On sait qu'il a été publié en Angleterre, par les soins de la Sous-com-
mission anglaise de la Commission Internationale de I’Enseignement Mathé-
matique, toute une série de rapports concernant lenseignement mathéma-
tique dans les divers établissements d’instruction d’Angleterre (voir I'Ens.
math.,1912 a 1914). Ces rapports, publiés indépendamment les uns des autres
et par des auteurs différents, ne fournissent pas directement une idée d’en-
semble sur I'enseignement mathématique en Angleterre. Du reste, 1’élabo-
ration d'un rapport général sur Porganisation de I'enseignement d’un pays
n’est pas une chose facile sil’on tient compte du fait qu’il s’adresse non seule-
ment au pays Iui-méme, mais aussi a I'étranger. Tout spécialement en Angle-
terre, pays de la liberté individuelle, les difficultés sont tres grandes, car on
n'y trouve pas une organisation systématique el uniforme de l'iustruction et
il est difficile, méme pour un Anglais, de s’orienter dans ce chaos d'institu-
tions diverses, surtout pour ce qui concerne I'enseignement supérieur.

Dans son rapport, le Dr Wolff se propose précisément de fournir une vue
d’ensemble de I'enseignement mathématique dans les écoles supérieures
anglaises. Il comble en cela une lacune des rapports présentés par la Sous-

! Berichte und Mitteilungen veranlasst durch die internationale mathematische Unter-
richtskommission, Zweite Folge, 11, enthaltend : Der mathematische Unterricht der hoheren
Knabenschulen Englands, von Dr. Georg WoLrr, Cberlehrer am Realgymnasium Betzdorf-
Kirchen ; mit 60- Abbildungen im Text. — Un fasec. in-80 de 207 p-;B. G. Teubner, Leipzig.
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