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LE PROBLÈME DE JEAN DE PALERME

ET DE LÉONARD DE PISE

PAR

Emile Turrière (Montpellier).

La publication du bel article de M. A. Aubry1 sur les
éléments de la théorie des nombres, me décide à faire paraître
quelques remarques au sujet des relations qui existent entre
la Géométrie et cette branche de la science, et notamment
sur le grand intérêt que présentent des considérations
géométriques dans l'étude de diverses questions ressortissant
au domaine de l'Arithmétique. Le jugement porté par M.
A. Aubry2 sur la méthode que je nommerai méthode arithmo-
géométrique me paraît un peu trop sévère et j'estime que
cette méthode qui a été employée, sous une forme plus ou
moins déguisée par les Anciens, par Diophante en
particulier, méritait qu'une meilleure destinée lui fût réservée.

Un exemple simple, emprunté à l'histoire des mathématiques,

suffira pour mettre en évidence l'intérêt qu'il y a parfois

à laisser de côté des représentations au moyen de fonctions

elliptiques et à se placer sous un point de vue beaucoup
plus élémentaire. J'ai choisi une question célèbre qui me
semble digne d'une étude toute spéciale : la première des
trois questions posée par Jean de Païenne à Léonard de Pise,
en 1225.

1. — Il s'agissait de trouver un carré qui, augmenté ou
diminué du nombre 5, restât, clans les deux cas, un carré

*1 A. Aubry, Le premier chapitre de la théorie élémentaire des nombres. E. M., t. XVII, 1915,
pp 161-195.

2 pp. 173 et sq. du travail cité plus haut.
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parfait. Léonard de Pise répondit que le carré du nombre —

était solution de celte question; on a, en effet:

(rD'+HS)'- (Ïf-MË)!
Cette solution est simple mais particulière. Le problème de

Jean de Palerrne consiste, dans sa généralité, à trouver les
solutions rationnelles du système suivant de deux équations
quadratiques à trois inconnues x, y et z.

(1) x2 5 y2 x2 — 5 —z.2

Du point de vue arithmogéométrique, il s'agit donc d'étudier
la courbe gauche que représentent ces deux équations.

Considérons, d'une manière plus générale, la biquadra-
tique gauche représentée par les équations suivantes

(2) x2 -f- a y2 x2 -j- b ~ z2

dans lesquelles a et b représentent deux constantes
algébriques rationnelles. L'équation du plan oscillateur au point M
de coordonnées (.#, y, z) est:

(b — a)^r3X — by3Y -j- azzh — ab [b — a)

Le plan oscillateur rencontre la quartique en un second

point Mq de coordonnées x\ yi, z± ; celles-ci sont évidemment
des fonctions rationnelles des coordonnées respectives x, y, z

du point M ; le calcul donne les expressions suivantes pour
les coordonnées xx, 3^, z± :

x8 — 6abx* — 4ab {a -f- b) x2 — 3a2 b2

Xi =: — x -

(3) { fi— y

3x* -f- 4 (a -f- b) x6 — 6abx* — a2 b2

j8 — 6a(a — b)y4 — 4a(a — b) (b — 2a)y2 — 3ciÀ(a — b)

3j& _j_ 4 (Jj — 2a)yQ — 6a (a — b)y* — a2 (a — b)2

- 6 b (b — a) z* — kb(b — g)(a — 2b) z2 — U2(b — a)'

3r.8 -f- 4 (a — 2b) z6 — 6b (b — a) z4 — b2(b — a.)2

Dans ces conditions, si le point M est un arithmopoint
(c'est-à-dire un point dont les coordonnées sont des nombres
rationnels), il en sera de même de La méthode précédente

permet donc de déduire de tout arithmopoint de la
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biquadratique gauche considérée un nouvel arithmopoint.
Il n'y aurait exception que pour le cas où M serait un point
à plan oscillateur admettant un contact d'ordre supérieur
avec la courbe; il n'existe d'ailleurs pas de point de cette
nature, dans le cas actuel, à distance finie.

La solution de Léonard de Pi se, x ^ y ^ z '~
1 12 J 12 12

entraîne donc l'existence d'une infinité d'autres systèmes de
solutions rationnelles des équations (1) ; ces solutions se
déduisent les unes des autres par l'emploi indéfiniment
répété des formules (3). Ces solutions sont d'ailleurs très
compliquées dès la seconde.

2. — Une seconde méthode consiste à rattacher l'étude du
système de deux équations (2) à celle d'une cubique plane.
On obtient, en effet, tous les arithmopoints de l'hyperbole
équilatère d'équation

y2 — x2 ~ a

en posant :

c'est-à-dire :

y «

1 Cl

u
2 V uj 2u '

1 / a\ ir -f a
r ï["+u) -i

pour l'hyperbole équilatère d'équation

S2 — .X2 — b

on a de même :

— b sA -f- b

2y
' — 2y

Egalant alors entre elles les deux expressions respectives
de x en fonctions de u et de v, on obtient la relation suivante
entre u et v :

y (a2 — a) — u (v2 — b) ;

elle représente dans un plan rapporté à deux axes Oc),
une cubique plane :

(^) w(u — y) — ay — bu

L'Enseignement mathém., 17« année ; 1915. 21
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Ainsi donc à toute solution rationnelle du Problème généralisé

de Jçan de Palerme et de Léonard de Pise correspond
un arithmopoint de la cubique plane (4); inversement, à tout
arithmopoint de cette cubique correspond une solution du
problème considéré. Les formules de correspondance sont;

v2 -f- b

27" '

Dans le cas du problème de Jean de Palerme et de Léonard

de Pise proprement dit, a 5 et b — 5; l'équation
de la cubique est alors :

uv(u — v) 5 (u -(- i>) ;

la solution particulière trouvée par Léonard de Pise

_ 41 _ 49 31
r ~ ït ' y — 12 ' ~ 12 '

correspond à Parithmopoint de cette cubique de coordonnées :

En réalité, les solutions

41 49 31
* ± - r ±u ,*±r2

au nombre de huit et qui ne sont pas distinctes au point de

vue arithmétique, sont associées à huit arithmopoints de la

cubique. Ceux-ci se déduisent les uns des autres et de Pun
d'eux au moyen de transformations simples : symétrie par
rapport à l'origine, qui est un centre inflexionnel pour la

cubique; semi-inversion cartésienne u cq —

semi-inversion cartésienne ^, c2 v^j ; inversion

cartésienne ^u3 ^-1 c3 =— ces quatre transformations

homographiques laissent la cubique invariante.
L'existence de ces transformations homographiques

s'explique d'ailleurs aisément au moyen de la considération des

I u — x -f- y t v ~ x z \

7) \ 1 bu2 — av'2 a2 -\-a
I X

2 bu — av ' ^ 2u '
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asymptotes de la cubique. Cette courbe possède, en effet, trois
asymptotes : les deux axes coordonnés u 0, v 0 et leur
bissectrice u—v — 0. Il en résulte que la connaissance
d'un arithmopoint M de la courbe conduit à trois nouveaux
arithmopoints, intersections de la cubique avec les parallèles

aux asymptotes menées par M ; la symétrie par rapport
à 0 double ensuite le nombre de ces arithmopoints. Ces
transformations de la cubique en elle-même présentent un
certain intérêt: les arithmopoints ainsi obtenus combinés
avec d'autres arithmopoints, connus par tout autre procédé,
donnent, en effet, naissance, par alignements, à de nouveaux
arithmopoints de la cubique et par suite à de nouvelles
solutions du problème de Jean de Païenne et de Léonard de
Pise.

C'est ainsi que les deux solutions

15
a

2
Kl y r Vt — 6 ; u2 - — 6

donnent par alignement une troisième solution

49 x 41 60 X 49
"3 ~~ 12 x 31 ' ''8 ~ 31 X 41 '

3. — Etant donné un arithmopoint quelconque M de la
cubique d'équation (4),

(4) uv(m — v) av — bu

la tangente en ce point à la courbe rencontre à nouveau la
cubique en un autre arithmopoint M. Il n'y aurait exception
que pour un arithmopoint inflexionnel. De là naît une
méthode de déduction d'une infinité d'arithmopoints de la
cubique à partir de tout arithmopoint donné.

Partons du point M de coordonnées (&, c) ; la tangente à

la cubique en ce point a pour équations paramétriques

U d 4- Xjv2 + b)u2 V V -f- X(u2 4- a) v2 ;

portant ces expressions des coordonnées courantes U, V
dans l'équation

UV (U — Y) aN — bV
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de la cubique, on obtient une équation du troisième degré
en X; celle-ci admet X 0 pour racine double; la racine
simple li est :

x - r 1
+

1 * - " 1.
1

\_u(v2 -f- h) v(a2 -j- a) bu2 — civ2\
il en résulte que les coordonnées du point tangentiel sont:

2au2\v2 -f- b)(v — u) 2bv2(a2 -f a\(v — u)
(6) lit

(u2 -f- a) (fui2 — av2)
'

(s'2 -f- b)[bu2 — av2)

Pour faciliter les calculs, il y a intérêt à faire intervenir
explicitement le nombre x qui figure dans l'énoncé du
problème de Jean de Palerme et de Léonard de Pise :

bu2 — av2

2a 2v 2 (bu — av)

on peut écrire :

ci — u (a — 2x) b — v(v — 2x)

d'où résultent les expressions suivantes de c1 et Ai :

> —
1 [ 1 1 al

1

2av [_« — x v — x x J
(7)

/ a
f r • — i a

XII X XV — x

c'est-à-dire encore :

az by
(8) ut — vt —

xy xz

La solution correspondante du problème de Jean de
Païenne et de Léonard de Pise est donnée par les formules
suivantes :

az4 — br4
Xl ~ 2,rvc. |s2 — -

|9)
x2y2 -f- az2 x2z2 -j- by2

~ '
2*yz ' ^ *

qu'on peut mettre aussi sous la forme équivalente :

ab — x4 ab -f- 2ax2 + x* ab -J- 2bx2 + xi
(10) Xt :

2xyz
' 2xyz

' 2xyz
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4. — Il est encore possible de présenter autrement l'étude
du problème généralisé de Jean de Palerme et de Léonard
de Pise et de la rattacher à celle d'une cubique plane.

Les équations (2) sont, en effet, équivalentes aux suivantes :

(b — a)x2 — by2 — az2 a — b — y2 — s2

La première de celles-ci représente, en coordonnées

homogènes, une arithmoconique contenant l'arithmopoint
x y z; introduisant le paramètre t défini par la relation

y — x — t(z — X)

on obtient la représentation paramétrique suivante de cette
arithmoconique :

— bt2 -f- 2at — a bt2 — 2 ht + a
(11) y — x t-9 z x t-z ;
y ' J [jt2 — a bt2 — a

portant alors ces expressions dans l'équation

a — b — y2 — s2

il vient :

(12)
(bfJ — a)2

'

t (1 — tj (bt — a)

il s'agit donc de rendre cette dernière expression carrée,
c'est-à-dire d'étudier la cubique qui, dans un plan rapporté
à deux axes (£, T), aurait pour équation

(13) f(l — t)(bt — a) T2

Le problème généralisé de Jean de Palerme et de Léonard
de Pise est donc équivalent à l'étude arithmogéométrique de
la cubique précédente.

Les équations précédentes se simplifient considérablement
dans le cas moins général, mais qui contient comme cas

particulier le problème proprement dit de Jean de Palerme,
où les deux constantes a et b sont symétriques. On est alors
conduit à la cubique plane représentée par l'équation :

at( 1 — t2) + T* zz: 0
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Dans ce même cas, on peut arriver à la même conclusion
en observant que des deux équations

x2 -f- a y2 x2 -J- b — z2 (avec b -\- a — 0)

résulte l'équation
y2 -}- z2 2x2 ;

il suffit de poser

y — «r(cos 6 -)- sin 0) z — x(cos 0 — sin 0)

6

en supposant tg^- rationnel, pour avoir la représentation
paramétrique générale des solutions rationnelles de l'équation
y2 z2 2x2. Portant alors ces expressions dans l'équation
y2 — 22 2a, on obtient :

L'étude des solutions rationnelles du système d*équations (2)

x2 a — y2 x2 — a — z2

est donc équivalente à la recherche des valeurs rationnelles
0

de tg - qui rendent carréparfait le produit a sin 20.

0

En posant tg-^- — t, il s'agit donc de rendre carré le

polynome cubique atit2— 1); on est ainsi conduit à l'étude
de la cubique précédente.

La remarque précédente présente un certain intérêt; elle
permet, en effet, d'affirmer l'impossibilité du problème
considéré dans deux cas particuliers.

5. — Impossibilité des équations :

X2 -f 1 — f x2 — 1 — z2

D'après ce qui précède, il s'agit de démontrer que l'ex-

pression de sin 20 en fonction de tg^- ne peut jamais être

carrée lorsque tg^- est rationnel. Il me suffira de rappeler

que, d'après Fermât, la surface d'un triangle rectangle à

côtés rationnels n'est jamais mesurée par un carré. Si l'on
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désigne par 9 l'un des angles aigus d'un tel triangle pytha-

gorique, tg^ est, on le sait, un nombre rationnel; la surface

l 1
est £

sin 9 cos 9, c'est-à-dire - sin 20.

Le problème proposé par Jean de Palerme à Léonard de

Pise aurait donc été impossible si le nombre 5 avait été
remplacé par le nombre 1.

6. — Impossibilité des équations :

x2 -f 2 r2 -X2 — 2 S2

C'est encore une proposition de Fermât qui me permettra
d'établir l'impossibilité du problème de Jean de Palerme
dans le cas où le nombre 2 est substitué au nombre 5. Fer-
mat a établi, en effet, l'impossibilité de l'équation indéterminée

x4 + r4 ~2

en nombres entiers; il est aisé d'étendre cette impossibilité
au cas où x, y, z seraient des nombres rationnels; si l'équation

précédente admettait, en effet, des solutions rationnelles

x £, y — s S1 l'existence de ce système de solutions

rationnelles entraînerait l'existence du système de
solutions entières :

xt — «BC ri — bAC ^ cABC

Il est donc impossible de satisfaire rationnellement à

l'équation

c'est-à-dire encore aux équations

x2 r2
— zz; cos 0 -— — sin 0

0

tg 2" étant un nombre rationnel; en admettant l'existence
d'une solution, le produit sin 9 cos 9 serait carré et
réciproquement; il est donc impossible de rendre sin 20 double
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d'un carré; les équations
x2 2 y2 X2 — 2 — s2

sont donc impossibles en nombres rationnels.
Je ferai observer que le résultat précédent peut être énoncé

sous la forme intéressante suivante : l'aire d'un triangle
pythagorique n'est jamais mesurée par le double d'un carré.

7. — Il est aisé de formuler la correspondance géométrique

qui existe entre les deux cubiques planes précédemment

mises en évidence, représentées respectivement par
les équations (4) et (13). Le paramètre t qui figure dans les

expressions (11), (12) et (13) est, en effet, défini par la relation

y — .x

que les équations (5) permettent d'écrire

j av
bu

On a d'autre part, d'après (12) et (13) :

bt- — a avr —-— —{u — v)
2x bu '

les cubiques planes (4) et (13) sont donc reliées entre elles

par la transformation définie par les formules

av _ av «T bT
(10) f T-, T j- (« •

bu ' bu '
t(a — bt) ' a—bt

La correspondance entre les deux cubiques est donc bi-
rationnelle, mais non homographique ; à trois points alignés
de l'une des deux cubiques ne correspondent pas trois points
alignés de l'autre. Si donc on connaît deux arithmopoints
M4M2 de l'une des cubiques et, par suite, un troisième M3
de cette même cubique les formules de transformation
précédentes feront connaître trois arithmopoints M'4M'2M'3 non
alignés de l'autre cubique; ceux-ci donneront immédiatement,

par alignements, trois nouveaux arithmopoints de
cette seconde cubique, c'est-à-dire de nouvelles solutions
du problème de Jean de Palerme.

4 septembre 1915.


	LE PROBLÈME DE JEAN DE PALERME ET DE LÉONARD DE PISE

