Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 17 (1915)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PROPRIÉTÉS INVOLUTIVES DUALISTIQUES DES TRIANGLES

Autor: Crelier, L.

Kapitel: § IV. — Coniques particulières.

DOI: https://doi.org/10.5169/seals-16324

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ment homologiques et engendrent les points A', B' et C'.

Les triangles déterminés par les rayons conjugués comme a_2 , b_2 , c_2 et a'_2 , b'_2 , c'_2 soient $II_aII_bII_c$ et $II'_aII'_bII'_c$, forment l'involution de triangles, comme dans le cas général.

Les triangles doubles sont le triangle ABC sur la droite p et le point de coupe des côtés du triangle auxiliaire soit P.

Les propriétés des triangles conjugués prennent maintenant la forme suivante:

- 1. Les lignes de jonction des sommets homologues sont confondues avec les droites a', b' ou c'.
- 2. Les lignes de jonction des sommets non homologues comme $II_bII'_c$, II'_bII_c ou $II_aII'_c$, $II_cII'_a$ etc., passent respectivement par A', B' ou C'.
- 3. Dans l'hexagone $\Pi_a\Pi'_c\Pi_b$ $\Pi'_a\Pi_c\Pi'_b$ les points de coupe des côtés opposés sont en ligne droite sur p et les lignes de jonction des sommets opposés passent par le même point P.
- 4. Les triangles circonscrits à deux triangles conjugués et dont les côtés passent respectivement par A, B ou C sont aussi des triangles conjugués.

Les démonstrations ou les remarques des cas précédents s'appliquent à priori aux propriétés ci-dessus. doublement homologiques et engendrent les droites a', b' et c'.

Les triangles déterminés par les points conjugués $A_2B_2C_2$ et $A'_2B'_2C'_2...$ forment l'involution des triangles conjugués de la même manière que dans le cas général.

Les triangles doubles sont d'abord le point de coupe P des côtés du triangle fondamental, puis le triangle ABC des points doubles sur ces côtés.

Les propriétés des triangles conjugués prennent maintenant la forme suivante :

- 1. Les points de coupe de deux côtés homologues sont confondus avec les points A', B' ou C'.
- 2. Les points de coupe de deux côtés non homologues comme A_2B_2 , $A'_2C'_2$ ou A_2C_2 , $A'_2B'_2$ etc., sont respectivement sur a', b' ou c'.
- 3. Dans l'hexagone (a₂) (c'₂) (b₂) (a'₂) (c₂) (b'₂) les lignes de jonction des sommets opposés passent par le point P et les points de coupe de côtés opposés sont sur la même droite p.
- 4. Les triangles inscrits dans deux triangles conjugués et dont les sommets se trouvent respectivement sur les droites a_1 , b_4 ou c_1 sont aussi des triangles conjugués.

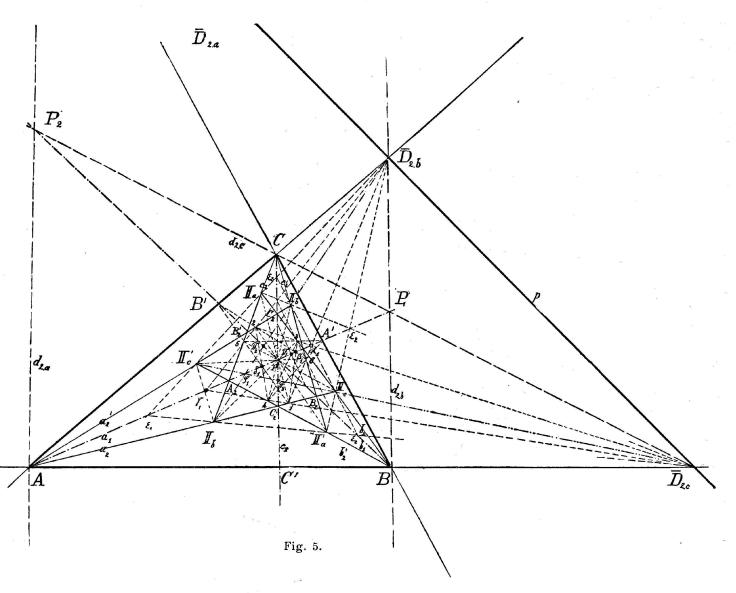
Les raisonnements et les démonstrations sont les mêmes que dans les cas précédents.

§ IV. — Coniques particulières.

- 21. Nous nous reporterons au cas où le triangle auxiliaire se ramène à trois droites concou-
- 22. Nous reviendrons au cas où le triangle auxiliaire ABC se ramène à trois points en ligne

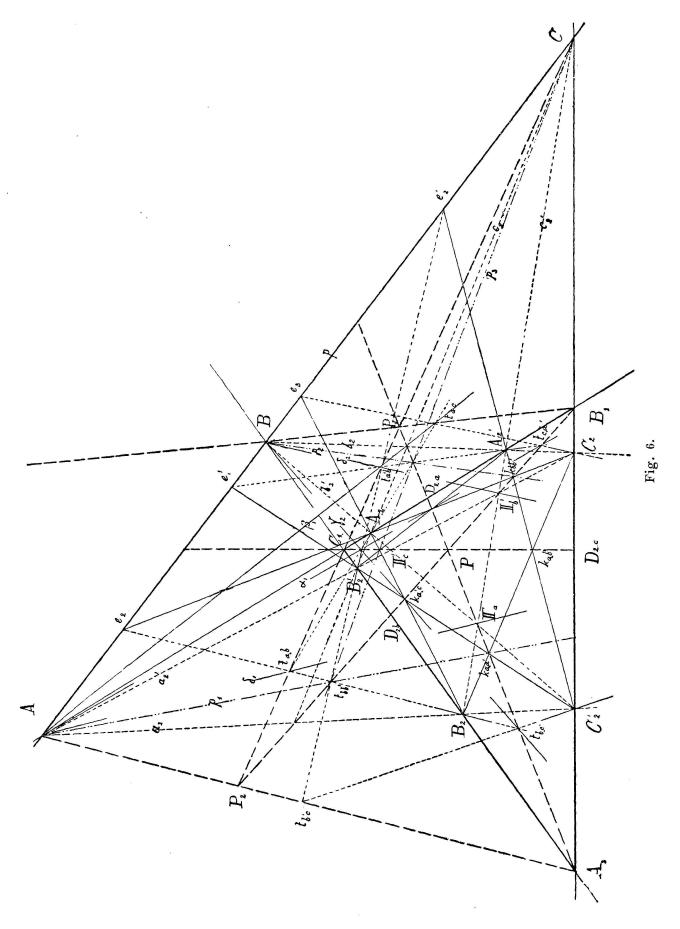
rantes et soit P le point de coupe des côtés a_4 , b_4 et c_4 . Nous considérerons maintenant les involutions de rayons en A, B et C puis les involutions de points sur a_4 , b_4 et c_4 . Les rayons conjugués a_2 , b_2 , c_2 puis a'_2 , b'_2 , c'_2

droite, et soit p cette droite. Nous considérerons ensuite les involutions de points sur les côtés fondamentaux a_1 , b_4 , c_4 puis les involutions de rayons en A, B et C. Les points conjugués A_2 , B_2 , C_2 et A'_2 , B'_2 , C'_2



déterminent deux triangles conjugués de l'involution de triangles, § II, n° 13. Les points conjugués $A_2B_2C_2$ puis $A'_2B'_2C'_2$ déterminent à leur tour deux triangles conjugués de l'involution dualistique du § III, n° 18.

déterminent deux triangles conjugués de l'involution de triangle du § II, n° 14. Les rayons conjugués a_2 , b_2 , c_2 puis a''_2 , b'_2 , c'_2 déterminent à leur tour deux autres triangles conjugués de l'involution de triangles du § III, n° 19.



Ces deux paires de triangles associés dans le triangle fondamental ABC donnent lieu aux propriétés suivantes: (Fig. 5.) Ces deux paires de triangles associés dans le triangle fondamental A₄ B₄ C₄ donnent lieu aux propriétés suivantes : (Fig. 6.)

1. L'hexagone $II_aII'_bII_cII'_aII_bII'_c$ peut être inscrit dans une conique C_4 . La droite de Pascal de l'hexagone est la polaire trilinéaire p de P.

Voir prop. 3, nº 13.

2. L'hexagone $A_2C'_2B_2A'_2C_2B'_2$ est circonscriptible à une autre conique K_4 . Le point de Brianchon de l'hexagone est le point P.

Ceci est de toute évidence puisque les lignes de jonction des sommets opposés sont les droites a_1 , b_4 , c_4 par P.

3. Les deux triangles conjujugués $II_a II_b II_c$ et $II'_a II'_b II'_c$ sont inscrits dans la conique C_4 et circonscrits à la conique K_4 . Les droites de jonction de chaque sommet avec le point de tangence du côté opposé sur K_4 passent toutes les six par le point P.

Soient les points de tangence 1 opposé à II_a , 2 opposé à II'_a , 3 opposé à II_b , 4 à II'_b , etc., ... Nous étudierons la droite II'_a-2 ; elle passe par P; en effet, dans l'hexagone circonscrit A=2 $- C_2 - A'_2 - II'_a - C'_2 - A,$ les côtés A — 2 et 2 — C₂ sont confondus avec la tangente en 2; les diagonales par les sommets opposés sont $A - A'_2$, $2 - II'_a$ et C₂ — C'₂. Les diagonales $A - A'_2$ et $C_2 - C'_2$ se coupent évidemment en P, donc la troisième 2 — II'a passe également par P.

4. Etant donné les deux triangles conjugués $II_aII_bII_c$ et $II'_aII'_bII'_c$ circonscrits à la conique K_1 , la ligne de jonction des points de tangence de deux côtés d'un même triangle passe par le

1. L'hexagone $(a_2)(c'_2)(b_2)(a'_2)(c'_2)(b'_2)$ peut être circonscrit à une conique K_2 . Le point de Brianchon de la figure est le pôle trilinéaire P de la droite donnée p.

Voir prop. 3, nº 14.

2. L'hexagone de côtés a_2 , c'_2 , b_2 , a'_2 , c_2 , b'_2 ou de sommets $A_2C'_2B_2A'_2C_2B'_2$ est inscriptible dans une conique C_2 . La droite de Pascal de la figure est p.

Les côtés opposés coupent évidemment en A, B, C sur la la droite p.

3. Les deux triangles conjugués $A_2B_2C_2$ et $A'_2B'_2C'_2$ sont inscrits dans la conique C_2 et circonscrits à la conique K_2 . Les points de coupe de chaque côté avec la tangente de C_2 par le sommet opposé sont tous les six sur p.

Nous considérerons le côté $B'_{2}C'_{2}$ ou (a'_{2}) et la tangente de C_{2} par A'_{2} . Nous admettrons que ces droites se coupent en e_{4}' et nous démontrerons que ce point est bien sur p.

En effet, dans l'hexagone inscrit formé par la tangente en A'₂ et les sommets B₂B'₂C₂C'₂, les points de coupe des côtés opposés sont e'₁ pour la tangente en A'₂ et le côté B'₂C'₂ puis C pour A'₂B₂ et C₂C'₂ et enfin B pour B₂B'₂ et C₂A'₂. Le point e'₁ est donc bien sur la droite BC ou p.

4. Etant donné les deux triangles conjugués $A_2B_2C_2$ et $A'_2B'_2C'_2$ inscrits dans la conique C_2 , le point de coupe des tangentes par deux sommets d'un même triangle se trouve

point de coupe des côtés correspondants des deux triangles primitifs ABC et a, b, c, par P.

Nous prendrons les points de tangence sur les côtés $II'_aII'_c$ et $II'_aII'_b$, soient 4 et 6. Les côtés correspondants des triangles primitifs seront BC ou a et a_1 par P, avec le point de coupe en A'.

Considérons ensuite l'hexagone circonscrit $A_2 - 4 - B$ $-A'_2 - 6 - C - A_2$ dans lequel les tangentes $II_aII_a = BA_2$ et $II'_aII'_b = CA'_2$ avec leurs points de tangence 4 et 6 comptent comme deux côtés de l'hexagone.

Les diagonales par les sommets opposés sont $A_2A'_2$ ou AA', 4-6 ou la ligne de jonction des points de tangence, puis BC ou le côté a. Comme A' est sur a, la droite 4-6 passera par A'.

5. Etant donné les deux triangles $II_aII_bII_c$ et $II'_aII'_bII'_c$ circonscrits à la conique K_4 , la ligne de jonction des points de tangence 3 et 2 relatifs à un côté (b_2) du premier triangle et un côté (a'_2) du second, passe par le point correspondant $\overline{D}_{2,c}$ de la droite p.

En effet, dans l'hexagone circonscrit $2 - II'_b - A'_2 - 3 - II_a - B'_2 - 2$ les lignes de jonction des sommets opposés 2 - 3, $II_a - II'_b$, $A'_2 - B'_2$ sont concourantes; les deux dernières passent par $\overline{D}_{2,c}$ sur p (voir § 2, n° 11 et 13, chiff. 2); 2 - 3 passe donc par $\overline{D}_{2,c}$.

Ceci subsiste pour 5-6 et 4-1, puis pour les groupe-

toujours sur la droite de jonction du point P au sommet correspondant du triangle fondamental.

Soient les tangentes par B'_2 et C'_2 ; elles se coupent en un point $t_{b'c'}$ et nous avons à démontrer que ce point se trouve sur la droite AA_4 ou a'_4 .

Considérons ensuite l'hexagone inscrit $B_2 - B'_2 - B'_2 - C_2 - C'_2 - C'_2 - B_2$, dans lequel les tangentes en B'_2 et en C'_2 sont considérées comme côtés par deux sommets infiniment rapprochés.

Les points de coupe des côtés opposés sont $t_{b'c'}$ pour la tangente en B'_2 et celle en C'_2 , A_4 pour $B_2B'_2$ et $C_2C'_2$, puis A pour B'_2C_2 et $B_2C'_2$. Ces points étant en ligne droite, $t_{b'c'}$ est donc bien sur A_4 A ou a'_4 .

5. Etant donné les deux triangles conjugués $A_2B_2C_2$ et $A'_2B'_2C'_2$ inscrits dans la conique C_2 , le point de coupe des tangentes par deux sommets quelconques, pris un sur chaque triangle, B_2 et C'_2 par exemple, est situé sur le rayon correspondant $\overline{d}_{2,a}$ par A_1 et P.

En effet, dans l'hexagone $B_2 - B_2 - C_2 - C_$

ments analogues relatifs à $\overline{D}_{2,a}$ et $\overline{D}_{2,b}$.

6. Etant donné deux paires de côtés opposés dans les deux triangles conjugués circonscrits à la conique K₄, comme II_aII_b et II'_aII'_b puis II_aII_c et II'_aII'_c, le point de coupe π₄ des lignes de jonction des points de tangence des côtés opposés est aussi le point de coupe de la ligne de jonction des sommets correspondants II_aII'_a avec le côté correspondant a₄ par P du triangle auxiliaire.

Dans l'hexagone circonscrit $II'_a - 4 - A_2 - II_a - 3 - A'_2 - II'_a$, les tangentes en 4 et 3 avec leurs points de tangence sont comptées comme deux côtés de la figure.

Le point de Brianchon sera sur les diagonales $II_aII'_a$, 3-4 et $A_2A'_2$. La première est la ligne de jonction des sommets II_a et II'_a et la troisième est un côté a_4 du triangle auxiliaire. La seconde, qui est la ligne de jonction des points de tangence des côtés opposés, passera donc par l'intersection π_4 des deux autres. Un même raisonnement nous permet d'établir que la ligne de jonction des autres points de tangence 5 et 6 passe également par π_4 .

Nous avons de même π_2 sur b_4 et π_3 sur c_4 .

Nous avons encore vu précédemment (n° 13, chiff. 1), que $II_aII'_a$ rencontre BC en $\overline{D}_{2.a}$ et que les points $\overline{D}_{2.a}$, $\overline{D}_{2.b}$ et $\overline{D}_{2.c}$ sont en ligne droite sur p.

6. Etant donné deux paires de sommets opposés dans les deux triangles conjugués inscrits dans la conique C_2 , comme $B_2B'_2$ et $C_2C'_2$, la ligne de jonction des points de coupe $t_{bb'}$ et $t_{cc'}$ des tangentes par les sommets opposés passe également par le point de coupe des côtés correspondants B_2C_2 et $B'_2C'_2$ et par le sommet A sur p du triangle auxiliaire.

Dans l'hexagone inscrit $B_2 - B_2 - C_2 - B_2 - B_2 - B_2$ de les tangentes en B_2 et en B_2 sont comptées comme lignes de jonction de deux sommets infiniment rapprochés.

La droite de Pascal de cet hexagone est déterminée par $t_{bb'}$ comme intersection des tangentes en B_2 et B'_2 , A comme intersection de B_2 C' $_2$ et B'_2 C $_2$ puis par $k_{aa'}$ comme intersection de C_2 B $_2$ et C'_2 B' $_2$. Le point de coupe des tangentes en B_2 et B'_2 est donc bien sur la droite A $k_{aa'}$. Par un même raisonnement nous pouvons encore montrer que les tangentes en C_2 et C'_2 se coupent également en un point $t_{cc'}$ de cette même droite p_4 .

Nous avons une ligne analogue p_2 par B et une p_3 par C; celle par B passe par $k_{bb'}$ et celle par C passe par $k_{cc'}$.

Nous pouvons également rappeler que $k_{aa'}$ est aussi sur A_1P $\equiv \overline{d}_{2.a}$ et que les trois droites $\overline{d}_{2.a}$, $\overline{d}_{2.b}$, $\overline{d}_{2.c}$ passent par P.

D'après ce qui précède et par rapport à la conique K₄

Donc P est le pôle de la droite p par rapport à la conique K_4 .

7. Etant donné deux sommets non consécutifs de l'hexagone $A_2 C'_2 B_2 A'_2 C_2 B'_2$ circonscrit à K_1 , les lignes de jonction des points de tangence des tangentes issues de chaque point considéré se coupent toujours sur le côté correspondant du triangle auxiliaire, et ce point de coupe est le pôle de la ligne de jonction des deux points primitifs.

Nous considérons les sommets C_2 sur CC' et B_2 sur BB'. Les points de tangence sont 2 et 3 par rapport à C_2 et 1 et 6 par rapport à B_2 . La droite AA' est la polaire de $\overline{D}_{2.a}$. Comme B_2C_2 passe par $\overline{D}_{2.a}$ son pôle qui est à l'intersection des droites 2-3 et 1-6, en α_1 sera sur AA'.

Donc α_1 pôle de B_2C_2 est bien sur le côté a_1 du triangle auxiliaire. Le même raisonnement s'applique aux points α_2 sur b_1 et α_3 sur c_4 .

Si nous considérons les sommets C'_2 et B'_2 sur les mêmes droites c_4 et b_4 , nous trouvons un pôle γ_4 de C'_2 — B'_2 qui est sur a_4 parce que C'_2 — B'_2 passe aussi par $\bar{D}_{2.a}$.

D'après ce qui précède et par rapport à la conique C₂

$$a_1$$
 est la polaire de $t_{aa'}$
 b_1 " " $t_{bb'}$
 c_1 " " $t_{cc'}$
 (a_2) " " t_{bc}
 (a'_2) " " $t_{b'c'}$

P₁ par A est la polaire de A₁
 a'_1 " A " " " $k_{aa'}$
 $\overline{d}_{2,a} = A_1 P$ " " A A.

La droite p passant par A, B et C est la polaire de P par rapport à la conique C_2 .

7. Etant donné deux côtés non consécutifs de l'hexagone $A_2C'_2B_2A_2C_2B_2$ inscrit dans C_2 , les points de coupe des tangentes menées par les extrémités de chaque côté sont situés sur une droite passant par le troisième sommet du triangle auxiliaire et étant la polaire du point d'intersection des côtés primitifs.

Nous considérerons les côtés $A_2B'_2$ par C et A'_2C_2 par B. Le point de coupe de ces côtés est en II_a sur $\overline{d}_{2.a}$.

Le point de coupe des tangentes par A_2 et B'_2 s'appelle $t_{ab'}$ et celui des tangentes par C_2 et A'_2 s'appelle $t_{ca'}$. La droite $t_{ab'}t_{ca'}$ est évidemment la polaire de II_a sur $\overline{d}_{2.a}$, donc elle passe par le pôle A de $\overline{d}_{2.a}$. Nous désignerons cette polaire par α_1 .

Nous aurons de même α_2 en B et α_3 en C.

Les côtés $b'_2 = A_2 C'_2$ par B et $c'_2 = A'_2 B_2$ par C se coupent en II'_a sur a_4 et donnent γ_4 comme polaire de II'_a . Cette polaire passe également par A.

Nous trouverons de même γ_2

 $\operatorname{sur} b_1 \operatorname{et} \gamma_3 \operatorname{sur} c_4$.

8. Etant donné deux sommets non homologues des triangles conjugués $II_aII_bII_c$ et $II'_aII'_bII'_c$, comme II'_b et II_c puis II_b et II'_c , les lignes de jonction des points de tangence des tangentes de K_4 issues de ces points se coupent sur le côté correspondant du triangle auxiliaire, et ce point de coupe est le pôle de la ligne de jonction des points primitifs.

Soient donc II_b et II_c les premiers sommets considérés, les lignes de jonction des points de tangence sont 2-6 et 1-3. Ces droites se coupent en β_1 .

Comme $\Pi'_b\Pi_c$ passe également par $\overline{D}_{2,a}$, qui est le pôle de AA', β_1 se trouvera sur la polaire AA' ou a_1 de $\overline{D}_{2,a}$. De la même manière β_2 pôle de $\Pi_a\Pi'_c$ sera sur b_4 ou BB', et β_3 le pôle de $\Pi'_a\Pi_b$ sera sur CC' ou c_4 .

Avec les sommets $II_bII'_c$ nous aurons les lignes de jonction 1-5 et 4-2 qui se coupent δ_4 . Ce point est le pôle $II_bII'_c$ comme cette dernière droite passe par $\overline{D}_{2.a}$, δ_4 se trouvera aussi sur a_4 .

Les points analogues δ_2 et δ_3 seront sur b_4 et c_4 .

9. Nous aurons en outre α_4 situé sur $\mathrm{II'_bII_c}$, β_4 situé sur $\mathrm{B_2C_2}$, γ_4 situé sur $\mathrm{II_bII'_c}$ et δ_4 situé sur $\mathrm{B'_2C'_2}$.

Considérons les quatre points 2-3-6-1 de la courbe K_1 ; le quadrilatère circonscrit et le quadrangle inscrit ont les mêmes points diagonaux, donc B_2C_2 passe par β_1 et II'_bII_c par α_1 .

Nous aurons de même γ_2 par B et γ_3 par C.

8. Étant donné deux côtés non homologues des triangles conjugués (a₂) (c'₂) (b₂) (a'₂) (c₂) (b'₂) comme (b₂) (c'₂) puis (b'₂) (c₂), les points de coupe des tangentes de C₂ menées par les extrémités de ces côtés sont sur une droite qui passe par le sommet correspondant du triangle auxiliaire; cette droite est en outre la polaire du point de coupe des côtés considérés.

Soient $(b_2) = A_2 C_2$ et $(c'_2) = A'_2 B'_2$ les côtés considérés. Les tangentes par A_2 et C_2 se coupent en t_{ac} et celles par A'_2 et B'_2 se coupent en $t_{a'c'}$. La ligne de jonction sera désignée par β_1 . Comme le point de coupe $k_{b.c'}$ de ces côtés est aussi sur $\overline{d}_{2.a}$, sa polaire β_1 passera par le pôle A de $\overline{d}_{2.a}$. De la même manière β_2 passera par B et β_3 par C.

Avec les côtés $A'_{2}C'_{2}$ et $A_{2}B_{2}$, les tangentes par les premiers points se couperont en $t_{a'c'}$ et celles par les autres points en t_{ab} . La droite δ_{1} sera la polaire du point de coupe de ces côtés et comme ce point de coupe est sur $\overline{d}_{2,a}$ sa polaire passera par le pôle A de $\overline{d}_{2,a}$.

Nous aurons ainsi δ_2 par B et δ_3 par C.

9. α_1 passera en outre par l'intersection de (b_2) et (c'_2) , β_1 par l'intersection II_a de c_2 et b_2 ; γ_1 passera par l'intersection de (b'_2) et (c_2) , et δ_1 par II'_a sur b'_2 et c'_2 .

Le quadrilatère inscrit et le quadrangle circonscrit relatifs aux quatre points $A_2C_2A'_2B'_2$ de la courbe C_2 ont les mêmes Le même raisonnement subsiste pour les autres points.

23. Les droites $II_aII'_c$, II'_bII_c , $II_bII'_a$ forment le triangle $\varepsilon_1\varepsilon_2\varepsilon_3$ dont les sommets sont sur a_1 , b_1 , c_1 et dont les côtés passent respectivement par $\overline{D}_{2.a}$, $\overline{D}_{2.b}$, $\overline{D}_{2.c}$. Ce triangle est homologique avec ABC.

La conique C_1 par rapport à ce triangle joue le même rôle que C_2 par rapport à son triangle fondamental $A_1B_1C_1$.

Les tangentes de C_4 peuvent donc être construites comme celles de C_2 .

Dans le cas spécial où ABC est en ligne droite les points $A_2C'_2B_2A'_2C_2B'_2$ déterminent un hexagone inscriptible et la conique circonscrite se confond avec la courbe C_2 des éléments dualistiques.

L'hexagone considéré est aussi formé par les côtés $(a_2)(c_2')(b_2)(a_2')(c_2)(b_2')$. Il est également circonscrit à une conique K_2 .

Comme dans le cas plus général nous avons aussi les points α_1 , β_1 , γ_1 , δ_1 sur a_1 et les points analogues sur b_1 et c_1 . β_1 et δ_1 sont les points de tangence des côtés (a_2) et (a'_2) avec K_2 puisque A_2 et A'_2 sont sur a_1 passant par P. (Fig. 4.)

points diagonaux, donc α_1 passe par $k_{bc'}$ et β_1 par Π_a .

Le même raisonnement est applicable aux autres droites du théorème.

24. Les points de coupe des côtés $(a_2)(a'_2)$, $(b_2)(b'_2)$, $(c_2)(c'_2)$ forment un triangle $k_{aa'}k_{bb'}k_{cc'}$ dont les côtés passent respectivement par A, B et C et dont les sommets sont sur $\overline{d}_{2.a}$, $\overline{d}_{2.b}$ et $\overline{d}_{2.c}$. Ce triangle est homologique avec A_4 B_4 C_4 .

La conique K₂ par rapport à ce triangle joue le même rôle que K₄ par rapport à son triangle fondamental ABC.

Les points de tangence de K_2 peuvent être construits comme ceux de K_4 .

Dans le cas spécial où $a_1b_1c_1$ passent par le même point P, l'hexagone $(a_2)(c_2)(b_2)(a_2)(c_2)(b_2)$ est circonscriptible à une conique, et celle-ci se confond avec K_4 des éléments dualistiques.

L'hexagone considéré est aussi formé par les sommets $A_2C'_2B_2A'_2C_2B'_2$. Il est également inscrit dans la conique C_2 .

De même que dans le cas plus général nous avons encore les droites α_1 , β_1 , γ_1 , δ_1 par A; β_1 et δ_1 sont les tangentes de C_1 en II_a et II'_a , puisque le point de coupe de II_bII_c ou $II'_bII'_c$ avec p est en A. (Fig. 4.)

Bienne, juillet 1915.