Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 17 (1915)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: PROPRIÉTÉS INVOLUTIVES DUALISTIQUES DES TRIANGLES

Autor: Crelier, L.

DOI: https://doi.org/10.5169/seals-16324

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

PROPRIÉTÉS INVOLUTIVES DUALISTIQUES DES TRIANGLES

PAR

L. Crelier (Berne-Bienne).

§ I. — Groupement des involutions par rapport à un triangle fondamental et un triangle auxiliaire.

1. Groupement des transversales.

Théorème. — Etant donné deux triangles ABC et a, b, c, tels que a, passe par A, b, par B, c, par C, toute transversale issue d'un sommet A du premier triangle rencontre le second en deux points qui joints aux autres sommets B et C entraînent de la même manière une figure à six sommets, dont les sommets opposés sont sur les côtés successifs a, b, c, et dont les côtés opposés se coupent dans les sommets primitifs ABC. (Fig. 1)

Le triangle fondamental est ABC et le triangle auxiliaire $A_4B_4C_4$ ou $a_4b_4c_4$: Soit a_2 par A une sécante arbitraire qui coupe A_4B_4 en C'_2 et A_4C_4 en B_2 . Il n'y a qu'un point tel que C'_2 sur A_4B_4 et celui-ci joint à B donne b'_2 . Avec cette ligne, on n'a qu'un point A_2 et un seul sur B_4C_4 . De celui-ci on en déduit une droite c_2 et une seule par

2. Groupement des points.

Théorème. — Etant donné deux triangles a, b, c, et ABC tels que les sommets du second se trouvent sur les côtés du premier, tout point pris sur un côté a, du premier triangle et joint aux sommets B et C du second donne lieu à deux nouveaux points sur les côtés b, et c, lesquels entraînent de la même manière une figure à six côtés, dont les côtés opposés passent par les sommets ABC et dont les sommets opposés sont sur a, b, c, (Fig. 1)

Le triangle fondamental est $A_1 B_1 C_1$ ou $a_4 b_4 c_4$ et le triangle auxiliaire ABC. A est sur $a_4 B$ sur b_4 et C sur c_4 . Soit A_2 un point sur a_4 . Nous le joignons à C et nous trouvons B'_2 univoquement déterminé sur b_4 . Avec A_2 et B nous obtenons C'_2 sur c_4 . Les lignes de jonction sont désignées par c_2 et b'_2 . Le point B'_2 joint avec A donne la droite

C. Elle coupe A_1C_1 en B'_2 ; en joignant avec A on obtient la droite a'_2 . On trouve C_2 sur A_1B_1 puis b_2 par B et A'_2 sur B_1C_1 . La ligne de jonction A'_2C ou c'_2 doit passer par le point B_2 trouvé primitivement.

Nous avons d'abord, en A et B, deux faisceaux homologiques d'axe $C\overline{C}_1$, savoir : AC, a_2 , a'_2 , $A\overline{A}_1$ qui correspondent à BC, b'_2 , b_2 et BB₁. Les rayons AB et BA sont en outre deux rayons conjugués.

 a'_2 et le point C_2 sur c_4 . Avec B nous aurons A'_2 et la droite b_2 . A'_2 C sera la droite c'_2 et donnera B_2 sur b_4 . La droite B_2 A ou a_2 passera par C'_2 à l'intersection de c_4 et b'_2 .

En effet, nous avons sur a_1 et b_1 deux ponctuelles homologiques de centre C, savoir: B_1 , A_2 , A'_2 , \overline{A}_1 et A qui correspondent à A_1 , B'_2 , B_2 , B et \overline{B}_1 . Les points en C_1 sont deux points homologues confondus.

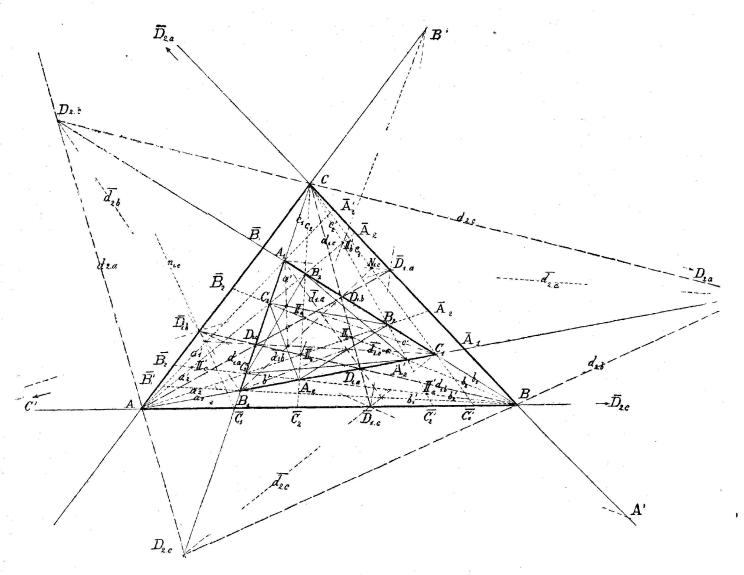


Fig. 1.

En A et C nous avons également deux autres faisceaux homologiques d'axe $B\overline{B}_1$: AC, a_2 , a'_2 , $A\overline{A}_1$ et AB puis leurs conjugués CA, c'_2 , c_2 , CC₁ et CB. Il en résulte deux faisceaux homographiques en B et C; ce sont: BC, b'_2 , b_2 , BB₁, BA, conjugués de CA, c'_2c_2 , CC₁ et CB.

D'autre part nous avons en B et C deux faisceaux homologiques d'axe $A\overline{A}_1$ et si nous admettons que A'_2 C ne passe pas par B_2 et si nous désignons par c''_2 ce rayon A'_2 C, tandis que c'_2 sera B_2 C, nous aurons :

BC, b'_2 , b_2 , BB, et BA conjugués de

CB, c_2 , c''_2 , $C\overline{C}_1$ et CA.

De cette manière nous aurons deux faisceaux homographiques concentriques en C:

CA, c'_2 , c_2 , CC_4 et CB conjugués de CB, c_2 , c''_2 , $C\overline{C}_4$ et CA. Ces faisceaux ont au moins une paire de rayons conjugués réciproques CA et CB; ils forment donc une involution et tous les rayons conjugués sont réciproques : c'_2 et c_2 , c_2 et c''_2 , etc.

Dans ces conditions c'_2 et c''_2 sont tous deux conjugués de c_2 : ils sont confondus et A'_2 C passe bien par B_2 .

Nous obtenons un groupement cyclique fermé, ou une figure à Sur a_1 et c_1 nous avons également deux autres ponctuelles homologiques de centre $B: B_1$, A_2 , A'_2 , C_1 , \overline{A}_1 et A conjugués de B_1 , C_2' , C_2 , A_1 , C et \overline{C}_1 . Il en résulte deux ponctuelles homographiques sur b_1 et c_1 ; ce sont:

 A_1 , B_2 , B_2 , C_1 , B, \overline{B}_1 conjugués de

$$B_1$$
, C'_2 , C_2 , A_1 , C , \overline{C}_1 .

D'autre part, nous avons encore deux ponctuelles homologiques de centre A sur b_1 et c_1 , et si nous admettons que la droite a_2 ne passe pas par C'_2 , et si nous désignons par C''_2 , son point de coupe avec c_1 , nous aurons:

 A_1 , B'_2 , B_2 , C_1 , B, \overline{B}_1 , conjugués

$$A_{\text{\tiny 1}}$$
 , $C_{\text{\tiny 2}}$, $C''_{\text{\tiny 2}}$, $B_{\text{\tiny 1}}$, $\overline{C}_{\text{\tiny 1}}$, C .

Nous obtenons finalement deux ponctuelles homographiques de même base sur c_4 :

 B_1 , C'_2 , C_2 , A_1 , C, \overline{C}_1 conjugués de A_1 , C_2 , C''_2 , B_1 , \overline{C}_1 , C. Ces ponctuelles ont au moins une paire de points conjugués réciproques, B conjugué de A et A conjugué de B. Elles forment une involution et tous les points conjugués sont réciproques: C'_2 et C_2 puis C_2 et C''_2 , etc.

Dans ces conditions C'_2 et C''_2 sont tous deux conjugués de C_2 ; ils sont donc confondus et la droite a_2 passe bien par C'_2 sur c_4 et sur b'_2 .

Nous obtenons alors un groupement cyclique fermé ou un six sommets qui est $C'_2A_2B'_2$, $C_2A'_2B_2$; les sommets $C_2C'_2$, $B_2B'_2$, $A_2A'_2$ sont sur les axes d'homologie, c'est-à-dire sur les côtés du triangle auxiliaire; $C'_2A_2 = b'_2$, $C_2A'_2 = b_2$, $A_2B'_2 = c_2$, $A'_2B_2 = c'_2$ et enfin $B'_2C_2 = a'_2$, $B_2C'_2 = a_2$ se coupent bien en A, B et C.

Le même raisonnement subsisterait avec une autre transversale a_n , laquelle entraînerait les transversales $a_n a'_n$ en A, $b_n b'_n$ en B, et $c_n c'_n$ en C avec les sommets $A_n A'_n$ sur $a_4 = B_4 C_4$, $B_n B'_n$ sur $b_4 = A_4 C_4$ et enfin $C_n C'_n$ sur $c_4 = A_4 B_4$. Donc le théorème est démontré.

3. Involutions dans les sommets du triangle fondamental.

Nous avons AB = c, AC = b, BC = a et $AA_1 = A\overline{A'}_1 = a'_1$, $BB_1 = B\overline{B'}_1 = b'_1$, $CC_1 = C\overline{C'}_1 = c'_1$.

D'après ce qui précède, a_n et a'_n en A sont des rayons conjugués d'une involution dans laquelle b et c puis a_4 et a'_4 sont également conjugués.

Nous avons la même chose avec b_n et b'_n en B puis avec c_n et c'_n en C.

Toutes les transversales par A comme a_2 , a_3 , ..., a_n ... donneront des groupements cycliques ou des hexagones fermés analogues au premier. A chacune d'elles correspondra d'abord un rayon conjugué en A comme a'_2 , a'_3 ... a'_n ..., puis une paire de rayons conjugués en B et une en C. Nous pourrons désigner ces paires par

hexagone de côtés $c_2 a'_2 b_2 c'_2 a_2 b'_2$. Les côtés opposés $c_2 c'_2$, $a_2 a'_2$ et $b_2 b'_2$ passent respectivement par C, A et B. Les sommets opposés $(c_2 a'_2)$ et $(c'_2 a_2)$, $(a_2 b'_2)$, et $(a'_2 b_2)$, puis $(b_2 c'_2)$ et $(b'_2 c_2)$ sont respectivement sur les côtés b_1 , c_1 et a_1 .

Nous avons le même raisonnement avec un point quelconque A_n de a_1 . Il entraînera les points $A_nA'_n$ sur a_1 , $B_nB'_n$ sur b_4 et $C_nC'_n$ sur c_1 avec les transversales $a_na'_n$ en A, $b_nb'_n$ en Bet $c_nc'_n$ en C. Donc le théorème est démontré.

4. Involutions sur les cotés du triangle fondamental.

Nous poserons encore $\overline{A}_1 =$ Intersection de a et $a_1 = (aa_1)$, $\overline{B}_1 = (bb_1)$ et $\overline{C}_1 = (cc_1)$.

D'après ce qui précède les points A_n et A'_n sur a_4 sont des points conjugués d'une involution dans laquelle B_4 et C_4 puis A et \overline{A}_4 sont également conjugués.

Nous avons la même chose avec B_n et B'_n sur b_4 puis C_n et C'_n sur c_4 .

Tous les points de a_1 , A_2 , A_3 , ... A_n , ... donneront des hexagones fermés analogues au premier. A chacun d'eux correspondra en outre un point conjugué sur a_1 soit A'_2 , A'_3 ... A'_n ... et ensuite une paire de points conjugués sur b_4 et une sur c_4 . Nous désignerons ces paires par $B_2B'_2$, $B_3B'_3$... $B_nB'_n$ et $C_2C'_2$, $C_3C'_3$, ... $C_nC'_n$.

 $b_2 b'_2, b_3 b'_3, \dots b_n b_n, \dots$ et par $c_2 c'_2, c_3 c'_3, \dots c_n c'_n, \dots$

L'ensemble des paires en chaque sommet appartient ainsi à une involution définie par les éléments des 2 triangles primitifs.

En outre si nous comparons les involutions des deux sommets, celles de A et B par exemple, nous voyons que chaque paire d'une involution est conjuguée à une paire, mais à une seule de l'autre; de plus chaque rayon comme a_n est conjugué homologique de b'_n , puis conjugué homographique de b_n et réciproquement.

La même remarque subsiste évidemment pour les paires fondamentales des involutions, soit b, c et a_1 , a'_1 en A puis a, c et b_1 , b'_1 en B; b en A est conjugué homologique de a en B et conjugué homographique de c en B, puis c en A est conjugué homologique de c en B et conjugué homographique de a en B. Ensuite a_1 en A est homologique avec b'_{1} en B et homographique avec b_1 en B; a'_1 en A est homologique avec b_4 en B et homographique avec b'_1 en B. On a la même chose en commencant en B.

Nous arrivons ainsi au théorème suivant:

Théorème. — Les rayons menés par les sommets du triangle fondamental forment trois faisceaux involutifs semi-homologiques et homographiques. Les involutions sont complètement déterminées par les éléments du triangle fondamental et par ceux du triangle auxiliaire. L'ensemble des paires sur chaque côté appartient à l'involution définie par les éléments des 2 triangles primitifs.

En outre la comparaison des involutions sur deux côtés, a_1 et b_1 par exemple, nous montrera que chaque paire d'une involution est conjuguée à une paire, mais à une seule de l'autre; de plus, chaque point comme A_n est conjugué homologique de B'_n et conjugué homographique de B_n et réciproquement.

Cette relation subsiste évidemment pour les paires fondamentales, soit B, C, et AA, sur a_1 et A_1C_1 et $B\overline{B}_1$ sur b_1 , B_1 sur a, est conjugué homologique de ${
m A_4}$ sur b_4 et homographique de C_1 sur b_1 , puis C_1 sur a_1 est homologique de C_1 sur b_1 et homographique de A_4 sur b_4 . Ensuite A sur a_1 est homologique de B₄ sur b₄ et homographique de B sur b_4 . On a encore $\overline{\mathbf{A}}_4$ sur a_1 homologique de B sur b_1 et homographique de B_1 sur b_1 . La même chose se présentera en commençant par les points sur b_1 .

Nous arrivons ainsi au théorème suivant:

Théorème. — Les points situés sur les côtés du triangle fondamental forment trois ponctuelles involutives semi-homologiques et homographiques. Les involutions sont complètement déterminées par les éléments du triangle fondamental et par ceux du triangle auxiliaire.

5. Courbes engendrées.

D'une manière générale deux faisceaux involutifs et homographiques engendrent une courbe du 4e degré. Si les involutions sont semi-homologiques et homographiques, la ligne des sommets représente deux rayons homologues simples confondus. Cette droite ainsi que l'axe d'homologie font partie de la courbe engendrée, et il ne reste plus qu'une conique pour terminer cette courbe.

Du reste les faisceaux, considérés comme faisceaux homographiques, engendrent une conique, et c'est celle-ci qui, avec les deux droites précédentes, représente la courbe du 4° degré.

Les points de coupe de la conique avec l'axe d'homologie correspondent à deux rayons conjugués dans l'homologie et à deux rayons conjugués dans l'homographie. Ces rayons sont confondus et forment les rayons doubles des involutions.

Les rayons doubles des faisceaux semi-homologiques et homographiques sont donc respectivement conjugués.

Nous avons encore un autre cas particulier possible. Si les faisceaux semi-homologiques et homographiques ont deux rayons doubles conjugués et confondus avec la ligne des sommets, ils engendrent cette droite comme droite double et l'axe d'homologie comme droite simple; il ne reste plus qu'une quatrième droite pour former la courbe générale. Cette droite

6. Courbes enveloppées.

Deux ponctuelles involutives et homographiques enveloppent une courbe de la 4° classe. Si les ponctuelles sont semi-homologiques et homographiques, le point de coupe des bases est formé de deux points simples homologues et confondus. Ce point, ainsi que le centre d'homologie, font partie de l'enveloppe, et il ne reste plus qu'une conique pour compléter la courbe de quatrième classe.

Du reste les ponctuelles considérées comme des divisions homographiques engendrent une conique et c'est celle-ci qui, avec les deux autres points, forme la courbe de 4° classe.

Les tangentes de la conique par le centre d'homologie donnent deux points conjugués dans l'homologie et deux points conjugués dans l'homographie. Ces points étant respectivement confondus, ils forment les points doubles des involutions.

Les points doubles des involutions semi-homologiques et homographiques sont donc respectivement conjugués.

Nous avons encore également un autre cas particulier possible: Si les involutions ont deux points doubles conjugués et confondus avec le point de coupe des bases, elles enveloppent ce point comme point double; le centre d'homologie est un troisième point de l'enveloppe et il ne reste plus qu'un quatrième point pour finir la courbe générale. Ce point est est déterminée par deux paires quelconques de rayons conjugués.

Le point de coupe de cette droite avec l'axe d'homologie est évidemment le point de coupe des deux autres rayons doubles séparés mais homologues. Des involutions de ce genre sont appelées involutions doublement homologiques.

Revenons maintenant aux involutions dans le triangle fondamental et par rapport au triangle auxiliaire. En leur appliquant les considérations précédentes, nous pouvons établir le théorème suivant:

Théorème. — Les faisceaux involutifs semi-homologiques et homographiques dans les sommets du triangle fondamental engendrent d'une part, les côtés du triangle fondamental, d'autre part les côtés du triangle auxiliaire, et enfin 3 coniques C_{1.a}, C_{1.b}, C_{1.c}, telles que chacune d'elles passe par un sommet du triangle auxiliaire et par deux sommets du triangle fondamental, en étant tangente d'un côté de ce triangle en chaque sommet. (Fig. 1.)

En effet, tout faisceau est semi-homologique et homographique avec chacun des deux autres. Les côtés de A B C sont les rayons homologues confondus et ceux de A₄B₄C₄ sont les axes d'homologie.

D'autre part les faisceaux en A et B par exemple, donnent encore une conique C_{1.c} passant par A et B; les tangentes en ces points sont les rayons conjugués

déterminé par deux paires quelconques de points conjugués.

La ligne de jonction de ce point avec le centre d'homologie est évidemment la droite de jonction des deux autres points doubles conjugués, mais séparés. Nous appellerons ces involutions des involutions doublement homologiques.

Revenons maintenant aux involutions sur les côtés du triangle fondamental et par rapport au triangle auxiliaire. En les traitant d'après ce qui précède, nous arrivons au théorème suivant:

Théorème. — Les ponctuelles involutives semi-homologiques et homographiques sur les côtés du triangle fondamental engendrent d'une part, les sommets du triangle fondamental, d'autre part les sommets du triangle auxiliaire et enfin 3 coniques K_{1.a}, K_{1.b}, K_{1.c}, telles que chacunes d'elles est tangente à un côté du triangle auxiliaire et à deux côtés du triangle fondamental en passant par un sommet de ce triangle sur chaque côté. (Fig. 1.)

En effet, chaque ponctuelle est semi-homologique et homographique avec chacune des deux autres. Les sommets de A₁B₁C₁ sont des points homologues confondus et les sommets ABC sont les centres d'homologie.

D'autre part les ponctuelles sur a_1 et b_1 par exemple, donnent encore une conique $K_{1.c}$ tangente à a_1 et b_1 . Les points de tangence sont les points conju

de AB, soient AC et BC ou les côtés de ABC autres que AB.

Corollaire. — Tout point de coupe de deux coniques autre que A, B ou C appartient aussi à la troisième.

Soit P un tel point sur $C_{1,a}$ et $C_{1,b}$. Les rayons AP et CP sont conjugués homographiques dans $C_{1,b}$; BP et CP sont conjugués homographiques dans $C_{1,a}$; donc AP et BP sont conjugués homographiques et le point P appartient aussi à la courbe $C_{1,c}$.

Autre corollaire. — Les rayons doubles de deux fais-ceaux involutifs comme les précédents sont respectivement homologues et passent par les points de coupe de l'axe correspondant avec la conique respective.

Les rayons doubles en Λ et B se coupent sur l'axe $C\overline{C}_1$ et ces points de coupe appartiennent à la conique $C_{1.c}$. Il en sera de même avec les autres coniques.

Ces rayons sont en A: $d_{1.a}$ et $d_{2.a}$, en B: $d_{1.b}$ et $d_{2.b}$, puis en C: $d_{1.c}$ et $d_{2.c}$. Nous aurons $d_{1.a}$ conjugué de $d_{1.b}$ et $d_{1.c}$, $d_{2.a}$ conjugué de $d_{2.b}$ et $d_{2.c}$.

7. Ponctuelles involutives.

Chaque involution dans les sommets du triangle fondamental ABC est coupée par les côtés des deux triangles ABC et A, B, C, suivant des involutions de points qui jouiront de propriétés analogues.

gués de l'intersection c_1 des bases, soient les deux autres sommets B_1 sur a_1 et A_2 sur b_4 .

Corollaire. — Toute tangente commune de deux coniques, autre que a_1 , b_1 ou c_1 est aussi une tangente de la troisième.

Soit p une tangente de $K_{1.a}$ et $K_{1.b}$. Les points de coupe de p avec a_1 et c_1 sont conjugués homographiques par rapport à $K_{1.b}$ et ceux de p avec b_1 et c_1 , le sont par rapport à $K_{1.a}$. Donc les points de coupe de p avec a_1 et a_2 sont homographiques et la droite a_2 est une tangente de a_2 et a_3 et a_4 et a_4 sont homographiques et la droite a_4 et a_5 est une tangente de a_5

Autre corollaire. — Les points doubles des ponctuelles involutives, comme les précédentes, sont homologues et déterminent les tangentes de la conique respective par le centre d'homologie correspondant.

Les points doubles sur a₁ et b₄ donnent les tangentes de K_{1.c} par C. Il en sera de même avec les autres coniques.

Ces points seront $D_{1.a}$ et $D_{2.a}$ sur a_1 , $D_{1.b}$ et $D_{2.b}$ sur b_1 , $D_{1.c}$ et $D_{2.c}$ sur c_1 et l'on aura $D_{1.a}$ conjugué de $D_{1.b}$ et $D_{1.c}$ puis $D_{2.a}$ conjugué de $D_{2.b}$ et $D_{2.c}$.

8. Faisceaux involutifs.

Chaque involution sur un des côtés du triangle fondamental peut être réunie avec le troisième sommet de ce triangle ou avec les deux sommets correspondants du triangle auxiliaire. Les faisceaux involutifs ainsi Considérons l'involution en A, elle est coupée par le côté BC, puis par les côtés A_1B_1 et A_1C_1 . Dans l'involution sur BC les points B et C sont conjugués, $\overline{A}_1 \operatorname{sur} a_1$ est conjugué de \overline{A}'_1 sur a'_1 ; \overline{A}_2 sur a_2 est conjugué de \overline{A}'_2 sur a'_2 , et ainsi de suite. Les points doubles seront $\overline{D}_{1,a}$ et $\overline{D}_{2,a}$ sur les rayons doubles par A.

Sur A_1B_1 nous aurons B_1 et A_1 , C et \overline{C}_1 , C_2 et C'_2 comme points conjugués, puis comme points doubles $D_{1.c}$ et $D_{2.c}$. Sur A_1C_1 , ce sera C_1 et A_1 , B et \overline{B}_1 , B_2 et B'_2 , puis comme points doubles $D_{1.b}$ et $D_{2.b}$.

Les points doubles sur $A_4 C_4$ ou $A_4 B_4$ sont les points de coupe de ces lignes avec les coniques $C_{1.5}$ ou $C_{1.c}$.

Nous pourrons comparer maintenant les involutions sur les côtés fondamentaux et celles sur les côtés auxiliaires. Pour cela nous nous reporterons aux involutions en A et B. Les involutions correspondentes sur BC et AC sont homographiques; à chaque paire de l'une correspond une paire mais une seule de l'autre. En outre deux lignes de jonction comme A₁B'₁ ou A₂B'₂ passeront toujours par le conjugué harmonique C' de \overline{C}_{4} sur AB, puisque $C\overline{C}_4 = c_4$ et csont des diagonales fixes dans quadrilatères correspondants. C est un point conjugué avec lui-même. Les deux ponctuelles sur AC et BC sont semiobtenus jouiront de propriétés analogues aux autres.

Avec l'involution sur a_1 , nous formons des faisceaux en A_1 ou en B ou encore en C. Soit le faisceau involutif en A_1 : les côtés b_1 et c_1 sont conjugués ; \overline{a}_1 par \overline{A}_1 est conjugué de $\overline{a'}_1$ par $\overline{A'}_1$; \overline{a}_2 par A_2 est conjugué de $\overline{a'}_2$ par A'_2 et ainsi de suite. Les rayons doubles $\overline{d}_{1,a}$ et $\overline{d}_{2,a}$ passent par les points doubles $D_{1,a}$ et $D_{2,a}$.

Dans le faisceau involutif en C les rayons conjugués sont a et b, c_4 et c'_1 , c_2 et c'_2 etc.; les rayons doubles sont $d_{1.c}$ et $d_{2.c}$ par $D_{1.a}$ et $D_{2.a}$. En B, les rayons conjugués sont a et c, b_4 et b'_4 , b_2 et b'_2 , etc. Comme nous l'avons déjà dit, les rayons doubles par B et C seront les tangentes des coniques $K_{1.b}$ et $K_{1.c}$.

Nous pouvons comparer les involutions dans les sommets du triangle fondamental et celles dans les sommets du triangle auxiliaire. Considérons les involutions en A_1 et B_1 dépendant de celles sur a_1 et b_1 . Elles sont d'abord homographiques; à chaque paire de rayons de l'une correspond une paire, mais une seule de l'autre.

En outre les points de coupe de 2 rayons apparentés comme $\overline{a'}_1$ et $\overline{b_1}$, $\overline{a_2}$ et $\overline{b'}_2$, etc., seront toujours sur le conjugué harmonique c' de $CC_1 = c'_1$, par rapport à a_1 et b_1 en C_1 , car C et C_1 sont des points diagonaux fixes dans les quadrangles correspondants. Le rayon c_1 est en

homologiques et homographiques de centre C'.

Elles engendrent une nouvelle conique K_{2.c}, tangente de AC en A et de BC en B, et en plus, les deux points C et C'. La ligne de jonction des points doubles conjugués passe évidemment par C'.

Nous aurons un raisonnement analogue pour les autres côtés et nous trouverons ainsi les trois coniques $K_{2,a}$, $K_{2,b}$ et $K_{2,c}$.

Dans le triangle auxiliaire $A_1B_1C_1$, les involutions sur A_1B_1 et A₁C₁ correspondent à celles en A et les involutions sur B, C, et B, A, correspondent à celle en B. Les deux premières sont semi-homologiques et homographiques et de centre A. Elles sont identiques avec celles étudiées au début, dans la partie dualistique et elles engendrent la conique K_{1.a}. Nous aurons un raisonnement analogue pour les autres côtés et nous retrouverons les trois coniques déjà connues $K_{1.a}$, $K_{1.b}$ et $K_{1.c}$.

Nous avons encore d'autres ponctuelles possibles. En coupant par exemple, l'involution de rayons en A par les droites c_1 et $d_{1.b}$, nous trouvons deux ponctuelles involutives semi-homologiques et homographiques de centre A et dont le point de coupe des bases $D_{1.c}$ est un point formé de deux points doubles conjugués et confondus.

L'enveloppe des droites par les points homologues contient plus conjugué à lui-même: Les deux faisceaux involutifs en A₄ et B₄ sont donc semi-homologiques et homographiques.

Ils engendrent une nouvelle conique $C_{2,c}$ tangente de A_1 C_1 en A_1 et de B_1 C_1 en B_1 , plus les deux droites c_1 et c'. Le point de coupe des rayons doubles conjugués est évidemment sur la droite c'.

Nous aurons un raisonnement analogue pour les autres sommets et nous trouverons ainsi les trois coniques $C_{2,a}$, $C_{2,b}$ et $C_{2,c}$.

Dans le triangle ABC nous aurons des faisceaux involutifs en C et B correspondant à l'involution sur a_1 et d'autres faisceaux involutifs en A et C correspondant à l'involution sur b_{\bullet} . Les deux premiers faisceaux sont semi-homologiques et homographiques d'axe a_1 ; ils sont identiques avec ceux étudiés au début dans la partie dualistique et ils engendrent la conique $C_{1.a}$. Il en sera de même des faisceaux dans les autres sommets et nous retrouverons les coniques C_{1.a}, $C_{1.b}$ et $C_{1.c}$.

Parmi les autres faisceaux involutifs possibles, considérons ceux formés en joignant la ponctuelle sur a_1 , avec C et $D_{1.b}$ sur b_4 . Nous obtenons deux faisceaux involutifs semi-homologiques et homographiques d'axe a_4 et dont la ligne de jonction des sommets C et $D_{1.b}$ est formée de deux rayons doubles homologues et confondus.

Ces faisceaux seront doublement homologiques et la courbe ce point D_{1.c} comme point double et le point A comme point simple; il ne reste plus qu'un point pour former complètement la courbe. Autrement dit, les lignes de jonction des points homographiques doivent passer par le même centre.

Nous voyons de suite que ce centre sera $\overline{D}_{2,a}$ sur BC et $A_1D_{1,a}$ ou $\overline{C}_1\overline{D}_{1,b}$, etc. (Fig. 1.)

Nous avons le même résultat avec les sécantes b_1 et $d_{1,c}$, etc., puis des résultats analogues avec les faisceaux en B et en C.

Ces remarques donnent immédiatement lieu aux observations suivantes relatives aux rayons doubles et aux points doubles.

- 1. Les lignes de jonction d'un sommet comme A_4 avec les points doubles $D_{1,a}$ ou $D_{2,a}$ sur a_4 , soient $\overline{d}_{1,a}$ et $\overline{d}_{2,a}$ en A_4 , passent par les points doubles respectifs sur a; on a donc $\overline{d}_{1,a}$ par $\overline{D}_{2,a}$ et $\overline{d}_{2,a}$ par $\overline{D}_{1,a}$.
- **2.** Les lignes de jonction d'un point comme $\overline{\mathbb{C}}_1$ sur \mathbf{c} avec les points doubles d'un côté du même triangle fondamental, \mathbf{b} par exemple, passent par les points doubles correspondants de l'autre côté \mathbf{c} .

$$\overline{\mathbf{C}}_{\mathbf{1}}$$
 $\overline{\mathbf{D}}_{\mathbf{1}.b} = n_{\mathbf{1}.c}$ passe par $\overline{\mathbf{D}}_{\mathbf{2}.a}$

$$\overline{\mathbf{C}}_{\mathbf{1}} \ \overline{\mathbf{D}}_{\mathbf{2}.b} = n_{\mathbf{2}.c} \ \text{passe par } \overline{\mathbf{D}}_{\mathbf{1}.a} \, .$$

3. Les droites $\overline{D}_{1.a}$ $\overline{D}_{1.b}$ et $\overline{D}_{2.a}$ $\overline{D}_{2.b}$ passant par C', à cause de la première remarque relative à ce point.

engendrée contient cette droite $CD_{1.b}$ comme droite double, ainsi que l'axe d'homologie a_4 comme droite simple. Il ne reste plus qu'une droite pour compléter la courbe; autrement dit, les points de coupe des rayons conjugués homographiquement seront sur une même droite.

Cette droite sera $\overline{d}_{2.a}$ passant par l'intersection des droites b_1 et c_1 et des droites a et $d_{1.a}$ ou $A_1 \, \overline{D}_{1.a}$. Cette droite contient également les intersections de c_1' et $d_{1.b} = N_{1.c}$, etc. (Fig. 1)

Nous aurons les mêmes résultats avec les ponctuelles sur b_4 et c_4 .

Nous en déduirons immédiatement les observations suivantes conformes à leurs dualistiques.

- 1. Les points de coupe d'un côté comme a avec les rayons doubles $d_{1.a}$ ou $d_{2.a}$ par A, soient $\overline{D}_{1.a}$ et $\overline{D}_{2.a}$, sont aussi sur les rayons doubles respectifs par A_1 , on aura donc $\overline{D}_{1.a}$ sur $\overline{d}_{2.a}$, $\overline{D}_{2.a}$ sur $\overline{d}_{1.a}$.
- 2. Les points de coupe d'un rayon comme $c'_1 = \overline{c}'_1 = CC_1 = C_1\overline{C}'_1$ par C avec les rayons doubles issus d'un autre sommet du triangle fondamental B_1 par exemple, sont aussi sur les rayons doubles non correspondants de l'autre sommet C_1 .

 $\begin{array}{l} \text{Intersection } (c_1^{\prime}\overline{d}_{1.b}) \equiv \mathbf{N}_{1.c} \text{ sur } \overline{d}_{2.a} \\ \text{Intersection } (c_1^{\prime}\overline{d}_{2.b}) \equiv \mathbf{N}_{2.c} \text{ sur } \overline{d}_{1.a} \end{array}$

3. Les points de coupe $(\overline{d}_{1,a}\overline{d}_{1,b})$ et $(\overline{d}_{2,a}\overline{d}_{2,b})$ sont sur c' à cause de la première remarque relative à cette droite.

 $\bar{\mathbf{D}}_{1.a} \bar{\mathbf{D}}_{1.c}$ et $\bar{\mathbf{D}}_{2.a} \bar{\mathbf{D}}_{2.c}$ passent par B' et ainsi de suite pour des raisons analogues.

9. Involutions de triangles. (3 côtés)

En considérant une paire de rayons conjugués a_2 et a'_2 en A puis la paire conjuguée en B: b_2 et b'_2 et enfin la paire conjuguée en C: c_2 et c'_2 , ces paires déterminent un hexagone A₂B'₂C₂A'₂B₂C'₂ et deux triangles $II_aII_bII_c$ et $II'_aII'_bII'_c$. Les sommets opposés de l'hexagone sont sur les côtés du triangle auxiliaire et les sommets opposés des triangles sont sur les coniques engendrées par les involutions en A, B et C; IIa et II'_a sont sur $C_{1.a}$, II_b et II'_b sur $C_{1,b}$ et II_c et II'_c sur $C_{1,c}$ comme points de coupe de rayons homologues des faisceaux.

Tous les triangles comme $II_aII_bII_c$ et $II'_aII'_bII'_c$, puis $III_aIII_bIII_c$ et $III'_aIII'_bIII'_c$... sont tels que leurs côtés opposés sont involutivement conjugués.

Ces triangles forment donc une suite dans laquelle chacun d'eux est réciproquement conjugué à un autre, mais à un seul, autrement dit ils forment une involution de triangles.

Le triangle fondamental est conjugué à lui même, A est conjugué de B sur C_{1.c}, B est conjugué de C sur C_{1.a} et C est conjugué de A sur C_{1.b}. ABC est conjugué avec BCA.

 $(\overline{d}_{1.a}\overline{d}_{1.c})$ et $(\overline{d}_{2.a}\overline{d}_{2.c})$ sont sur b' et ainsi de suite pour des raisons analogues.

10. Involutions de triangles. (3 sommets)

En considérant les points conjugués A2 et A'2 sur a4 puis B2 et B'_2 sur b_1 et enfin C_2 et C'_2 sur c_4 , ces trois paires de points déterminent l'hexagone de côtés $a_2b'_2c_2a'_2b_2c'_2$ ainsi que 2 triangles $A_2 B_2 C_2$ et $A'_2 B'_2 C'_2$. Les points de coupe des côtés opposés de l'hexagone sont dans les sommets du triangle auxiliaire et les côtés opposés des triangles sont des tangentes des coniques engendrées par les involutions sur $a_1b_1c_1$. B_2C_2 et B', C', sont des tangentes de K_{1.a} et ainsi de suite. Ces droites sont des lignes de jonction de points homologues des ponctuelles.

Tous les triangles comme $A_2B_2C_2$ et $A'_2B'_2C'_2$ puis $A_3B_3C_3$ et $A'_3B'_3C'_3$... sont tels que leurs sommets opposés sont involutivement conjugués.

Ces triangles forment donc une suite dans laquelle chacun d'eux est réciproquement conjugué à un autre, mais à un seul, autrement dit ils forment une involution de triangles.

Le triangle fondamental est conjugué à lui-même, a_1 est conjugué de b_1 par rapport à la conique $K_{1.c}$, b_1 est conjugué de c_1 sur $K_{1.a}$ et c_1 est conjugué de a_1 sur $K_{1.b}$. $a_1b_1c_1$ est conjugué de $b_1c_1a_1$.

 $A_1B_1C_1$ ou $I_aI_bI_c$ est conjugué de $I'_aI'_bI'_c$, I'_a étant sur c'_1 conjugué de c_1 en C et sur b'_1 conjugué de b_1 en B, etc. $II_aII_bII_c$ est conjugué de $II'_aII'_bII'_c$ et ainsi de suite.

L'involution possède deux triangles doubles formés par les rayons doubles, ce sont D_{1.a} D_{1.b} D_{1.c} et D_{2.a} D_{2.b} D_{2.c}. Chacun est conjugué à lui-même; les sommets homologues sont confondus en D_{1.a}, D_{1.b}, etc.

Les coniques ont au moins un point commun, soit P ce point; il correspond à un triangle de l'involution pour lequel les trois sommets sont confondus. Le triangle conjugué s'obtiendra de la même manière que les autres. Il ne peut pas y avoir de triangle du système involutif dont les sommets soient sur les côtés du triangle fondamental, puisque ceux-ci sont des tangentes. D'autre part, il ne peut pas non plus y avoir de triangles du système dont les sommets soient séparés et en ligne droite car les côtés d'un triangle tel que $\Pi_a \Pi_b \Pi_c$ passent chacun par un sommet de ABC.

Revenons aux triangles conjugués $II_a II_b II_c$ et $II'_a II'_b II'_c$. La ligne de jonction de deux sommets homologues II_a et II'_a , c'està-dire de deux sommets sur la même conique, passera toujours par un point fixe, le conjugué harmonique A' de \overline{A}_1 par rapport à B et C, puisque A et A_1 sont des diagonales fixes dans

Le triangle auxiliaire ABC est conjugué de \overline{A}_1 \overline{B}_1 \overline{C}_1 parce que \overline{A}_1 est conjugué de A sur a_1 , etc., $a_2b_2c_2$ est conjugué de $a'_2b'_2c'_2$ et ainsi de suite.

L'involution possède aussi deux triangles doubles correspondant aux points doubles, ce sont D_{1.a} D_{1.b} D_{1.c} et D_{2.a} D_{2.b} D_{2.c}. Chacun est conjugué à lui-même car les côtés représentent en somme deux rayons homologues confondus.

Les coniques ont au moins une tangente commune, soit p. Elle correspond à un triangle de l'involution dont les côtés sont confondus, et le triangle conjugué s'obtiendra de la même manière que les autres. Il ne peut pas y avoir de triangles du système dont les côtés passent par les sommets du triangle fondamental, puisque ceux-ci sont déjà des points de tangence. D'autre part il ne peut pas y avoir de triangles de l'involution dont les trois côtés soient séparés et passent par un même point; autrement dit, il ne peut pas y avoir de triangles qui se ramènent à un point, car les sommets doivent appartenir à chacun des trois côtés respectifs du triangle fondamental.

Revenons aux deux triangles conjugués $A_2B_2C_2$ et $A'_2B'_2C'_2$. Les points de coupe de deux cótés homologues, B_2C_2 et $B'_2C'_2$ par exemple, c'est-à-dire le point de coupe de deux tangentes de la même conique sera toujours sur une droite fixe, le rayon conjugué harmonique a' de $a'_4 = \overline{a'}_4 = \Lambda A_1$ par rapport à b_1 et c_4 ,

les quadrilatères correspondants. De la même manière $II_b - II'_b$ passera par B' et $II_c - II'_c$ par C'.

Les droites analogues menées par les sommets des triangles doubles, comme C'D_{1.c} et C'D_{2.c} sont les droites de jonction de deux points confondus sur une conique. Ce sont par conséquent des tangentes de la conique.

Les tangentes respectives des coniques C_{1.a}, C_{1.b}, C_{1.c} par A', B', C' sont les droites de jonction de ces points avec les points doubles des involutions correspondantes sur les côtés du triangle auxiliaire, ou avec les sommets correspondants des triangles doubles de l'involution de triangles.

L'ensemble des lignes de jonction considérées en A', B' et C' forment trois faisceaux homographiques puisque chaque ligne d'un faisceau est conjuguée à une, mais à une seule de chaque autre faisceau. Ces faisceaux engendrent trois coniques $C_{3.a}$, $C_{3,b}$ et $C_{3,c}$, telles que chacune d'elles passe par les deux sommets correspondants et par un sommet du triangle fondamental. C_{3.a} par exemple, passe par B', C' et A car C'AB et B'CA sont des rayons conjugués. Ces trois coniques passent encore évidemment par les points comme P communs aux trois coniques $C_{1.a}$, $C_{1.b}$, et $C_{1.c}$.

car les points A et A_1 sont des points diagonaux fixes des quadrangles correspondants. De la même manière A_2 C_2 et A'_2 C'_2 se coupent sur b' et A_2 B_2 et A'_2 B'_2 sur c'.

Les points de coupe des côtés des triangles doubles avec les rayons a' b' et c' correspondants seront les points de tangence de ces côtés avec leur conique respective, car ce point est aussi le point de coupe de deux tangentes confondues. D_{1.b} — D_{1.c} coupera a' en son point de tangence avec K_{1.a}.

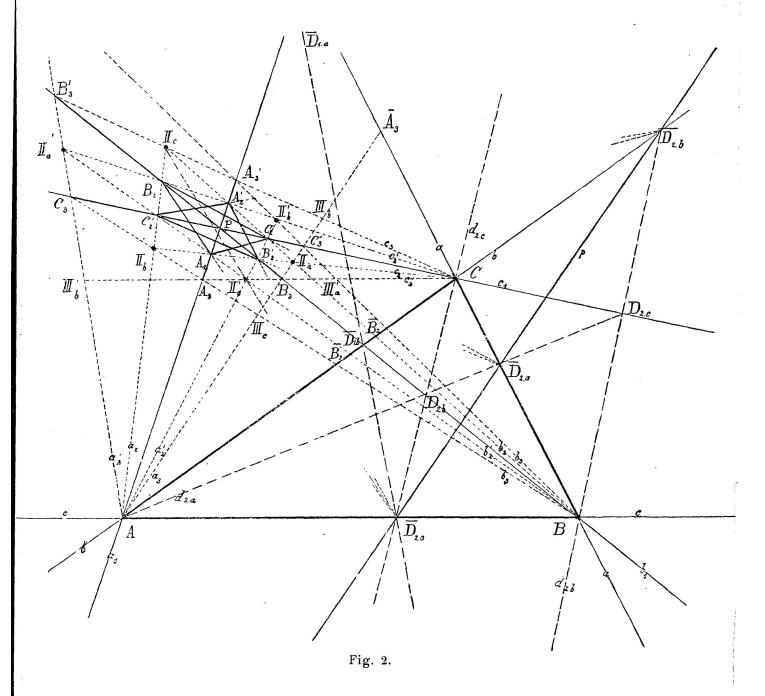
Les points de coupe des coniques K_{1.a} K_{1.b}, K_{1c.}, avec les droites a', b', c' (K_{1.a} avec a', etc.) sont les points de coupe de ces droites avec les côtés correspondants des triangles doubles de l'involution de triangles et ce sont aussi les points de tangence de ces mêmes côtés avec les courbes.

Les points de coupe sur les rayons a', b', c' considérés dans leur ensemble forment trois homographiques, ponctuelles chaque point de l'une étant conjugué à un, mais un seul de chacune des autres. Ces ponctuelles engendrent trois coniques telles que chacune d'elles $K_{3.a}$, $K_{3.b}$ et $K_{3.c}$ est tangente aux deux bases correspondantes et à un côté du triangle fondamental. K_{3.a} par exemple est tangente de b', c' et a_{\bullet} , puisque C_1 sur c' et B_1 sur b' sont des points conjugués.

Ces trois coniques admettent évidemment p et les autres tangentes communes des K_{1,a}, K_{1,b}, K_{1,c}, comme tangentes communes à elles aussi.

§ II. — Groupement des involutions par rapport à un triangle fondamental et un point ou une droite auxiliaires.

- 11. Nous admettons que le triangle auxiliaire $A_1 B_1 C_1$ se réduit à trois droites a_1 , b_1 , c_1 passant par un même point P. Les ob-
- 12. Le triangle auxiliaire est formé par les trois sommets A, B et C appartenant à une même droite p. Les observations



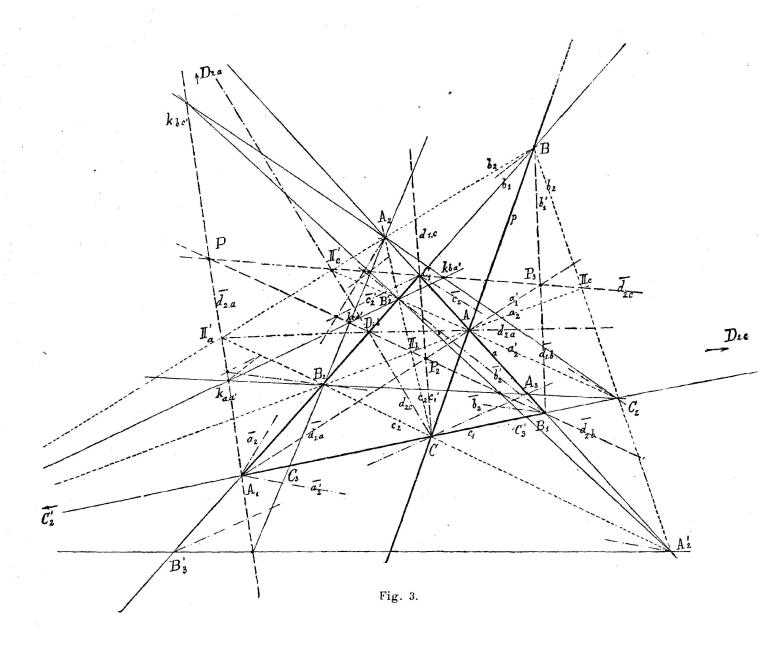
servations précédentes subsisteront et ces droites seront toujours les axes d'homologie. (Fig. 2).

Les rayons conjugués de a₁,

précédentes seront encore vraies et les points A, B, C seront toujours les centres d'homologie. (Fig. 3).

Les points conjugués de A, B,

 b_1 , c_4 sont confondus avec ces mêmes droites; ce sont les premiers rayons doubles des involutions en A, B, C. Les autres rayons doubles passent par les points harmoniquement assoC, soient \overline{A}_1 , \overline{B}_1 , \overline{C}_1 sont confondus avec ces points; A, B, C sont donc les premiers points doubles des involutions. Les autres seront les conjugués harmoniques des précédents, par



ciés de P, soient P_4 , P_2 , P_3 , et en outre par les conjugués harmoniques de $\overline{A}_1 = \overline{D}_{1.a}$, $\overline{B}_4 = \overline{D}_{1.b}$, $\overline{C}_1 = \overline{D}_{1.c}$ par rapport aux sommets respectifs A, B, C. Nous désignerons ces points

rapport aux sommets du triangle A_4 , B_4 , C_4 . Ce sont les pieds des céviennes du pôle trilinéaire P de p.

par $\overline{D}_{2.a}$, $\overline{D}_{2.b}$, $\overline{D}_{2.c}$; ils seront en ligne droite, sur la polaire trilinéaire de P.

Le théorème général relatif aux courbes engendrées subsiste avec la remarque suivante: le point auxiliaire P est un point commun des trois courbes C_{1.a}, C_{1.b} et C_{1.c}.

En effet, les rayons AP et BP sont conjugués homologiques ou homographiques. Le point P est donc un point de la courbe C_{1.c}. Il serait de la même manière un point de chacune des autres courbes.

Les autres points de coupe des droites a_1 , b_1 , c_4 avec les coniques sont les points de coupe des seconds rayons doubles conjugués des faisceaux involutifs en A, B, C, soient $D_{2.a}$, $D_{2.b}$ et $D_{2.c}$.

Les ponctuelles involutives sur les côtés a, b, c ou a_1 , b_1 , c_1 sont analogues à celles du cas général.

A ce sujet, considérons l'involution de rayons en A et coupons-la par la droite a. Nous obtenons l'involution de points BC, $\overline{A}_2\overline{A}'_2$, ... $\overline{D}_{1.a}$ et $\overline{D}_{2.a}$, ces derniers sont les points doubles.

En coupant ce même faisceau par une cévienne de P, c_1 ou b_1 , nous avons les ponctuelles involutives $C\overline{C}_1$, $C_2C'_2$... $D_{1.c}$ et $D_{2.c}$ ou $B\overline{B}_1$, $B_2B'_2$, ... $D_{1.b}$ et $D_{2.b}$; les points $P = D_{1.c}$, $D_{2.c}$ et $P = D_{1.b}$, $D_{2.b}$ sont les points doubles.

$$(D_{2,c} = P_3; D_{2,b} = P_2)$$
.

Le théorème général relatif aux courbes enveloppées subsiste, mais en observant que la droite p est une tangente commune des trois courbes K_{1.a}, K_{1.b}, K_{1.c}.

En effet, les points A et B sont conjugués homologiques et homographiques, ils déterminent une tangente de la courbe $K_{1.c}$, donc p est une tangente de $K_{1.c}$. Cette droite sera de la même manière une tangente de chacune des autres courbes.

La seconde tangente de $K_{1,c}$ par C sera la droite $CD_{2,a}$ harmoniquement associée de p, elle passe par les seconds points doubles $D_{2,a}$ et $D_{2,b}$ des involutions sur a_1 et b_1 . Il en est de même en A et B.

Les faisceaux involutifs en A₄, B₄, C₄ ou en A, B, C sont analogues à ceux du cas général.

L'involution sur a_1 jointe avec le sommet A_1 nous donne le faisceau $b_1 c_1$, $\overline{a_2} \overline{a'_2}$, ... $\overline{d_{1.a}} \overline{d_{2.a}}$. Ces derniers sont les rayons doubles passant respectivement par A et $D_{2.a}$.

En joignant la même involution avec B ou C sur p, nous obtenons les faisceaux involutifs: $b_1b'_1$, $b_2b'_2$, ... $d_{1.b}d_{2.b}$ ou $c_4c'_4$, $c_2c'_2$, ... $d_{1.c}d_{2.c}$. Les rayons doubles donnent lieu aux relations suivantes: $d_{1.b} = p$, $d_{2.b} = D_{2.a}$. $D_{2.c}$, $d_{1.c} = p$, et $d_{2.c} = D_{2.a}$. $D_{2.b}$.

. Les ponctuelles sur les côtés

Les faisceaux involutifs en A₁,

a, b, c du triangle fondamental sont semi-homologiques et homographiques. Le centre d'homologie pour celles sur a et b, par exemple, est $\overline{D}_{2,c}$, c'est le conjugué harmonique de \overline{C}_1 par rapport à A et B.

Nous obtenons D_{2.c} comme point de coupe des lignes de jonction des points doubles con-

jugués.

Les ponctuelles sur a et b engendrent une nouvelle conique $K_{2,c}$ tangente de AC en A et de BC en B.

Les ponctuelles considérées deux à deux sur les côtés abc, engendrent, comme dans le cas général, trois coniques, $K_{2.a}$, $K_{2.b}$ et $K_{2.c}$, analogues à $K_{2.c}$.

Examinons maintenant les ponctuelles sur les côtés du triangle auxiliaire: soient celles $\overline{\text{sur}} b_1 \text{ et } c_1$; elles ont deux points doubles homologues confondus en P; elles sont doublement homologiques; la courbe enveloppée se ramène à quatre points, P comme point double, A comme centre d'homologie et enfin un quatrième point D_{2.a}. Celui-ci sera sur les lignes de jonction des points conjugués correspondants de deux paires quelconques des involutions. La ligne de jonction des seconds points doubles peut servir comme première de ces lignes.

Les trois ponctuelles considérées deux à deux engendrent chaque fois quatre points analogues aux précédents.

13. Comme précédemment, nous aurons une involution de triangles avec des éléments dou B_4 et C_4 considérés deux à deux sont semi-homologiques et homographiques. L'axe d'homologie relatif aux faisceaux en A_4 et B_4 est la droite C_4 P conjuguée harmonique de c'_4 par rapport à a_4 et b_4 .

Nous obtenons $C_4P = PP_3$ comme ligne de jonction des points de coupe P et P_3 des rayons doubles conjugués.

Les faisceaux en A_1 et B_1 engendrent une nouvelle conique $C_{2.c}$, tangente de A_1C_1 en A_1 et de B_1C_1 en B_1 .

Les faisceaux considérés deux à deux dans les sommets du triangle fondamental $A_4B_4C_4$ engendrent, comme dans le cas général, trois coniques $C_{2.a}$ $C_{2.b}$ et $C_{2.c}$, analogues à $C_{2.c}$.

Passons maintenant aux faisceaux lans les sommets A, B, C du triangle auxiliaire: soient ceux en B et C; ils ont deux rayons doubles homologues confondus en p; ils sont doublement homologiques; la courbe engendrée se ramène à quatre droites, p comme droite double, C,P comme axe d'homologie et enfin une quatrième droite PD_{2.a}. Celle-ci est la ligne de jonction des points de coupe des rayons conjugués correspondants de deux paires quelconques des involutions. Le point de coupe des seconds rayons doubles peut servir comme premier point.

Les trois faisceaux considérés deux à deux engendrent chaque fois quatre droites analogues aux précédentes.

14. Nous aurons aussi, comme dans le cas général, une involution de triangles avec éléments bles. Dans le cas général ceuxci peuvent être imaginaires, tandis que dans notre cas particulier ces éléments doubles seront toujours réels.

Le triangle fondamental est conjugué à lui-même sans être un élément double. Les triangles II_a II_b II_c et II'_a II'_b II'_c sont des triangles conjugués généraux. Les triangles doubles sont d'une part le point auxiliaire P et d'autre part le triangle des autres points doubles ou points harmoniquement associés de P, soient $P_1 = D_{2.a}$, $P_2 = D_{2.b}$, $P_3 = D_{2.c}$.

Les triangles conjugués nous donnent les propriétés suivantes:

1. La ligne de jonction de deux sommets homologues Π_a et Π'_a passe par le second point double $\overline{D}_{2,a}$ du côté correspondant a.

 $II_b II'_b$ passe par $\overline{D}_{2.b}$ et $II_c II'_c$ par $\overline{D}_{2.c}$.

Le raisonnement est le même que dans le cas général.

2. Les lignes de jonction des sommets tels que II_b et II'_c ou II'_b et II_c passent par $\overline{D}_{2,a}$; II_a II'_b et II'_a II_b par $\overline{D}_{2,c}$ puis II_a II'_c et II'_a II_c par $\overline{D}_{2,b}$.

En effet dans le quadrangle $AC'_2A_2B'_2$, la diagonale II_b II'_c coupe le côté $B'_2C'_2$ dans un point qui est le conjugué harmonique du point diagonal sur ce côté, par rapport à B'_2 et à C'_2 . Comme ce point de coupe

doubles. Dans le cas particulier qui nous intéresse, ces éléments doubles seront toujours réels.

Le triangle fondamental est également conjugué à lui-même sans être un élément double. Les triangles $A_2 B_2 C_2$ et $A'_2 B'_2 C'_2$ sont des triangles conjugués généraux. Les triangles doubles sont d'une part ABC sur la droite p et d'autre part le triangle des points doubles $D_{2.a}$, $D_{2.b}$ et $D_{2.c}$; les côtés sont aussi les droites harmoniquement associés de p.

Les triangles conjugués généraux donnent les propriétés suivantes :

1. Le point de coupe de deux côtés homologues B_2C_2 et $B'_2C'_2$ est situé sur le second rayon double par le sommet correspondant A_4 .

De même A_2B_2 et $A'_2B'_2$ se coupent sur $C_4D_{2.c}$ et A_2C_2 avec $A'_2C'_2$ sur $B_4D_{2.b}$.

Le raisonnement est toujours le même que dans le cas général.

2. Les points de coupe de deux côtés non homologues comme $A'_2C'_2$ et A_2B_2 ou A_2C_2 et $A'_2B'_2$ sont sur le second rayon double par A_1 soit $A_1D_{2.a}$. De même B_2A_2 et $B'_2C'_2$ ou $B'_2A'_2$ et B_2C_2 se coupent sur $B_1D_{2.b}$ puis C_2A_2 et $C'_2B'_2$ ou $C'_2A'_2$ et C_2B_2 sur $C_1D_{2.c}$.

En effet dans les faisceaux involutifs en A et C, les rayons conjugués a'_2 et c'_2 se coupent sur B_1P , et dans le quadrilatère a'_2 , c'_2 , b_1 , b_2 le troisième point diagonal est à l'intersection des côtés $A'_2B'_2$ et B_2C_2 , soit sur la

est $\overline{D}_{2.a}$ à cause des ponctuelles sur b_4 et c_4 , le théorème est démontré et le raisonnement subsiste pour les autres droites de jonction.

- 3. Dans l'hexagone de sommets $\Pi_a \Pi'_c \Pi_b \Pi'_a \Pi_c \Pi'_b$, les points de coupe des côtés opposés sont en ligne droite; celle-ci est la polaire trilinéaire p du point donné P.
- 4. Le point de coupe des droites de jonction des sommets opposés de l'hexagone précédent ou des sommets homologues de deux triangles involutifs est sur une cévienne du point donné P.

 II_a et II'_a , II_b et II'_b se coupent en un point de la cévienne CP; en effet dans le quadrangle $II_aII'_a$ II_b II'_b , les points C et $\overline{D}_{2.c}$ sont, d'après ce qui précède, des points diagonaux. $C\overline{D}_{2.c}$ est un rayon double en C. L'autre point diagonal, soit l'intersection de II_a II'_a avec $II_bII'_b$, sera sur le deuxième rayon double de l'involution en C, soit sur la cévienne CP.

5. Les tangentes des coniques $C_{1.a}$, $C_{1.b}$ et $C_{1.c}$ par les sommets des triangles doubles sont les lignes de jonction de ces points avec les points doubles respectifs $\overline{D}_{2.a}$, $\overline{D}_{2.b}$ et $\overline{D}_{2.c}$ sur les côtés du triangle fondamental.

Ceci découle du cas général. Les droites de jonction comme $II_aII'_a$ passent par le point double correspondant $\overline{D}_{2.a}$. Donc diagonale par le point de coupe de a'_2 et c'_2 ou B_1 P, à cause des propriétés harmoniques liant c'_2 , a'_2 , $\bar{d}_{2,b}$ et la ligne de jonction de B avec l'intersection $(a'_2 c'_2)$. Ce raisonnement subsiste pour les autres points de coupe.

3. Dans l'hexagone de côtés $(a_2)(c'_2)(b_2)(a'_2)(c_2)(b'_2)$ les lignes de jonction de deux sommets opposés passent par le pôle trilinéaire P de p

$$(a_2) = B_2 C_2$$
; $(a'_2) = B'_2 C'_2$ etc. ...

4. La ligne de jonction des points de coupe de deux paires de côtés opposés de deux triangles involutifs passe toujours par un des points ABC de la droite p.

En effet, soient les points de coupe $t_{a.a'}$ et $t_{c.c'}$ des côtés (a_2) et (a'_2) puis (c_2) et (c'_2) , la droite $t_{aa'}t_{cc'}$ passera par B car dans le quadrilatère $(a_2)(a'_2)(c_2)(c'_2)$ les diagonales sont b_1 puis \overline{d}_{2b} qui se coupent en $D_{2.b}$ et $t_{aa'}t_{cc'}$. Cette troisième diagonale passera par le conjugué harmonique B de $D_{2.b}$, par rapport à B_2 et B'_2 , et la remarque est démontrée.

5. Les points de tangence des coniques $K_{1.a}$, $K_{1.b}$ et $K_{1.c}$ avec les côtés des triangles doubles sont les points de coupe de ces côtés avec les rayons doubles respectifs $\overline{d}_{2.a}$, $\overline{d}_{2.b}$ et $\overline{d}_{2.c}$ par les sommets A_4 B_4 C_4 du triangle fondamental.

Ceci résulte du cas général (n° 10). Le point de coupe $t_{a.a'}$ des tangentes (a_2) et (a'_2) de $K_{1.a}$ est sur $\overline{d}_{2.a}$; cette règle est géné-

 $\overline{D}_{2.a}P$ et $\overline{D}_{2.a}P_{1}$ par les sommets P et P_{1} des triangles doubles sont des tangentes de $C_{1.a}$. Il en est de même avec les deux autres coniques.

6. Théorème. — Les triangles circonscrits à deux triangles conjugués et dont les côtés passent aussi par les sommets du triangle fondamental forment une nouvelle paire de triangles con-

juguės.

Soient $II_aII_bII_c$ et $II'_aII'_bII'_c$ deux triangles conjugués. Nous joignons II_a à A, II_b à B et II_c à C puis II'_a à A, II'_b à B, et II'_c à C et nous trouvons deux triangles $III_aIII_bIII_c$ et $III'_aIII'_bIII'_c$. Pour démontrer qu'ils sont conjugués, considérons les rayons a_3 et b'_3 . Ces rayons se coupent en un point C'_3 de CP à cause du quadrilatère complet $a'_2a_3b_2b'_3$. La droite $II_aII'_b\overline{D}_{2,c}$ est une diagonale; la diagonale par C'_2 et C'_3 passera par \overline{C}_4 sur AB; elle sera donc confondue avec CP.

On démontrerait de même que a_3 et c'_3 se coupent en B_3 sur BP, puis b_3 et c'_3 en A_3 sur AA_4 , etc. Donc les droites par les sommets du triangle fondamental et les sommets respectifs des deux triangles conjugués entraı̂nent un hexagone au sens du 1^{er} théorème (n° 1 et 11); elles donnent donc lieu à deux nouveaux triangles conjugués.

15. Théorème. — Les trois coniques C_{1.c}, C_{1.b} et C_{1.c} n'ont qu'un point commun réel, le point

rale. Donc les points de coupe de deux tangentes confondues est aussi sur $\overline{d}_{2.a}$. Les points de tangence des tangentes doubles $d_{1.a}$ et $d_{2.a}$ de $K_{1.a}$ sont alors les intersections de ces droites avec $\overline{d}_{2.a}$.

6. Théorème. — Les triangles inscrits dans deux triangles conjugués et dont les sommets se trouvent sur les côtés du triangle fondamental forment une nouvelle paire de triangles conjugués.

Soient $A_2B_2C_2$ et $A'_2B'_2C'_2$ deux triangles conjugués. A_2B_2 coupe c_4 en C_3 , B_2C_2 coupe a_4

en A₃ et ainsi de suite.

Nous trouvons deux triangles $A_3B_3C_3$ et $A'_3B'_3C'_3$. Pour démontrer qu'ils sont conjugués considérons les points A_3 et B'_3 , leur ligne de jonction passe par le point C à cause du quadrangle $A'_2A_3B_2B'_3$; le premier point diagonal est C_4 sur a_4 et b_4 ; le deuxième est sur $A'_2C'_2$ et sur B_2C_2 , soit sur $C_4P = \overline{d}_{2.c}$; le troisième point sera sur C_4C conjugué harmonique de C_4P et en même temps sur A'_2B_2 ; c'est C.

On démontrerait de la même manière que B'₃C₃ passe par A et ainsi de suite. Les points considérés forment donc un hexagone fermé, au sens du 1^{er} théorème (n° 2 et 12). Ils donnent lieu à deux nouveaux triangles conjugués.

16. Théorème. — Les trois coniques $K_{1.a}$, $K_{1.b}$ et $K_{1.c}$ n'ont qu'une tangente commune réelle,

P, les deux autres points communs possibles sont imaginaires.

Soit P' un tel point; les rayons homographiques conjugués a^* , b^* , c^* , se coupent en P'; un des triangles de l'involution se ramènera ainsi à un point; le triangle conjugué doit être tel que les lignes de jonction de ses sommets avec P' se coupent sur les céviennes de P (nº 13, 4); mais comme elles se coupent en P', il faut que P' coïncide avec P. Nous avons supposé P' différent de P; donc le triangle conjugué du point P' doit se ramener à un point P". Les points P' et P" seront communs aux trois courbes. Dans ce cas-là, les droites comme $II_aII'_a$, $II_bII'_b$ et $II_cII'_c$ passeront respectivement par $D_{2.a}, D_{2.b}, \overline{D}_{2.c};$ donc les deux points P' et P", s'ils sont possibles, seront sur la droite p; en d'autres termes la droite p passe par les deux points communs des coniques C_{1.a}, C_{2.b} et C_{1.c} différents de P.

Les points de coupe de *p* avec une des courbes peuvent-ils être réels ?

Soit le quadrangle PP₄P₂P₃; CA et CB sont des tangentes de C_{1.c}; ces tangentes sont conjuguées harmoniques par rapport à PP₃ et P₄P₂. PP₃ est en outre une corde de la courbe et le segment qui contient C est exla droite p; les deux autres tangentes communes possibles sont imaginaires.

Soit p' une telle tangente commune différente de p. Les points conjugués homographiques $A^*B^*C^*$ se trouvent alors sur cette droite et y déterminent un triangle de l'involution. D'après une remarque précédente (nº 14, 4) les points de coupe de p' avec les côtés correspondants du triangle conjugué entraîneront des lignes de jonction passant par A, B et C sur p. Il faudrait donc que p coïncidât avec p' ce qui est impossible. Le triangle conjugué peut alors se ramener à un autre segment de droite p''.

Dans ce cas, les points de coupe $t_{a,a'}$ et $t_{c,c'}$ des paragraphes précédents devant être sur $d_{2.a}$, $\overline{d}_{2.b}$ ou $\overline{d}_{2.c}$ et d'un autre côté ces points devant coïncider avec le point d'intersection unique de p' et p", il faudra forcément que tous ces points coıncident avec le pôle trilinéaire P de p. En d'autres termes les deux triangles conjugués rectilignes, s'ils sont possibles, sont les tangentes de l'une quelconque des coniques K_{1,c} par P ou les tangentes communes des coniques K_{1.a}, K_{1.b} et K_{1.c} différentes de p passent par le point P.

Voyons maintenant si ces tangentes sont réelles.

Soit le quadrangle PP₁P₂P₃; C₁A₁ et C₁B₁ sont conjugués harmoniques par rapport à C₁C et C₁D_{2.c}. C₁A₁ et C₁B₁ sont des tangentes de K_{1.c}; PP₃ est une sécante; la courbe est dans l'angle des tangentes qui contient

térieur par rapport à cette même courbe. La courbe est ainsi dans l'angle des tangentes CA et CB qui contient PP3. P1CP2 est dans l'autre angle. Le segment AB contenant $\overline{D}_{2,c}$ sur P_1P_2 est extérieur par rapport à la même courbe.

Les tangentes $\overline{D}_{2,c}P$ et $D_{2,c}P_3$ donnent un nouvel angle limitant la courbe. La courbe est dans l'angle qui contient AB. D'autre part BP₃ est une corde et le segment qui contient P₄ sur P₂P₂ est extérieur. D_{2.b} est conjugué harmonique de B par rapport à P_1P_3 , $\overline{D}_{2.b}$ est donc entre P₁ et P₃ du côté opposé à B. $\overline{\mathrm{D}}_{2,b}$ est alors entre P_{1} et P_{3} , dans l'angle extérieur P₁ D_{2.c} P₃.

Dans ces conditions $\overline{\mathrm{D}}_{2,c}\overline{\mathrm{D}}_{2,b}$ est dans l'angle des tangentes par D_{2,c} qui ne contient pas la courbe C_{1.c} et les points de coupe de la droite $\overline{\mathrm{D}}_{2,c}\overline{\mathrm{D}}_{2,b}$ ou pavec la courbe C_{1.c} sont imagi-

naires.

On démontrerait de la même manière que la droite p ne coupe pas les autres coniques. Donc les trois coniques, d'après ce qui précède, n'ont pas d'autres points communs réels que P et le théorème est démontré.

Généralisation. — Les trois coniques relatives au cas général sont identiques aux coniques relatives à notre cas particulier, puisqu'elles ont toujours au moins un point réel commun. Il suffira de considérer ce point commun P, comme point lié au triangle fondamental et d'utiliser ses céviennes comme axes d'homologie.

PCP, et C, C est dans l'autre angle, donc cette dernière droite ne coupe pas la courbe. En outre le segment A, B, qui contient C est un segment extérieur; nous savons encore que les tangentes par C sont les droites $\bar{\text{CA}}$ et $\text{CD}_{2.b}$; les points $\bar{\text{A}}$ et $\bar{\text{D}}_{2.b}$ sont les intersections de C, B, avec A, P3 et de C, A, avec B, P; les points de tangence sont L, et L₂ sur la sécante PP₃.

La droite PP₂ qui passe par D_{2.b} et B₁ est dans l'angle des tangentes C, A, et C, D_{2.b} qui contient la courbe, puisque B₁

est sur la courbe.

 $B_{\scriptscriptstyle 1}$ sur $c_{\scriptscriptstyle 1}$ est entre C et $D_{\scriptscriptstyle 2,c}$ du côté opposé à A1. B1P donne Pentre L₂ et D_{2.c} du côté opposé à C₁. L₁ est entre C₁ et D_{2.e} du côté opposé à L2, donc L1 est entre L₂ et D_{2.c} du côté de C₁. Dans ces conditions P ne peut pas être sur le segment L, L, qui contient C₁, mais étant sur la même direction, il sera de l'autre côté de C, autrement dit P est à l'intérieur de la courbe K_{1.c}. Les tangentes de K_{1.c} par P sont alors imaginaires.

D'après ce qui précède, nous pouvons en conclure que les trois courbes n'ont pas d'autres tangentes communes et réelles que p, et le théorème est démontré.

Généralisation. — Les coniques du cas général sont identiques à celles-ci, puisqu'elles ont toujours au moins une tangente commune réelle. Il suffira de considérer cette tangente comme triangle auxiliaire et d'utiliser ses points de coupe avec les côtés du triangle fondamental comme centres d'homologie.

Le théorème s'appliquera aux trois coniques et nous pourrons en conclure que les courbes du cas général n'ont également qu'un point commun réel, les deux autres sont des points imaginaires.

Sur une Correspondance (1-2).

Si nous considérons les trois coniques $C_{1.a}$, $C_{1.b}$ et $C_{1.c}$ du cas général ou du cas particulier, nous pouvons les regarder comme engendrées par les triangles involutifs.

Toute droite $A \coprod_a$ par A coupe $C_{1,a}$ en deux points \coprod_a et \coprod_a . Chaque point correspond à un triangle de l'involution et par conséquent à un rayon a_2 ou a_2 ".

En raisonnant ainsi nous voyons qu'à tout rayon A Il_a par A correspondent deux rayons a_2 et a''_2 également par A.

Les rayons en A formeraient alors une correspondance (1-2) dont les rayons doubles simples sont les côtés AB et AC du triangle fondamental. Les rayons conjugués confondus s'obtiendront quand le triangle $II_a II_b II_c$ se ramènera à une droite ou à un point. La première alternative est impossible et d'autre part le triangle $II_a II_b II_c$ ne peut se ramener qu'une fois à un point, le point commun réel des trois courbes.

Les correspondances considérées n'ont donc qu'une paire de rayons homologues simples confondus; les deux autres paires sont imaginaires.

Le théorème s'appliquera à ces coniques et nous pourrons en conclure que les courbes du cas général, comme celles que nous venons de voir, n'ont qu'une tangente commune réelle les deux autres étant imaginaires.

Sur une Correspondance (1-2).

Les trois coniques $K_{1,a}$, $K_{1.b}$ et $K_{1.c}$ du cas général ou du cas spécial peuvent être considérées comme enveloppées par les triangles involutifs.

Par tout point A" de a_1 on peut mener en général deux tangentes de $K_{1.c}$. Chaque tangente correspond à un triangle de l'involution et par conséquent à un point A_2 ou A''_2 sur a_1 .

D'après ce raisonnement, à tout point A'' sur a_4 correspondent également deux points A_2 et A''_2 aussi sur a_4 .

Les points de la base a_4 forment alors une correspondance (1-2) dont les points doubles simples sont dans les sommets B_4 et C_4 du triangle fondamental.

On aura les points conjugués confondus quand le triangle correspondant se ramènera à une droite. Nous aurons ce cas avec la droite p ou la tangente commune des trois courbes. Elle représente un triangle limite et ce cas n'est possible qu'une fois.

Les correspondances considérées n'ont qu'une paire de points homologues confondus; les deux autres paires sont imaginaires.

Nous pouvons encore remarquer que le côté AB formé de deux rayons simples confondus représente les deux rayons conjugués du côté AC et réciproquement, AC représente les deux rayons simples confondus conjugués du côté AB.

Nous pouvons observer également que les deux points conjugués du sommet C_4 par exemple, sont confondus en B_4 et réciproquement, les conjugués de B_4 sont confondus en C_4 .

§ III. — Autres cas spéciaux du groupement des involutions.

17. Le triangle fondamental est une droite ABC ou p et le triangle auxiliaire A₁B₁C₁ est quelconque. (Fig. 3.)

Les observations et les raisonnements du cas général sont valables. Nous aurons en A, B, C les mêmes groupements de rayons par cycles hexagonaux fermés.

Les faisceaux obtenus formeront des involutions dans lesquelles les premiers rayons
doubles seront confondus avec
la droite p. Les seconds seront
les conjugués harmoniques des
premiers par rapport à un côté
du triangle auxiliaire comme a_1 en A et à son homologue AA_1 $= a'_1$.

Les points de coupe de ces seconds rayons doubles avec les côtés du triangle auxiliaire sont les pieds des céviennes du pôle trilinéaire P de p par rapport à ce triangle A, B, C,.

Les involutions en A, B, C, prises deux à deux, sont doublement homologiques puisqu'elles ont deux rayons doubles conjugués, confondus en p. Ce sont du reste les involutions de rayons

18. Le triangle fondamental se ramène à trois droites concourantes a_1 , b_1 , c_1 passant par le point P tandis que le triangle auxiliaire ABC est quelconque. (Fig. 2.)

Les observations et les raisonnements du cas général sont toujours valables et nous aurons sur a_1 , b_1 et c_4 les mêmes groupements de points par cycles hexagonaux fermés.

Les ponctuelles obtenues forment des involutions de points dans lesquelles les premiers points doubles sont confondus avec le point commun P. Les seconds sont les conjugués harmoniques des premiers par rapport au sommet correspondant du triangle auxiliaire, comme A, et à son conjugué \overline{A}_1 sur a.

Ces points doubles ci sont les points harmoniquement associés de P.

Les involutions sur a_1 , b_1 , c_1 considérées deux à deux sont doublement homologiques parce qu'elles ont toujours deux points doubles conjugués, confondus en P. Nous avons déjà

étudiées précédemment, § II, n° 12. Les quatrièmes droites engendrées sont les seconds rayons doubles $\overline{d}_{2,a}$, $\overline{d}_{2,b}$ et $\overline{d}_{2,c}$ des faisceaux involutifs en A_1 , B_1 et C_1 , formés au moyen des ponctuelles involutives sur les côtés opposés.

Les faisceaux en A, B, C ne peuvent pas former de ponctuelles sur p.

Les ponctuelles involutives sur a_1 , b_1 , c_1 du triangle auxiliaire sont celles étudiées au § II, n° 12. Elles engendrent les coniques $K_{1.a}$, $K_{1.b}$ et $K_{1.c}$.

Les triangles comme $II_aII_bII_c$ et $II'_aII'_bII'_c$ compris entre les rayons a_2 , b_2 , c_2 et a'_2 , b'_2 , c'_2 conjugués des premiers, font toujours partie d'une involution de triangles analogue à celle du cas général. ABC est le premier triangle double; le second est formé par les seconds rayons doubles $d_{2.a}$, $d_{2.b}$ et $d_{2.c}$. Les sommets sont $D_{2.a}$, $D_{2.b}$, $D_{2.c}$.

Le conjugué du triangle auxiliaire de $A_1B_1C_1$ est le triangle des rayons a'_1 , b'_1 , c'_1 ou le triangle $P_1P_2P_3$ dont les sommets sont les points harmoniquement associés de P. Le point P est également un triangle limite; son conjugué se détermine par la méthode ordinaire.

Quant à ce triangle, nous avons simplement à remarquer que P est le point de coupe des rencontré ces involutions au \S II, n° 11 Les quatrièmes points engendrés sont les seconds points doubles des ponctuelles involutives sur les côtés a, b et c du triangle auxiliaire : $\overline{D}_{2.a}$, $\overline{D}_{2.b}$, $\overline{D}_{2.c}$. Ces dernières involutions sont déterminées par les faisceaux involutifs dans les sommets opposés du même triangle. Chacun de ces points, comme $\overline{D}_{2.c}$ par exemple, appartient à la droite de jonction des deux points doubles $D_{2.a}$ et $D_{2.b}$.

Il est évident que les ponctuelles sur a_1 , b_1 , c_4 ne peuvent pas engendrer de faisceaux en P.

Les faisceaux en A, B, C du triangle auxiliaire sont ceux étudiés au § II, n° 11. Ils engendrent les coniques C_{1.a}, C_{1.b} et C_{1.c}.

Les triangles comme $A_2B_2C_2$ et $A'_2B'_2C'_2$ déterminés par les points conjugués des involutions font partie d'une involution de triangles, absolument comme dans le cas général. Le point P forme le premier triangle double. Le second est celui des points doubles $D_{2,a}$, $D_{2,b}$ et $D_{2,c}$.

Le conjugué du triangle auxiliaire ABC est \overline{A}_4 \overline{B}_4 \overline{C}_4 avec \overline{A}_4 sur a et a_4 , \overline{B}_4 sur b et b_4 puis \overline{C}_4 sur c et c_4 . Ses côtés passent respectivement par $\overline{D}_{2.a}$, $\overline{D}_{2.b}$ et $\overline{D}_{2.c}$; ce sont aussi les droites harmoniquement associées de p.

Le triangle formé par les points de coupe de p avec a_1 , b_4 et c_4 est rectiligne; il fait éga-

quatrièmes droites engendrées par les involutions en A, B et C. Les rayons AP, BP et CP sont conjugués, donc P est un triangle limite de côtés AP, BP et CP.

Les propriétés générales relatives aux ponctuelles sur a, b et c ne subsistent plus dans ce cas particulier.

Par contre la propriété relative aux droites $II_aII'_a$, $II_bII'_b$, $II_cII'_c$ se retrouve sous une forme modifiée. Les droites $II_aII'_a$, $II_bII'_b$ et $II_cII'_c$ sont les rayons doubles conjugués $\overline{d}_{2,a}$ en A_1 , $\overline{d}_{2,b}$ en B_1 et $\overline{d}_{2,c}$ en C_1 ; ces trois rayons passent évidemment par le même point P.

Ceci découle du fait que les faisceaux en A, B et C sont doublement homologiques et que les secondes droites engendrées sont précisément ces mêmes rayons doubles $\overline{d}_{2.a}$, $\overline{d}_{2.b}$ et $\overline{d}_{2.c}$.

19. Le triangle fondamental est une droite ABC et la triangle auxiliaire est un point P. (Fig. 4.)

Pour être tout à fait précis, nous dirons : les trois sommets A, B, C du triangle fondamental sont en ligne droite sur p, et les trois côtés du triangle lement partie de l'involution et son conjugué s'obtient d'après le procédé général sans autre remarque particulière.

A ce sujet nous pouvons observer que p est la droite qui passe par les quatrièmes points $\overline{D}_{2.a}$, $\overline{D}_{2.b}$ et $\overline{D}_{2.c}$ engendrés par les involutions; p joue le rôle de tangente commune et c'est par conséquent un triangle rectiligne limite. Encore une fois, les sommets sont sur a_1 , b_1 et c_1 .

Les propriétés générales ayant trait aux faisceaux en A₁, B₁ et C₁ n'existent plus dans ce cas particulier.

Par contre la propriété des points de coupe des côtés homologues A_2B_2 avec $A'_2B'_2$, B_2C_2 avec $B'_2C'_2$, etc., se retrouve sous la forme suivante : Les points de coupe des côtés homologues des triangles conjugués sont les points fixes $\overline{D}_{2.a}$, $\overline{D}_{2.b}$ et $\overline{D}_{2.c}$ de la droite p. Les lignes de jonction de ces points de coupe sont évidemment confondues avec p.

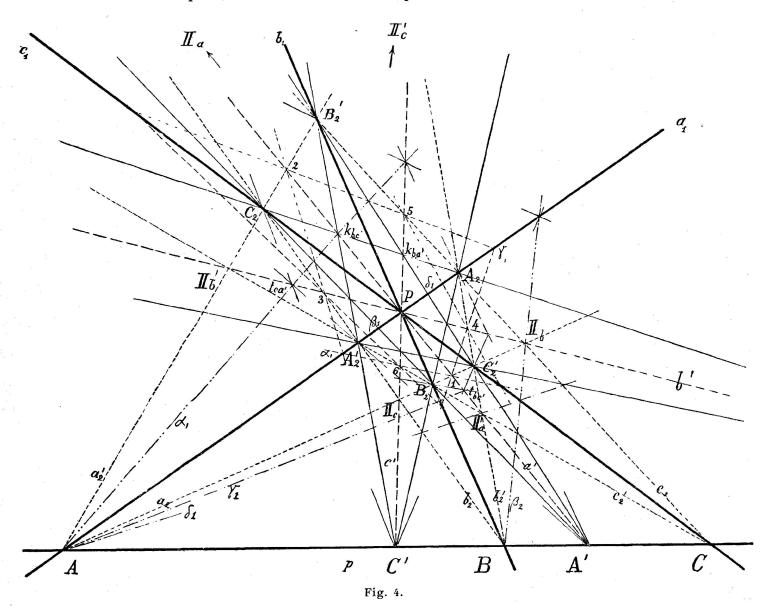
Ceci découle également du fait que les involutions sur a_1 , b_1 , c_1 sont doublement homologiques et que les seconds points engendrés sont justement ces mêmes points doubles $\overline{D}_{2.a}$, $\overline{D}_{2.c}$, $\overline{D}_{2.b}$.

20. Le triangle fondamental est un point et le triangle auxiliaire une droite. (Fig. 4.)

Nous pouvons dire aussi que les trois côtés a_1 , b_1 et c_1 du triangle fondamental passent par un même point P et que les trois sommets du triangle auxiauxiliaire a_1 , b_1 , c_1 passent par le même point P.

Nous avons à nous reporter d'une part, au cas général et d'autre part, aux deux derniers liaire A, B et C sont en ligne droite sur p.

Les termes de comparaison seront d'abord le cas général puis en second lieu, l'avant-



cas particuliers précédents, où le triangle est déjà un point.

Comme dans ces cas, nous obtenons ici, en A, B et C des groupements de rayons par cycles hexagonaux fermés. dernier cas particulier où le triangle auxiliaire était déjà formé de trois points en ligne droite.

De la même manière que précédemment nous obtenons sur les côtés a_1 , b_4 et c_1 des groupements de points par cycles hexagonaux fermés.

Les faisceaux obtenus en A, B et C forment des involutions dans lesquels les rayons doubles sont, premièrement la droite p et secondement les trois droites

 $a_1, b_1, c_1.$

Ces involutions considérées deux à deux sont doublement homologiques, puisqu'elles ont deux rayons doubles conjugués confondus en p. Les quatrièmes droites engendrées sont déterminées par le point P et par le point de coupe de deux autres rayons conjugués quelconques, comme Π_c sur a_2 et b_2 .

Ces droites par P sont les conjugués harmoniques du côté auxiliaire correspondant a, b, ou c, par rapport aux deux autres.

La droite $II_cII'_c$ par P coupera p en C' qui est le conjugué harmonique de C par rapport à A et B.

Les points conjugués comme II_c et II'_c sont donc en ligne droite et d'autre part cette droite passe par P puisque P est l'intersection de deux rayons doubles.

Nous désignerons cette droite par c'. Dans le quadrilatère complet $a_2 a'_2 b_2 b'_2$, les droites c_1, c' et p sont les diagonales; les points diagonaux C et C' sur p seront donc les conjugués harmoniques des sommets opposés A et B.

En outre les rayons c_1 et c' en P seront conjugués harmoniques de a_1 et b_1 .

Les ponctuelles involutives sur a_1 , b_1 et c_1 sont identiques à celles de la partie dualistique ci-contre; elles sont double-

Les involutions obtenues sur a_1, b_1, c_1 admettent le point P comme premier point double et leurs seconds points doubles sont les sommets du triangle auxiliaire A, B, C.

Ces involutions considérées deux à deux sont doublement homologiques à cause points doubles conjugués et confondus en P. Les quatrièmes points enveloppés sont déterminés par la droite p et par deux autres points conjugués quelconques.

Les points considérés sur p sont les conjugués harmoniques du point auxiliaire correspondant A, B ou C par rapport aux deux autres.

La droite A₂B₂ coupe p en C' par exemple, et C' est le conjugué harmonique de C par rapport à A et B.

Les droites conjuguées A, B, et A', B', passent donc par un même point et celui-ci se trouve sur p, puisque p est la jonction de deux points doubles con-

jugués.

Nous désignerons ce point par C'. Dans le quadrangle complet $A_2B_2A_2'B_2'$ les points P, C et C' seront évidemment les points diagonaux; les diagonales c_1 et c' seront les conjugués harmoniques des côtés opposés a_1 et b_1 .

En outre les points C et C' sur p seront les conjugués har-

moniques de A et B.

Les faisceaux involutifs par les points A, B et C sont identiques à ceux de la partie dualistique ci-contre. Ils

ment homologiques et engendrent les points A', B' et C'.

Les triangles déterminés par les rayons conjugués comme a_2 , b_2 , c_2 et a'_2 , b'_2 , c'_2 soient $II_aII_bII_c$ et $II'_aII'_bII'_c$, forment l'involution de triangles, comme dans le cas général.

Les triangles doubles sont le triangle ABC sur la droite p et le point de coupe des côtés du triangle auxiliaire soit P.

Les propriétés des triangles conjugués prennent maintenant la forme suivante:

- 1. Les lignes de jonction des sommets homologues sont confondues avec les droites a', b' ou c'.
- 2. Les lignes de jonction des sommets non homologues comme $II_bII'_c$, II'_bII_c ou $II_aII'_c$, $II_cII'_a$ etc., passent respectivement par A', B' ou C'.
- 3. Dans l'hexagone $\Pi_a\Pi'_c\Pi_b$ $\Pi'_a\Pi_c\Pi'_b$ les points de coupe des côtés opposés sont en ligne droite sur p et les lignes de jonction des sommets opposés passent par le même point P.
- 4. Les triangles circonscrits à deux triangles conjugués et dont les côtés passent respectivement par A, B ou C sont aussi des triangles conjugués.

Les démonstrations ou les remarques des cas précédents s'appliquent à priori aux propriétés ci-dessus. doublement homologiques et engendrent les droites a', b' et c'.

Les triangles déterminés par les points conjugués $A_2B_2C_2$ et $A'_2B'_2C'_2...$ forment l'involution des triangles conjugués de la même manière que dans le cas général.

Les triangles doubles sont d'abord le point de coupe P des côtés du triangle fondamental, puis le triangle ABC des points doubles sur ces côtés.

Les propriétés des triangles conjugués prennent maintenant la forme suivante :

- 1. Les points de coupe de deux côtés homologues sont confondus avec les points A', B' ou C'.
- 2. Les points de coupe de deux côtés non homologues comme A_2B_2 , $A'_2C'_2$ ou A_2C_2 , $A'_2B'_2$ etc., sont respectivement sur a', b' ou c'.
- 3. Dans l'hexagone (a₂) (c'₂) (b₂) (a'₂) (c₂) (b'₂) les lignes de jonction des sommets opposés passent par le point P et les points de coupe de côtés opposés sont sur la même droite p.
- 4. Les triangles inscrits dans deux triangles conjugués et dont les sommets se trouvent respectivement sur les droites a_1 , b_4 ou c_1 sont aussi des triangles conjugués.

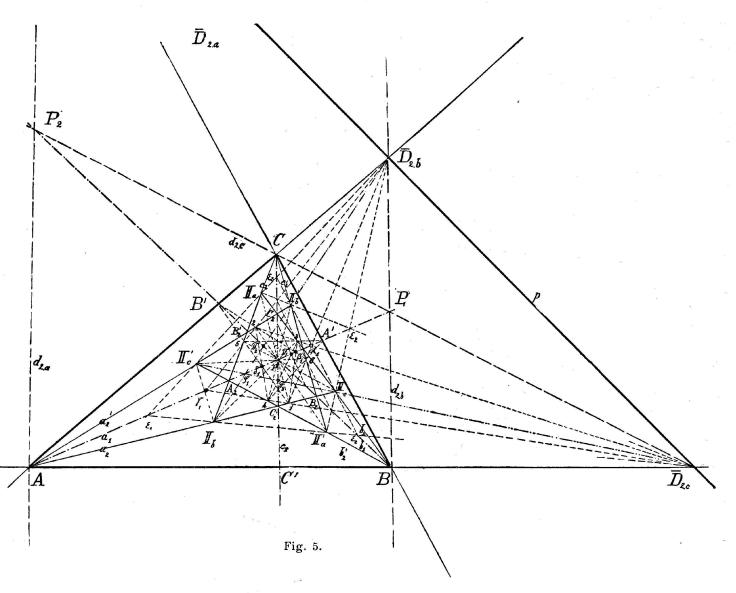
Les raisonnements et les démonstrations sont les mêmes que dans les cas précédents.

§ IV. — Coniques particulières.

- 21. Nous nous reporterons au cas où le triangle auxiliaire se ramène à trois droites concou-
- 22. Nous reviendrons au cas où le triangle auxiliaire ABC se ramène à trois points en ligne

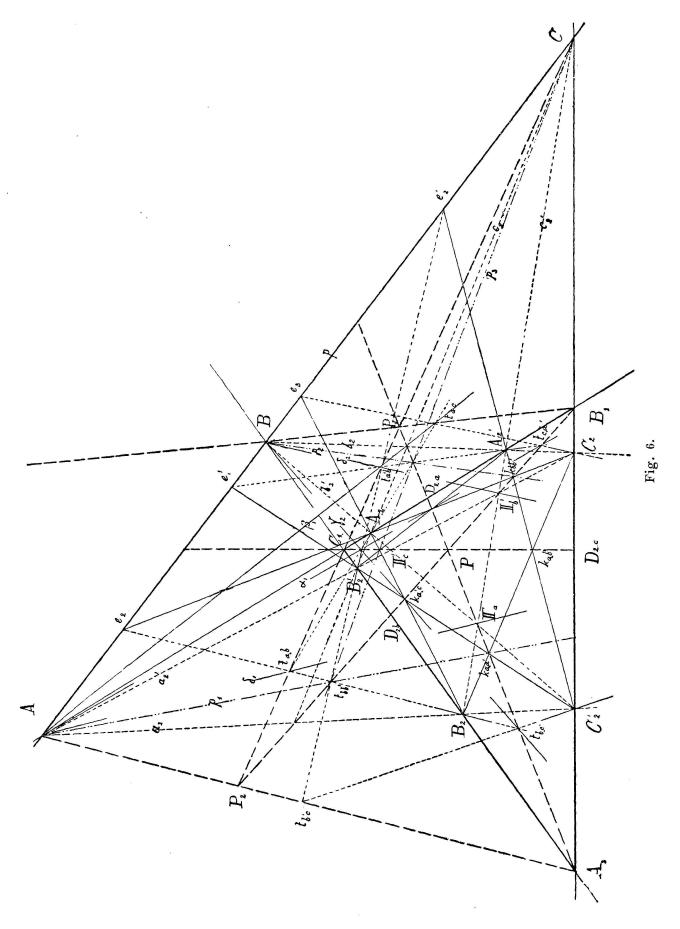
rantes et soit P le point de coupe des côtés a_4 , b_4 et c_4 . Nous considérerons maintenant les involutions de rayons en A, B et C puis les involutions de points sur a_4 , b_4 et c_4 . Les rayons conjugués a_2 , b_2 , c_2 puis a'_2 , b'_2 , c'_2

droite, et soit p cette droite. Nous considérerons ensuite les involutions de points sur les côtés fondamentaux a_1 , b_4 , c_4 puis les involutions de rayons en A, B et C. Les points conjugués A_2 , B_2 , C_2 et A'_2 , B'_2 , C'_2



déterminent deux triangles conjugués de l'involution de triangles, § II, n° 13. Les points conjugués $A_2B_2C_2$ puis $A'_2B'_2C'_2$ déterminent à leur tour deux triangles conjugués de l'involution dualistique du § III, n° 18.

déterminent deux triangles conjugués de l'involution de triangle du § II, n° 14. Les rayons conjugués a_2 , b_2 , c_2 puis a''_2 , b'_2 , c'_2 déterminent à leur tour deux autres triangles conjugués de l'involution de triangles du § III, n° 19.



Ces deux paires de triangles associés dans le triangle fondamental ABC donnent lieu aux propriétés suivantes: (Fig. 5.) Ces deux paires de triangles associés dans le triangle fondamental A₄ B₄ C₄ donnent lieu aux propriétés suivantes : (Fig. 6.)

1. L'hexagone $II_aII'_bII_cII'_aII_bII'_c$ peut être inscrit dans une conique C_4 . La droite de Pascal de l'hexagone est la polaire trilinéaire p de P.

Voir prop. 3, nº 13.

2. L'hexagone $A_2C'_2B_2A'_2C_2B'_2$ est circonscriptible à une autre conique K_4 . Le point de Brianchon de l'hexagone est le point P.

Ceci est de toute évidence puisque les lignes de jonction des sommets opposés sont les droites a_1 , b_4 , c_4 par P.

3. Les deux triangles conjujugués $II_a II_b II_c$ et $II'_a II'_b II'_c$ sont inscrits dans la conique C_4 et circonscrits à la conique K_4 . Les droites de jonction de chaque sommet avec le point de tangence du côté opposé sur K_4 passent toutes les six par le point P.

Soient les points de tangence 1 opposé à II_a , 2 opposé à II'_a , 3 opposé à II_b , 4 à II'_b , etc., ... Nous étudierons la droite II'_a-2 ; elle passe par P; en effet, dans l'hexagone circonscrit A=2 $- C_2 - A'_2 - II'_a - C'_2 - A,$ les côtés A — 2 et 2 — C₂ sont confondus avec la tangente en 2; les diagonales par les sommets opposés sont $A - A'_2$, $2 - II'_a$ et C₂ — C'₂. Les diagonales $A - A'_2$ et $C_2 - C'_2$ se coupent évidemment en P, donc la troisième 2 — II'a passe également par P.

4. Etant donné les deux triangles conjugués $II_aII_bII_c$ et $II'_aII'_bII'_c$ circonscrits à la conique K_1 , la ligne de jonction des points de tangence de deux côtés d'un même triangle passe par le

1. L'hexagone $(a_2)(c'_2)(b_2)(a'_2)(c'_2)(b'_2)$ peut être circonscrit à une conique K_2 . Le point de Brianchon de la figure est le pôle trilinéaire P de la droite donnée p.

Voir prop. 3, nº 14.

2. L'hexagone de côtés a_2 , c'_2 , b_2 , a'_2 , c_2 , b'_2 ou de sommets $A_2C'_2B_2A'_2C_2B'_2$ est inscriptible dans une conique C_2 . La droite de Pascal de la figure est p.

Les côtés opposés coupent évidemment en A, B, C sur la la droite p.

3. Les deux triangles conjugués $A_2B_2C_2$ et $A'_2B'_2C'_2$ sont inscrits dans la conique C_2 et circonscrits à la conique K_2 . Les points de coupe de chaque côté avec la tangente de C_2 par le sommet opposé sont tous les six sur p.

Nous considérerons le côté $B'_{2}C'_{2}$ ou (a'_{2}) et la tangente de C_{2} par A'_{2} . Nous admettrons que ces droites se coupent en e_{4}' et nous démontrerons que ce point est bien sur p.

En effet, dans l'hexagone inscrit formé par la tangente en A'₂ et les sommets B₂B'₂C₂C'₂, les points de coupe des côtés opposés sont e'₁ pour la tangente en A'₂ et le côté B'₂C'₂ puis C pour A'₂B₂ et C₂C'₂ et enfin B pour B₂B'₂ et C₂A'₂. Le point e'₁ est donc bien sur la droite BC ou p.

4. Etant donné les deux triangles conjugués $A_2B_2C_2$ et $A'_2B'_2C'_2$ inscrits dans la conique C_2 , le point de coupe des tangentes par deux sommets d'un même triangle se trouve

point de coupe des côtés correspondants des deux triangles primitifs ABC et a₁ b₄ c₄ par P.

Nous prendrons les points de tangence sur les côtés $II'_aII'_c$ et $II'_aII'_b$, soient 4 et 6. Les côtés correspondants des triangles primitifs seront BC ou a et a_1 par P, avec le point de coupe en A'.

Considérons ensuite l'hexagone circonscrit $A_2 - 4 - B$ $-A'_2 - 6 - C - A_2$ dans lequel les tangentes $II_aII_a = BA_2$ et $II'_aII'_b = CA'_2$ avec leurs points de tangence 4 et 6 comptent comme deux côtés de l'hexagone.

Les diagonales par les sommets opposés sont $A_2A'_2$ ou AA', 4-6 ou la ligne de jonction des points de tangence, puis BC ou le côté a. Comme A' est sur a, la droite 4-6 passera par A'.

5. Etant donné les deux triangles $II_aII_bII_c$ et $II'_aII'_bII'_c$ circonscrits à la conique K_4 , la ligne de jonction des points de tangence 3 et 2 relatifs à un côté (b_2) du premier triangle et un côté (a'_2) du second, passe par le point correspondant $\overline{D}_{2,c}$ de la droite p.

En effet, dans l'hexagone circonscrit $2 - II'_b - A'_2 - 3 - II_a - B'_2 - 2$ les lignes de jonction des sommets opposés 2 - 3, $II_a - II'_b$, $A'_2 - B'_2$ sont concourantes; les deux dernières passent par $\overline{D}_{2,c}$ sur p (voir § 2, n° 11 et 13, chiff. 2); 2 - 3 passe donc par $\overline{D}_{2,c}$.

Ceci subsiste pour 5-6 et 4-1, puis pour les groupe-

toujours sur la droite de jonction du point P au sommet correspondant du triangle fondamental.

Soient les tangentes par B'_2 et C'_2 ; elles se coupent en un point $t_{b'c'}$ et nous avons à démontrer que ce point se trouve sur la droite AA_4 ou a'_4 .

Considérons ensuite l'hexagone inscrit $B_2 - B'_2 - B'_2 - C_2 - C'_2 - C'_2 - B_2$, dans lequel les tangentes en B'_2 et en C'_2 sont considérées comme côtés par deux sommets infiniment rapprochés.

Les points de coupe des côtés opposés sont $t_{b'c'}$ pour la tangente en B'_2 et celle en C'_2 , A_4 pour $B_2B'_2$ et $C_2C'_2$, puis A pour B'_2C_2 et $B_2C'_2$. Ces points étant en ligne droite, $t_{b'c'}$ est donc bien sur A_4 A ou a'_4 .

5. Etant donné les deux triangles conjugués $A_2B_2C_2$ et $A'_2B'_2C'_2$ inscrits dans la conique C_2 , le point de coupe des tangentes par deux sommets quelconques, pris un sur chaque triangle, B_2 et C'_2 par exemple, est situé sur le rayon correspondant $\overline{d}_{2,a}$ par A_1 et P.

En effet, dans l'hexagone $B_2 - B_2 - C_2 - C_$

ments analogues relatifs à $\overline{D}_{2,a}$ et $\overline{D}_{2,b}$.

6. Etant donné deux paires de côtés opposés dans les deux triangles conjugués circonscrits à la conique K₄, comme II_aII_b et II'_aII'_b puis II_aII_c et II'_aII'_c, le point de coupe π₄ des lignes de jonction des points de tangence des côtés opposés est aussi le point de coupe de la ligne de jonction des sommets correspondants II_aII'_a avec le côté correspondant a₄ par P du triangle auxiliaire.

Dans l'hexagone circonscrit $II'_a - 4 - A_2 - II_a - 3 - A'_2 - II'_a$, les tangentes en 4 et 3 avec leurs points de tangence sont comptées comme deux côtés de la figure.

Le point de Brianchon sera sur les diagonales $II_aII'_a$, 3-4 et $A_2A'_2$. La première est la ligne de jonction des sommets II_a et II'_a et la troisième est un côté a_4 du triangle auxiliaire. La seconde, qui est la ligne de jonction des points de tangence des côtés opposés, passera donc par l'intersection π_4 des deux autres. Un même raisonnement nous permet d'établir que la ligne de jonction des autres points de tangence 5 et 6 passe également par π_4 .

Nous avons de même π_2 sur b_4 et π_3 sur c_4 .

Nous avons encore vu précédemment (n° 13, chiff. 1), que $II_aII'_a$ rencontre BC en $\overline{D}_{2.a}$ et que les points $\overline{D}_{2.a}$, $\overline{D}_{2.b}$ et $\overline{D}_{2.c}$ sont en ligne droite sur p.

6. Etant donné deux paires de sommets opposés dans les deux triangles conjugués inscrits dans la conique C_2 , comme $B_2B'_2$ et $C_2C'_2$, la ligne de jonction des points de coupe $t_{bb'}$ et $t_{cc'}$ des tangentes par les sommets opposés passe également par le point de coupe des côtés correspondants B_2C_2 et $B'_2C'_2$ et par le sommet A sur p du triangle auxiliaire.

Dans l'hexagone inscrit $B_2 - B_2 - C_2 - B_2 - B_2 - B_2$ de les tangentes en B_2 et en B_2 sont comptées comme lignes de jonction de deux sommets infiniment rapprochés.

La droite de Pascal de cet hexagone est déterminée par $t_{bb'}$ comme intersection des tangentes en B_2 et B'_2 , A comme intersection de B_2 C' $_2$ et B'_2 C $_2$ puis par $k_{aa'}$ comme intersection de C_2 B $_2$ et C'_2 B' $_2$. Le point de coupe des tangentes en B_2 et B'_2 est donc bien sur la droite A $k_{aa'}$. Par un même raisonnement nous pouvons encore montrer que les tangentes en C_2 et C'_2 se coupent également en un point $t_{cc'}$ de cette même droite p_4 .

Nous avons une ligne analogue p_2 par B et une p_3 par C; celle par B passe par $k_{bb'}$ et celle par C passe par $k_{cc'}$.

Nous pouvons également rappeler que $k_{aa'}$ est aussi sur A_1P $\equiv \overline{d}_{2.a}$ et que les trois droites $\overline{d}_{2.a}$, $\overline{d}_{2.b}$, $\overline{d}_{2.c}$ passent par P.

D'après ce qui précède et par rapport à la conique K₄

Donc P est le pôle de la droite p par rapport à la conique K_4 .

7. Etant donné deux sommets non consécutifs de l'hexagone $A_2 C'_2 B_2 A'_2 C_2 B'_2$ circonscrit à K_1 , les lignes de jonction des points de tangence des tangentes issues de chaque point considéré se coupent toujours sur le côté correspondant du triangle auxiliaire, et ce point de coupe est le pôle de la ligne de jonction des deux points primitifs.

Nous considérons les sommets C_2 sur CC' et B_2 sur BB'. Les points de tangence sont 2 et 3 par rapport à C_2 et 1 et 6 par rapport à B_2 . La droite AA' est la polaire de $\overline{D}_{2.a}$. Comme B_2C_2 passe par $\overline{D}_{2.a}$ son pôle qui est à l'intersection des droites 2-3 et 1-6, en α_1 sera sur AA'.

Donc α_1 pôle de B_2C_2 est bien sur le côté a_1 du triangle auxiliaire. Le même raisonnement s'applique aux points α_2 sur b_1 et α_3 sur c_4 .

Si nous considérons les sommets C'_2 et B'_2 sur les mêmes droites c_4 et b_4 , nous trouvons un pôle γ_4 de C'_2 — B'_2 qui est sur a_4 parce que C'_2 — B'_2 passe aussi par $\bar{D}_{2.a}$.

D'après ce qui précède et par rapport à la conique C₂

$$a_1$$
 est la polaire de $t_{aa'}$
 b_1 " " $t_{bb'}$
 c_1 " " $t_{cc'}$
 (a_2) " " t_{bc}
 (a'_2) " " $t_{b'c'}$

P₁ par A est la polaire de A₁
 a'_1 " A " " " $k_{aa'}$
 $\overline{d}_{2,a} = A_1 P$ " " A A.

La droite p passant par A, B et C est la polaire de P par rapport à la conique C_2 .

7. Etant donné deux côtés non consécutifs de l'hexagone $A_2C'_2B_2A_2C_2B_2$ inscrit dans C_2 , les points de coupe des tangentes menées par les extrémités de chaque côté sont situés sur une droite passant par le troisième sommet du triangle auxiliaire et étant la polaire du point d'intersection des côtés primitifs.

Nous considérerons les côtés $A_2B'_2$ par C et A'_2C_2 par B. Le point de coupe de ces côtés est en II_a sur $\overline{d}_{2.a}$.

Le point de coupe des tangentes par A_2 et B'_2 s'appelle $t_{ab'}$ et celui des tangentes par C_2 et A'_2 s'appelle $t_{ca'}$. La droite $t_{ab'}t_{ca'}$ est évidemment la polaire de II_a sur $\overline{d}_{2.a}$, donc elle passe par le pôle A de $\overline{d}_{2.a}$. Nous désignerons cette polaire par α_1 .

Nous aurons de même α_2 en B et α_3 en C.

Les côtés $b'_2 = A_2 C'_2$ par B et $c'_2 = A'_2 B_2$ par C se coupent en II'_a sur a_4 et donnent γ_4 comme polaire de II'_a . Cette polaire passe également par A.

Nous trouverons de même γ_2

 $\operatorname{sur} b_1 \operatorname{et} \gamma_3 \operatorname{sur} c_4$.

8. Etant donné deux sommets non homologues des triangles conjugués $II_aII_bII_c$ et $II'_aII'_bII'_c$, comme II'_b et II_c puis II_b et II'_c , les lignes de jonction des points de tangence des tangentes de K_4 issues de ces points se coupent sur le côté correspondant du triangle auxiliaire, et ce point de coupe est le pôle de la ligne de jonction des points primitifs.

Soient donc II_b et II_c les premiers sommets considérés, les lignes de jonction des points de tangence sont 2-6 et 1-3. Ces droites se coupent en β_1 .

Comme $\Pi'_b\Pi_c$ passe également par $\overline{D}_{2,a}$, qui est le pôle de AA', β_1 se trouvera sur la polaire AA' ou a_1 de $\overline{D}_{2,a}$. De la même manière β_2 pôle de $\Pi_a\Pi'_c$ sera sur b_4 ou BB', et β_3 le pôle de $\Pi'_a\Pi_b$ sera sur CC' ou c_4 .

Avec les sommets $II_bII'_c$ nous aurons les lignes de jonction 1-5 et 4-2 qui se coupent δ_4 . Ce point est le pôle $II_bII'_c$ comme cette dernière droite passe par $\overline{D}_{2.a}$, δ_4 se trouvera aussi sur a_4 .

Les points analogues δ_2 et δ_3 seront sur b_4 et c_4 .

9. Nous aurons en outre α_4 situé sur $\mathrm{II'_bII_c}$, β_4 situé sur $\mathrm{B_2C_2}$, γ_4 situé sur $\mathrm{II_bII'_c}$ et δ_4 situé sur $\mathrm{B'_2C'_2}$.

Considérons les quatre points 2-3-6-1 de la courbe K_1 ; le quadrilatère circonscrit et le quadrangle inscrit ont les mêmes points diagonaux, donc B_2C_2 passe par β_1 et II'_bII_c par α_1 .

Nous aurons de même γ_2 par B et γ_3 par C.

8. Étant donné deux côtés non homologues des triangles conjugués (a₂) (c'₂) (b₂) (a'₂) (c₂) (b'₂) comme (b₂) (c'₂) puis (b'₂) (c₂), les points de coupe des tangentes de C₂ menées par les extrémités de ces côtés sont sur une droite qui passe par le sommet correspondant du triangle auxiliaire; cette droite est en outre la polaire du point de coupe des côtés considérés.

Soient $(b_2) = A_2 C_2$ et $(c'_2) = A'_2 B'_2$ les côtés considérés. Les tangentes par A_2 et C_2 se coupent en t_{ac} et celles par A'_2 et B'_2 se coupent en $t_{a'c'}$. La ligne de jonction sera désignée par β_1 . Comme le point de coupe $k_{b.c'}$ de ces côtés est aussi sur $\overline{d}_{2.a}$, sa polaire β_1 passera par le pôle A de $\overline{d}_{2.a}$. De la même manière β_2 passera par B et β_3 par C.

Avec les côtés $A'_{2}C'_{2}$ et $A_{2}B_{2}$, les tangentes par les premiers points se couperont en $t_{a'c'}$ et celles par les autres points en t_{ab} . La droite δ_{1} sera la polaire du point de coupe de ces côtés et comme ce point de coupe est sur $\overline{d}_{2,a}$ sa polaire passera par le pôle A de $\overline{d}_{2,a}$.

Nous aurons ainsi δ_2 par B et δ_3 par C.

9. α_1 passera en outre par l'intersection de (b_2) et (c'_2) , β_1 par l'intersection II_a de c_2 et b_2 ; γ_1 passera par l'intersection de (b'_2) et (c_2) , et δ_1 par II'_a sur b'_2 et c'_2 .

Le quadrilatère inscrit et le quadrangle circonscrit relatifs aux quatre points $A_2C_2A'_2B'_2$ de la courbe C_2 ont les mêmes Le même raisonnement subsiste pour les autres points.

23. Les droites $II_aII'_c$, II'_bII_c , $II_bII'_a$ forment le triangle $\varepsilon_1\varepsilon_2\varepsilon_3$ dont les sommets sont sur a_1 , b_1 , c_1 et dont les côtés passent respectivement par $\overline{D}_{2.a}$, $\overline{D}_{2.b}$, $\overline{D}_{2.c}$. Ce triangle est homologique avec ABC.

La conique C_1 par rapport à ce triangle joue le même rôle que C_2 par rapport à son triangle fondamental $A_1B_1C_1$.

Les tangentes de C_4 peuvent donc être construites comme celles de C_2 .

Dans le cas spécial où ABC est en ligne droite les points $A_2C'_2B_2A'_2C_2B'_2$ déterminent un hexagone inscriptible et la conique circonscrite se confond avec la courbe C_2 des éléments dualistiques.

L'hexagone considéré est aussi formé par les côtés $(a_2)(c_2')(b_2)$ $(a'_2)(c_2)(b'_2)$. Il est également circonscrit à une conique K_2 .

Comme dans le cas plus général nous avons aussi les points α_1 , β_1 , γ_1 , δ_1 sur a_1 et les points analogues sur b_1 et c_1 . β_1 et δ_1 sont les points de tangence des côtés (a_2) et (a'_2) avec K_2 puisque A_2 et A'_2 sont sur a_1 passant par P. (Fig. 4.)

points diagonaux, donc α_1 passe par $k_{bc'}$ et β_1 par Π_a .

Le même raisonnement est applicable aux autres droites du théorème.

24. Les points de coupe des côtés $(a_2)(a'_2)$, $(b_2)(b'_2)$, $(c_2)(c'_2)$ forment un triangle $k_{aa'}k_{bb'}k_{cc'}$ dont les côtés passent respectivement par A, B et C et dont les sommets sont sur $\overline{d}_{2.a}$, $\overline{d}_{2.b}$ et $\overline{d}_{2.c}$. Ce triangle est homologique avec A_4 B_4 C_4 .

La conique K₂ par rapport à ce triangle joue le même rôle que K₄ par rapport à son triangle fondamental ABC.

Les points de tangence de K_2 peuvent être construits comme ceux de K_4 .

Dans le cas spécial où $a_1b_1c_1$ passent par le même point P, l'hexagone $(a_2)(c_2)(b_2)(a_2)(c_2)(b_2)$ est circonscriptible à une conique, et celle-ci se confond avec K_4 des éléments dualistiques.

L'hexagone considéré est aussi formé par les sommets $A_2C'_2B_2A'_2C_2B'_2$. Il est également inscrit dans la conique C_2 .

De même que dans le cas plus général nous avons encore les droites α_1 , β_1 , γ_1 , δ_1 par A; β_1 et δ_1 sont les tangentes de C_1 en II_a et II'_a , puisque le point de coupe de II_bII_c ou $II'_bII'_c$ avec p est en A. (Fig. 4.)

Bienne, juillet 1915.